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Abstract— This paper presents a microstrip phased array using 

High Impedance Surface - Electromagnetic Bandgap (HIS-EBG) in 

order to minimize the effects of mutual coupling among the 

antenna elements. Each element of the array is fed by a coaxial 

cable allowing the beam steering by controlling the signal of the 

input port of each element. This phased array operates at X Band 

as well as the bandgap of the HIS-EBG structure. Its main 

applications are satellite communication and broadcasting systems. 

Results show reductions in the mutual coupling up to 12 dB, and 

improvements in the return loss and gain. 
  

Index Terms— electromagnetic bandgap, metamaterial, microstrip, phased 

array.  

I. INTRODUCTION 

The use of phased array antennas has been increasing in the last few years due to the fact that they 

present several advantages over the use of single antennas, such as the flexibility to steer the 

transmitted signal. Its applicability goes from radar for weather observation to the detection of targets 

[1]. Nevertheless, one of the major problems of this technology is related to the mutual coupling 

among antenna elements. This effect brings serious drawbacks to the system as a whole in terms of 

gain, return loss, and radiation efficiency, to name a few.  

Meanwhile, Metamaterials (MTMs) have been used to overcome problems such as the ones cited 

above, hence improving antenna performance evaluation [2]-[4]. MTMs are periodic sub-wavelength 

structures that present unusual electromagnetic properties, which are not usually found in nature, such 

as materials with ε-negative (ENG), µ-negative (MNG), and both ε and µ negative (DNG). Hence, 

these features open the whole range of possibilities for their application in different fields of study [5]. 

Since the mutual coupling could affect the performance of the phased array in several aspects, 

different methods employing MTMs have been proposed to mitigate the mutual coupling and improve 

the return loss and gain, such as electromagnetic bandgap (EBG) [6], split-ring resonators (SRR) [7], 

and frequency-selective surfaces (FSS) [8]. In this paper, in order to minimize the mutual coupling, 

the concept of EBG is applied and analyzed. Furthermore, the EBG effect can be achieved employing 
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different types of structures [9]. However, the use of a mushroom-like high impedance surface (HIS-

EBG) to achieve the electromagnetic bandgap is one of the most efficient due to its compactness [10], 

which is essential to modern communication systems. Moreover, the HIS-EBG is classified as a type 

of metamaterial and one of its main roles is related to the creation of a bandgap that suppresses the 

propagation of surface waves at a certain frequency range [5].  

The proposed microstrip array operates at X band (8 - 12 GHz), which is used for military and 

civilian interests. Also, devices operating at X band are employed in satellite communications, 

broadcast systems, radar, and so on. Due to the importance of X band, phased arrays operating at this 

frequency band can be useful in several applications [11]. 

  In this paper, a 3 x 3 phased array with HIS-EBG is proposed in order to avoid some negative 

effects of the mutual coupling at X Band. Furthermore, the proposed work is organized as follows. 

Section II discusses theoretical, design and simulation issues regarding HIS-EBG. The employment of 

HIS-EBG in phased array and discussion about the simulations are exposed in Section III. Finally, the 

conclusion is presented in Section IV. 

II. HIGH IMPEDANCE SURFACE-ELECTROMAGNETIC BANDGAP 

In this paper, a mushroom-like HIS-EBG is used, which is composed of metallic patches arranged 

periodically on a dielectric substrate with a metal sheet on the bottom side, which plays the role of a 

ground plane. Moreover, these patches and the ground plane are connected by metal-plated vias. This 

structure yields an electromagnetic bandgap that suppresses the surface waves to propagate on the 

structure. Also, if the periodicity of the unit cell is small enough when compared to the operating 

wavelength, the properties of this structure can be described using lumped inductors and capacitors, 

once they behave as a parallel resonant LC network, acting as an electric filter that blocks the current 

to flow along the sheet. 

