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Abstract— This paper presents a study of meshless Point 

Interpolation Methods based on weakened-weak forms. The 

mathematical formulations of the methods are presented as well as 

the procedures for the support nodes selection called T-schemes. 

The numerical results are shown for four different types of 

electromagnetic static problems in order to ponctuate the 

characteristics of the approximation generated by these new 

methods.  
  

Index Terms— Meshless methods, point interpolation method, smoothed 

gradient, weakened-weak form.  

 

I. INTRODUCTION 

Meshless methods are numerical techniques to solve boundary value problems. They were 

developed with the goal of eliminating the need of mesh generation, working only with nodes without 

a prescribed connectivity among them. [1] 

Among the meshless methods developed so far, we highlight the Element-free Galerkin (EFG) [2], 

the Meshless Local Petrov-Galerkin (MLPG) [3] and the Point Interpolation Methods (PIM) [1]. 

These methods work with the problem mathematical formulation in its weak form. While EFG uses a 

global weak form, MLPG uses a local weak form and PIM works with both global and local ones. As 

weak forms present integral terms, an integration process must be carried out. Methods based on 

global formulations perform the integration of the weak form through a background mesh which is 

independent of the procedure for construction of the approximation functions (shape functions). On 

the other hand, methods based on local formulations execute the integration using local subdomains 

and no mesh is used, therefore they are called trully meshless methods. 

In meshless methods, the most used procedures for shape function generation are the Moving Least 

Squares (MLS) and the Point Interpolation Method (PIM) [1]. The MLS approximation has a great 

feature that the approximated field function is continuous and smooth in the entire domain with the 

desired order of consistency, however it does not possess the Kronecker delta property. Unlike MLS, 

PIM produces approximations that have the Kronecker delta property, but that are nonconforming, 

i.e., they are discontinuous in some regions of the domain. The Kronecker delta property is interesting 
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once the essential boundary conditions are naturally enforced, otherwise explicit methods must be 

used such as the Lagrange multipliers method and the penalty method, which bring the disadvantages 

of increasing the order of the equation system and imposing inexactly the boundary conditions, 

respectively, besides changing the condition number of the equation system matrix. 

Weak formulations seek for functions in    space, meaning that both the function and its 

derivatives are square integrable. In theory, PIM using a global weak formulation does not produce 

functions with such requirements given its nonconforming characteristic. We can ignore this fact and 

yet use it to build the meshless shape functions with the drawback of decreasing the convergence rate 

of the method as shown in [4]. 

In order to overcome this problem, we can make use of the formulations based on weakened-weak 

(W
2
) forms [5]. While the weak form reduces the degree of differentiability of the approximation 

function with respect to the strong form, the weakened-weak form reduces it with respect to the weak 

form. Given a problem represented by a second order partial differential equation, the solution must 

have second order derivatives. If the problem is represented by its weak form, then the solution must 

have square integrable first order derivatives. If we use the weakened-weak form, then just the 

function must be square integrable. 

The W
2
 formulation can be applied given the gradient smoothing operation and the   space theory, 

which can be seen in details in [5]. According to [1], the combination of PIM using W
2
 formulations 

and the   space theory allows meshless methods to achieve higher convergence rates 

(superconvergence) and more accurate solutions than the finite element method (FEM) [6]. 

In this paper we present Point Interpolation Methods based on weakened-weak formulations and 

apply them to electromagnetics. The methods discussed here work with gradient smoothing based on 

nodes (NS-PIM), edges (ES-PIM) and cells (CS-PIM) and use T-schemes [1] to select the support 

nodes employed in the shape function generation. Numerical examples are shown and the 

performance of these methods are compared to the finite element method. 

II. MATHEMATICAL FORMULATION 

A. Weak Form 

In electromagnetism, static 2D problems are expressed in a generalized form as follows: given   

and  , determine the function               that satisfies 

  (    )                              

                                                

          
  

  
                               

 

(1) 

where   is related to the material physical characteristic and   to the source term;   e   are the 

Dirichlet and Neumann boundary conditions values, respectively, on the boundaries    and   , and 
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Using the weighted residual method, it can be shown that the weak form of the problem (1) is given 

by 

∫            
 

   ∫        
 

  ∫       
  

           

 

(2) 

where   is the test function of the weighted residual method and   is the test function space, in which 

the function must belong to   ( ), i.e., its first order derivative must be square integrable over   .  

B. Gradient  Smoothing 

A function can be approximated by an integral representation through a convolution with a kernel 

function   ̂, also called smoothing function, over a predefined smoothing domain    
 , i.e., [1] 

 ̂  ∫   ̂    
  
 

 (3) 

where  ̂ is continuously differentiable in   
 . 

Using this idea, the integral representation of the gradient of a function   can be written as 

 ̂  ∫    ̂    
  
 

 ∫  (  ̂)    
  
 

 ∫    ̂    
  
 

 (4) 

where it is assumed that   is continuous in   
  and hence at least piecewisely differentiable. Applying 

the gradient theorem in (4), we have 

 ̂  ∫   ̂ ⃗     
  
 

 ∫    ̂    
  
 

 (5) 

where   
     

   and  ⃗   is the unit outwards normal on   
 . 

The equality in (5) is no longer valid if the gradient does not exist in the whole subdomain   
 , i.e., 

if   is discontinuous there. However, the gradient of   still can be approximated by 

 ̂  ∫   ̂ ⃗     
  
 

 ∫    ̂    
  
 

   (6) 

Equation (6) is the generalized smoothing gradient operation [5]. This generalization is not rigorous 

in theory, but it is possible to be applied because no differentiation upon   is required in the right-

hand side of (6) [1]. 

