
Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 13, No. 2, December 2014 

Brazilian Microwave and Optoelectronics Society-SBMO received 21 Apr 2014; for review 22 Apr 2014; accepted 26 July 2014 

Brazilian Society of Electromagnetism-SBMag © 2014 SBMO/SBMag ISSN 2179-1074 

 

154 

Abstract— A comparative analysis of two cylindrical complex-

frequency-shifted perfectly matched layers (CFS-PML) absorbing 

boundary condition (ABC) for bi-dimensional (2-D) finite-volume 

(FV) simulations in the frequency domain is presented. The impact 

of CFS-PML parameters on the wave absorption, as well as on the 

condition number of the associated system matrix is investigated by 

comparing the performance of two PML loss profiles, viz., 

polynomial and geometric grading. FV-CFS-PML results are 

validated against analytical solution. Numerical results show that 

inclusion of a CFS-PML within the FV computational domain 

increases the condition number of the system matrix and therefore 

the use of CFS-PML 3-D FV simulations is limited. 

 

 
Index Terms— Coaxial waveguides, condition number, finite volume 

methods, perfectly matched layers.  

 

 

I. INTRODUCTION 

 
One of the biggest challenges in the computational electromagnetics modeling is the efficient and 

accurate solution of electromagnetic fields in unbounded problems. In the analysis of large scale 

problems, it is essential to employ iterative solvers for the resulting associated sparse linear system. In 

general, the convergence of these solvers becomes poorer as the condition number of the system 

matrix increases and, it may not be achieved in many cases. Furthermore, in order to simulate 

unbounded problems in both lossless and low-loss media, an absorbing boundary condition (ABC) 

must be constructed to eliminate spurious reflections from computational boundaries. The perfectly 

matched layers (PML) ABC has been shown to be very effective for discrete methods [1]-[5]. 

However, some papers in the literature report that the use of PML in frequency domain methods, such 

as the finite-volume and finite-element, increases the condition number and consequently, the solution 

can be plagued by convergence problems [6]–[8]. It should be note that the problem associated with 

the condition number is not really predicated on frequency domain methods but rather whether the 

method produces require the solution of a large system matrix or not. Time domain methods such as 

finite-volume time-domain (FVTD) and finite-element time-domain (FETD) do require such step and 
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can be also affected by the condition number [9]. On the other hand, some frequency domain methods 

such as the numerical mode matching (NMM) can produce much smaller matrices and be less affected 

by the condition number issue [10]. 

A three-dimensional (3-D) finite volume (FV) algorithm has been developed and successfully 

applied to simulate electromagnetic (EM) well-logging tool response in high-loss geophysical 

formations [11]–[14]. In low-loss media, however, its application implies increasing the 

computational domain. To save memory requirements and CPU time, a PML must be incorporated in 

the outermost cells of the grid in order to absorb outgoing waves. 

The degradation of the condition number of FV system matrices after the implementation of the 

PMLs in the computational domain was first investigated in [15], where coaxial waveguides 

terminated by PMLs in the longitudinal direction were analyzed in terms of its loss parameters and 

number of layers. In [16], a similar study was done but with coaxial waveguides terminated by 

longitudinal complex-frequency-shifted (CFS) PMLs [17]. 

In this paper, a 2-D FV algorithm is applied to a coaxial waveguide backed by a cylindrical CFS-

PML in both longitudinal and radial directions. This geometry mimics a FV computational domain 

with a metallic mandrel around the z axis, which is common in EM well-logging tools simulations. 

Here, the main objective is to analyze the effect of the CFS-PML parameters on the condition number 

of the FV system matrix taking also into account the numerical discretization error. We assess this by 

comparing the performance of two PML loss profiles, viz., polynomial and geometric grading. 

Furthermore, the numerical reflection coefficient is also investigated. The FV-CFS-PML technique is 

validated against analytical solution showing very good agreement. Numerical results show that the 

inclusion of a CFS-PML within the FV computational domain increases substantially the condition 

number of the system matrix. Therefore, unless a well-conditioned CFS-PML is developed, the use of 

CFS-PML 3-D FV simulations is limited since it requires the use of a direct method for solving the 

FV system matrix. 

 

II. FORMULATION 

A. Finite Volume Technique 

 
In the FV technique, the physical space is decomposed into small volumes and the partial 

differential equations (PDE) are integrated over each volume. The present FV technique is based on a 

staggered-grid scheme developed in cylindrical coordinates to better conform to the majority of well-

logging tool geometries and to avoid staircasing errors [18]. The computational grid is uniform in 

both the longitudinal z-direction and the radial  -direction. Ampere's law is integrated over faces of 

the dual grid 
~

. For any surface 
~~

S  with boundary S
~

 , this gives ( tie  convention): 

 

  
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S S
s
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sdJsdEildH~ ~~
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where   and   are the conductivity, and permittivity of the medium, respectively. 
sJ


 is the electric 

current density (impressed source). The electric and magnetic fields are the unknowns to be 

determined. Dirichlet boundary conditions are assumed at the computational boundaries. Discrete 

equations are obtained by evaluating the above over each face of the dual grid. By using integration 

dual faces S
~

 perpendicular to the  - direction (Fig. 1a), we arrive at: 
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where i, k, refer to a primal grid nodal indexing,   and z  are the cylindrical grid spatial increments 

in the  - and z-directions, respectively; 
0I  is the current source amplitude, and   iˆ . The 

magnetic field can be eliminated from (2) using Faraday's law: 

 

 


S S
sdHildE 0


                                                           (3) 

 
where  is the permeability of the medium. 