The proposed HIS-EBG structure is designed to operate at X-Band and its unit cell can be seen in 

Fig. 1, where r is the radius of the via, b is the length of the square patch and g is the gap between the 

patch and the outer limit of the unit cell. The FR-4 substrate is used, which has a thickness of 1 mm, a 

dielectric constant of 4.4 and a loss tangent of 0.02, and the dimensions of the HIS-EBG at issue are b 

= 2.600 mm, g = 0.155 mm and r = 0.100 mm. In addition, the proposed HIS-EBG can be considered 

to be sub-wavelength, once its periodicity is 2.775 mm or, in terms of the wavelength at the central 

frequency of the X band (10 GHz), 0.092λ0. 

The behavior of the HIS-EBG is analyzed using the dispersion relation between the frequency and 

the wavevector k, which is also known as the dispersion diagram. Moreover, this diagram can be 

plotted for the surface wave propagation in the HIS-EBG on HFSS using Eigenmode solver, which is 

used to find the natural resonances and dispersion properties of the structure at issue, and applying 

master/slave boundaries in the unit cell, as shown in Fig. 2.  
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Fig. 1. Top view of the unit cell and its main parameters. 

 

Fig. 2. Unit cell of the HIS on the HFSS. 

The proposed HIS-EBG yields a dispersion diagram over the irreducible Brillouin zone in which 

the electromagnetic bandgap will be analyzed, as shown in Fig. 3. One can note in Fig. 3 (b) the 

Brillouin zone of a square patch, where kx and ky are the wavenumber in x and y-direction, 

respectively. Moreover, due to the symmetry of the unit cell, the irreducible Brillouin zone can be 

represented by three points, which are R (kx = ky = 0), M (kx = π/Λ and ky = 0) and X (kx = 0 and ky = 

π/Λ), where Λ is the periodicity of the unit cell. 

 The dispersion diagram is plotted in Fig. 3 (a) considering the irreducible Brillouin zone of the unit 

cell at issue. In this graph, the blue and red solid lines represent the solution to their corresponding 

eigenvalue equations for the transverse electric (TE) and transverse magnetic (TM) modes, 

respectively, and, thus, the electromagnetic wave can propagate at frequencies with the solution. 

However, it is possible to observe that the proposed HIS-EBG structure provides an electromagnetic 

bandgap over the X-band, i.e. there is no solution over this frequency range, which means that surface 

waves at frequencies within this gap are forbidden to propagate through the HIS-EBG [12]. This 

happens due to the interaction of the metal vias with the surface wave, which slows down the 
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propagation of the surface waves until their suppression [13]. The role of the patches is to attenuate 

the effects of spatial dispersion [14]. Furthermore, the gap is placed between the two fundamental 

orthogonal modes, which are the TE and TM modes. 

 

 

Fig. 3. Dispersion diagram (a) and irreducible Brillouin Zone (b) of the HIS-EBG unit cell. 

 
This bandgap implies that surface waves at frequencies encompassed by the gap will not propagate 

through the HIS-EBG structure, and, then, it can be applied to arrays to reduce the mutual coupling 

among the antenna elements. Furthermore, the provided bandgap includes the operating frequency of 

the phased array, which is 10 GHz. 

III. PHASED ARRAY WITH HIS-EBG 

The proposed microstrip-based phased array is designed to operate at 10 GHz and takes advantage 

of the EBG-HIS to decrease the mutual coupling among its antenna elements. Furthermore, each 

element of the array features a rectangular microstrip patch that uses coaxial probe-fed. This feeding 

technique provides an easy implementation, minimizes spurious radiation and reduces the size of the 

microstrip antenna when compared to other methods [15].  Besides that, each cell presents one row of 

HIS-EBG elements surrounding the patch, as it can be seen in Fig. 4 that shows the unit cell of the 

proposed phased array, where W and L are the width and length of the unit cell at issue, respectively, 

w and l are the width and length of the patch, and h is the thickness of the substrate. The dimensions 

of the array, in mm, are w = 6.50, l= 6.60, W = 23.28, L = 23.28, and h = 1. Also, the position of the 

feeding is indicated by w’ and l’ and their values, in mm, are 4.55 and 4.4, respectively. 
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Fig. 4. Top (a) and side (b) views of phased array unit cell. 

 

In order to provide a better understanding of the proposed structure, a 3 x 3 phased array is 

considered due to its symmetry, as can be seen in Fig. 5. The substrate used is FR-4 and the metal is 

the copper, and the dimensions of the array are 69.84 mm x 69.84 mm x 1 mm. Also, it was used 

master/slave conditions in the unit cell of the phased array on HFSS. This simulation setup allows the 

employment of the Domain Decomposition Method (DDM), which allows the minimization of the 

simulation time and computational effort of the antenna array structure. In this method, the HFSS 

replicates the mesh of a single unit cell to create a finite antenna array. Thus, differently from most 

works in the literature that usually consider arrays with elements, in this work it was investigated the 

effects of the EBG in a phased array with 9 elements. 

To highlight the influence of the presence of the HIS-EBG in the array, the reflection coefficients of 

the central element of the array with and without HIS-EBG structure are simulated on HFSS and 

plotted, as can be seen in Fig. 6. It is possible to observe that there is a slight upward shift, from 9.9 to 

10 GHz, in the resonance frequency with the presence of HIS-EBG. Additionally, the value of the 

reflection coefficient varies with the HIS-EBG. To be more specific, for the phased array with HIS-

EBG, the reflection coefficient at the central frequency is -44.9 dB, and for the phased array without 

HIS- EBG, -27.1 dB, which shows a significant improvement of this parameter with the employment 

of the electromagnetic bandgap structure. Furthermore, one can realize that the presence of the HIS- 

EBG does not negatively affect the bandwidth of the patch at issue, once the 10-dB fractional 
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bandwidths with and without the HIS-EBG are 4.48% (9.80 – 10.25 GHz) and 4.63% (9.80 – 10.16 

GHz), respectively.   

 

Fig. 5. The proposed 3 x 3 phased array with HIS-EBG. 

 

 

Fig. 6. Reflection coefficient of the phased array with and without HIS-EBG. 

 

Even though the reflection coefficient provides an interesting perspective into the influence of the 

HIS-EBG on the central patch, it is important to present how the other elements behave. So, Fig. 7 

shows the value of the reflection coefficient of each patch element at their respective resonant 

frequency considering the phased array with and without the bandgap structure. The patches in the top 

and bottom rows of the array present a slight increase in the reflection coefficient with the presence of 

the HIS-EBG. On the other hand, the patches at the central horizontal row present a significant 

improvement in the reflection coefficient.   
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Fig. 7. Reflection coefficient of each patch element of the phased array with (a) and without (b) HIS-EBG. 

 

In order to analyze the effects of HIS on the phased array, a comparison of the mutual coupling 

between the arrays with and without HIS-EBG is provided. Furthermore, the mutual coupling is 

reported in terms of the scattering parameters (SXY) from the central element to the adjacent ones for 

the sake of the symmetry, which can be seen in Fig. 8, where only the central patch is being fed and X 

denotes the central port and Y represents the adjacent ones. The presence of HIS-EBG provides 

attenuation on the mutual coupling in all elements of the array and reductions up to 12.2 dB, which 

means that the HIS-EBG structure is providing an enhancement of the isolation among the antennas. 

Moreover, it is possible to observe that the values of mutual coupling are not perfectly symmetric with 

respect to the central patch. This effect occurs due to the fact that the feeding point is not positioned at 

the center of the patch, which justifies the lack of symmetry. 

 

Fig. 8. Mutual coupling between the central element of the phased array to the others with (a) and without (b) HIS-EBG. 