By using integration primary faces S perpendicular to the  -  and z-directions (Fig. 1b and Fig. 1c), 

we arrive at: 
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Substituting (4a) and (4b) into (2), a discrete linear system [A][X]=[B] is obtained, where [A] is a 

complex non-Hermitian matrix, [X] is the vector of (electric field) degrees of freedom (DoFs), and 

[B] is the discrete source representation. 

 

B. Cylindrical Perfectly Matched Layers 

 
A cylindrical PML is incorporated in the outermost cells of the grid in order to absorb outgoing 

waves. This is done by modifying the constitutive parameters inside the PML region, and hence it 

does not require any modification on Maxwell's equation themselves. In cylindrical coordinates, the 

PML constitutive tensors that are matched to a homogeneous nondispersive medium characterized by 

constitutive parameters   and , are given by 

 

    ;,,, zzPML   ;     ;,,, zzPML                                  (5) 

with [19] 
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(a) 
 

      

(b) 

 

     (c) 

Fig. 1. Unit cell of the staggered grid scheme for spatial discretization of electromagnetic fields on the cylindrical grid. (a) 

Dual faces perpendicular to the 𝝓- direction. (b) Primary faces perpendicular to the 𝝆- direction. (c) Primary faces 

perpendicular to the 𝒛- direction.   
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In the above, ~  is the analytic continuation of the radial coordinate to a complex variable domain, 

and 
s  and 

zs  are frequency-dependent complex stretching variables. Here, two types of PML are 

implemented for comparison purposes, viz., the standard PML and the CFS-PML. The stretching 

variables 
s  and 

zs are defined as: 
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and 
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where  K ,   
,  zKz

 and  zz  are functions of position only [11]. Note that in the standard 

PML the parameters 
   and 

z  are set equal to zero. 

Inside the CFS-PML region, ordinary longitudinal outgoing eigenmodes are transformed to 



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, where    and   stands for   or z ; and similarly for radial eigenfunctions in 

terms of Hankel functions. Hence, the transformed eigenmodes exhibit exponential decay inside the 

CFS-PML so as to reduce spurious reflections from the grid terminations. However, in the low-

frequency limit 0 , the behavior does not exhibit induced attenuation. To circumvent this, is 

scaled to be maximum at the inner CFS-PML interface, and minimum at the grid termination. Here, 

the following scaling is adopted: 
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where d is the CFS-PML thickness and m is a taper profile for both real and imaginary parts of the 

stretching variables. 

Once, the design of an effective CFS-PML requires balancing the theoretical reflection error, and 

the numerical discretization error; several profiles have been suggested for grading 
  in the context 

of CFS-PML. The most successful use a polynomial or geometric variation of the CFS-PML loss. 

Here, the following polynomial and geometric grading are adopted [1]. 

1) Polynomial: 

  max
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max

  is the CFS-PML conductivity at the outer boundary,   is the incidence angle over CFS-PML, 

and  R  is the theoretical reflection error given by 






d

d

eR 0
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(a) 

                                             
 

(b) 

 

Fig. 2. Illustration of the geometry problem. (a) Longitudinal PML - (b) Radial PML 

 

 

2) Geometric: 
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where 0

  is the CFS-PML conductivity at its surface, g is the scaling factor, and 
  is the FV space 

increment. 

 

 

III. NUMERICAL RESULTS 

 

A. Validation 

 
In order to validate the present FV-CFS-PML method, the algorithm is applied to a lossless coaxial 

waveguide backed by a cylindrical CFS-PML in both the longitudinal and radial directions, as illustrated 

in Fig. 2(a) e 2(b), respectively. In all simulations performed here, unless mentioned otherwise, the  
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                                                 (a)                                                                                             (b) 

 

Fig. 3. Electric field distribution of a lossless coaxial waveguide backed by a cylindrical CFS-PML. (a) Longitudinal PML - 

(b) Radial PML 

 

following input data are used: the operating frequency is 2 MHz; both the relative electric 

permittivity and magnetic permeability are set equal to 1; the inner cylinder has radius equal to r = 

0.1016 m; the CFS-PML are set up using eight cells; 4max 10   and the scaling factors are m=2 and 

g=3.2. For the longitudinal PML case, the computational domain is discretized using a 

  )300,50(, zNN
 grid. 

The discretization cell size is uniform in both directions with m2.2
 and mz 0.5 . The source 

is set at   )150,10(, zNN
 and the field is sampled at m1.85 . For the radial PML case, a 

  )80,100(, zNN
 grid is used. The discretization cell size is uniform in both directions with m0.5

 and 

mz 5.1 . The source is set at   )35,51(, zNN
and the field is sampled at m0.60 . 

In fig. 3, the electric field distribution from the FV-PML simulation is compared against an 

analytical solution. Very good agreement is observed between the FV-PML and analytical results. 

This occurs because max

  is selected within the range defined by 
0

max   . Outside this range, the CFS-

PML does not exhibit induced attenuation. 

    To better analyze the performance of the polynomial and geometric CFS-PML loss profiles, the 

numerical (actual) coefficient reflection (COEFN) as a function of the theoretical coefficient 

reflection (COEF) is plotted in Fig. 4, for different values of max

 . For the longitudinal CFS-PML 

case, it can be noted that the polynomial-graded profile provides smaller reflection levels, showing an 

advantage over the geometric-graded profile. However, max

z  does not have strong influence on the 

reflection level in both profiles. On the other hand, the COEFN does not vary with max

   in both 

profiles for radial CFS-PML. Moreover, polynomial and geometric profiles provide similar reflection 

levels. As expected, it can also be noted that for 
0

max   , the CFS-PML does not offer additional  
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                                    (a)                                                                                            (b) 
 

 
 

                                                 (c)                                                                                           (d)  

Fig. 4. Numerical Reflection Coefficient X Theoretical reflection coefficient for different values of max

 . In both profiles, 

NPML=6 and KPML=1. 

attenuation. It should be noted that the design of an effective CFS-PML requires balancing the 

theoretical reflection error and the numerical discretization error. Normally, the CFS-PML 

conductivity profile is chosen as large as possible to minimize the theoretical reflection error. 

Unfortunately, if the CFS-PML conductivity profile is too large, the discretization error due to the FV 

approximation dominates, and the numerical (actual) reflection error is potentially orders of 

magnitude higher than what equation (10c) predicts. This problem is more pronounced in our case 

because the cell size is too small. 

    Fig. 5 shows the COEFN as a function of max

  for different values of KPML (the real part of the 

stretching variable 
s ). For the longitudinal CFS-PML case, it is observed that both profiles show 

similar behavior, and the polynomial CFS-PML outperforms the geometric one. Note that for 

4max 10z , COEFN has considerably increased in both profiles and for 4max 10z , a slight variation is 

observed in the geometric profile. However, for the radial CFS-PML case, it can be noted that 

COEFN does not vary neither with COEF nor with KPML in both profiles. 
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                                    (a)                                                                                            (b) 
 

 

 
 

                                                 (c)                                                                                           (d)  

 

 

Fig. 5. Numerical Reflection Coefficient X max

 for different values of KPML. In both profiles, NPML=6. 

 

To investigate the impact of CFS-PML parameters on the condition number (CN) of the FV system 

matrix, some of the input data have their values modified. In this study, the computational domain is 

discretized using a   )50,50(, zNN
 grid and the source is set at   )25,25(, zNN

. The discretization 

cell size is uniform in both directions. For the longitudinal PML case, the domain was discretized by 

using m2.2
 and mz 5.7 ; and for the radial PML case, m2.2

 and mz 5.7  was used. Fig. 6 

shows the CN as a function of COEF for different values of  max

 . For both the longitudinal and the 

radial CFS-PML case, it is observed that for 4max 10   the CN decays as the COEF increases. 

Moreover, it can be noted that both profiles (polynomial and geometric) show similar behavior. Fig. 7 

shows the CN as a function of max

  for different values of KPML. Note that for 4max 10  , the KPML 

plays no role in the CN. 
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                                    (a)                                                                                               (b) 
 

 
                                                 (c)                                                                                           (d)  

 
Fig. 6. Condition Number X Theoretical Reflection Coefficient for different values of max

 . In both profiles, NPML=6 and 

KPML=1. 

 

IV. CONCLUSION 

 
We have compared the performance of two cylindrical CFS-PML, viz., polynomial-graded CFS-PML 

and geometric-graded CFS-PML for being used as an absorbing boundary condition (ABC) in the bi-

dimensional (2-D) finite-volume technique in the frequency domain. Simulations in both the 

longitudinal and radial coaxial waveguide terminated by a cylindrical CFS-PML have been carried 

out. For the longitudinal CFS-PML case, the polynomial-graded CFS-PML has outperformed 

geometric-graded PML in terms of wave absorption. However, the condition number of the associated 

matrix system in both profiles are similar. For the radial CFS-PML case, both types of CFS-PML 

have shown similar performance in terms of absorption of the wave, as well as the condition number 

of the matrix system. Even though the CFS-PML has achieved great success in time-domain analysis, 

its usefulness in the frequency-domain methods remains unclear. The inclusion of the CFS-PML in  
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                                    (a)                                                                                                (b) 
 

 
                                                 (c)                                                                                             (d)  

 
Fig. 7. Condition Number X max

 for different values of KPML. In both profiles, NPML=6. 

 

 
computational domain significantly increases the condition number of the system matrix and 

consequently the convergence of iterative methods deteriorates.  
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