When it comes to the coupling among multiple antennas, it is essential to analyze the surface 

current distribution of the array. Fig. 9 shows the surface current distribution at 10 GHz and 9.9 GHz 
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for the phased array with and without HIS-EBG, respectively, in which only the central port is 

receiving an input signal. Furthermore, it is possible to realize that there is a strong current coupling 

from the central patch to the others on the phased array without HIS-EBG. However, with the 

employment of HIS-EBG, the induced current on the other patches decreases significantly. This 

happens because the HIS-EBG blocks the surface current to go from the central patch to the other 

ones, and, then, minimizing the mutual coupling.   

 

Fig. 9. Surface current distribution of the phased array with (a) and without (b) HIS-EBG. 

Fig. 10 (a) and (b) show the gain patterns of the phased array with and without HIS-EBG, 

respectively. The radiation pattern was computed for the central patch considering all the other ports 

matched, i.e. only the central patch is being fed. However, there are changes in the half-power 

beamwidth (HPBW), which are 81.48° and 133.51° for the phased array with and without the 

bandgap, respectively. Also, the maximum gains are 5.41dBi and 4.03 dBi for the array with and 

without the presence of the metamaterial. 
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Fig. 10. Gain radiation patterns of the central patch with (a) and without (b) HIS-EBG. 

TABLE 1 - PARAMETERS OF THE PROPOSED PHASED ARRAY WITH DIFFERENT INPUT CONFIGURATIONS.  

Configuration 
Half-Power Beam width Main Lobe Direction 

Plane XZ Plane YZ θ Φ 

Fig. 11 (a) 81.48° 82.89° 0° 0° 

Fig. 11 (b) 21.23° 22.55° 0° 0° 

Fig. 11 (c) 23.34° 21.86° 20° 90° 

Fig. 11 (d) 23.36° 21.20° 20° 270° 

 

One of the main features of the phased array is its capacity to steer the beam, change the beamwidth 

and shift the direction of the main lobe. This effect is achieved by changing the magnitude and phase 

of the input signal in each port of each element of the phased array. The tool HFSS’ Finite Array 

Beam Angle Calculator is used to establish the phase shift necessary to steer the beam in a given 

direction. To  illustrate that the beam steering features of the proposed structure are preserved even 

with the presence of the HIS-EBG, Fig. 11(a) shows the 3D radiation pattern of the HIS phased array 

with an input configuration that provides wide angular coverage, Fig. 11(b), the input signals in each 

port are combined in such way to create a more directive beam. Also, Fig. 11(c) denotes the phased 

array with the beam directed to θ = 20° and φ = 90°. On the other hand, Fig. 11(d) shows the 

proposed structure configured so that the main lobe points to θ = 20° and φ = 270°. The peak gains of 

the radiation patterns of Fig. 11(a), Fig. 11(b), Fig. 11(c), and Fig. 11(d) are, in dBi, 5.41, 14.93, 

14.32, and 14.33, respectively. Also, Table I shows the HPBW for the radiation patterns showed in 

Fig. 11 for both XZ and YZ planes and summarizes the main lobe direction. Therefore, the HIS-EBG 

structure does not compromise the main feature of a phased array, which is the beam steering. 
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IV. CONCLUSION 

In order to minimize the effects of mutual coupling in a microstrip phased array, a mushroom-like 

HIS-EBG structure was design and simulated on HFSS to create an electromagnetic bandgap at the X-

Band, which has sub-wavelength dimensions. The proposed phased array uses a low-cost and low-

profile FR-4 substrate and operates at 10 GHz, which is encompassed by the stopband gap of HIS-

EBG. The effectiveness of the employment of HIS-EBG was illustrated by comparing the surface 

current distribution, reflection coefficient, radiation patterns, and mutual coupling of the phased array 

with and without HIS-EBG. Reductions in mutual coupling up to 12 dB were found, which means an 

improvement of the insulation between the elements of the phased array employing HIS-EBG, as well 

as improvements up to 17.8 dB in the return loss.  In addition, the presence of HIS-EBG improves 

reflection coefficient and mutual coupling, while maintains the radiation pattern characteristic of the 

phased array. 

 

 

 

Fig. 11. 3D radiation patterns of the proposed phased array set for a larger (a) and directive (b) beam. 
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