For simplicity, the smoothing function is defined as a local constant in   
  

 ̂(   )   ̅(   )  {
    

            
 

            
  (7) 

where   
  is the area of the smoothing domain   

  at point  . Note that  ̂ as defined in (7) satisfies 

the conditions of unity, positivity and decay, which are requirements of a kernel function for the 

integral representation (3) to be valid [1]. 
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Using (7), (5) and (6) are written as 

 ̂  

{
 
 

 
 
 

  
 ∫      
  
 

 
 

  
 ∫    ⃗⃗⃗     
  
 

           (  
 )

 

  
 ∫    ⃗⃗⃗     
  
 

             (  
 )

 (8) 

which is the smoothed gradient in a smoothing domain   
 
. 

C. Weakened-Weak Form (W
2
) 

Equation (8) provides a constant smooth approximation for the gradient in each subdomain   
 
. If 

the problem domain is completely subdivided into    smoothing subdomains with no overlap, then 

the smoothed gradient can be calculated in the whole domain  . Rewriting (8) in terms of the gradient 

components, we have 

 ̂  (
  

  

  

  
)  (

 

  
 ∫        
  
 

 

  
 ∫        
  
 

) 

 ( ̅ ( )  ̅ ( )) 

(9) 

where    and    are the   and   components of the unit outwards normal on   
 , respectively. 

In order to approximate the gradient in the weak form (2) by the smoothed gradient, we use (9) and 

the bilinear term is rewritten as 

 ̅ (   )  ∑   
  ̂   ̂ 

  

   

 

 ∑   
 ( ̅ ( ) ̅ ( )   ̅ ( ) ̅ ( ))

  

   

 

(10) 

where   
  is the area of the  th smoothing subdomain. Thus we come to the weakened-weak form 

 ̅ (   )    ∫        
 

  ∫       
  

           

 

(11) 

where  ̅ (   ) is defined in (10), and   is the test function space, which now must be in   : only the 

function must be square integrable [5]. Note that in the weakened-weak form (11) the functions must 

be square integrable, while in the weak form (2) the first order derivatives of the function must be 

square integrable. Therefore, requirements on differentiability are weakened, which gives the name 

for this type of formulation. Besides that, while the integration of the weak form is performed using 

background cells, the integration of the W
2
 is done using the constructed smoothing subdomains.   

III. POINT INTERPOLATION METHODS 

In meshless methods, the approximation   ( ) for the field function   at a point   is expressed as 

  ( )   ∑   ( )  
    

  ( )   

 

(12) 

where    is the support domain, a set of   nodes included in a compact local domain in the 
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neighborhood of point  ,    is the nodal field variable at the  th node in the support domain and    is 

the shape function of the  th node created using all the nodes in the support domain. Vectors   and 

   hold the shape functions and nodal field variables at the   nodes in the support domain, 

respectively. 

The meshless approximation properties are related to how the shape functions are constructed. In 

this work, the shape functions are generated using the Point Interpolation Method. PIM shape 

functions satisfy the Kronecker delta property, which allows a straightforward and exact imposition of 

Dirichlet boundary conditions, similar to the finite element method. Two versions of PIM are used: 

the first one uses exclusively polynomial basis functions to build its approximation, while the second 

one uses polynomial terms and radial basis functions (RBF). 

A. Polynomial PIM 

Polynomial PIM (PIMp) uses monomials as basis functions. The approximation    for the field 

function   at a point   is given by 

  ( )  ∑  ( )  

 

   

   ( )  

 

(13) 

where    is the coefficient for the  th polynomial term   ,   is the number of nodes in the support 

domain of   , and 

  [                  ]
  

 ( )  [  ( )      ( )         ( )]
   

(14) 

(15) 

In 2D the polynomial basis are constructed from the Pascal triangle [1], and a complete basis of 

order   is 

 ( )    (   )   [                                                  ]   (16) 

The coefficients    in (13) are determined by enforcing (13) to be satisfied at the   support nodes. 

Thus, the shape functions are defined by 

 ( )     ( )  
    [  ( )      ( )              ( ) ] (17) 

where   ( ) is the shape function of the  th support node of  , and    is the moment matrix given by 

    

[
 
 
 
  (  )

  (  )
 

  (  )]
 
 
 
 (18) 

The shape functions derivatives with respect to  , with      , are 

  ( )

  
 
   ( )

  
  
     (19) 

The PIMp approximations have consistency according to the polynomial basis used in (13): if a 

complete   order polynomial is used, then the shape functions possess    consistency [1]. 
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Depending on the configuration of the nodes in the support domain, the moment matrix    can be 

singular and break down the shape function construction process. One way to avoid the singularity of 

the moment matrix is to use radial basis functions together with polynomials in the basis, which leads 

to another variation of PIM, explored in the next section. 

B. Radial PIM with Polynomials 

Radial PIM with polynomials (RPIMp) combines radial basis functions and polynomials in the 

basis to construct the shape functions. The approximation    for the field function   at a point   is 

given by 

  ( )  ∑  ( )  

 

   

 ∑  ( )  

 

   

   ( )    ( )  

 

(20) 

where    is the radial basis function computed at   centered at the  th node in the support domain of 

  ,    is a monomial in the polynomial basis,     and    are the coefficients associated to the RBFs and 

polynomials, respectively,   is the number of nodes in the support domain of  ,   is the number of 

monomials in the polynomial basis and 

  [                  ]
  

  [                  ]
  

 ( )  [  ( )      ( )         ( )]
  

 ( )  [  ( )      ( )         ( )]
   

(21) 

(22) 

(23) 

(24) 

The coefficient vectors   and   can be determined satisfying (20) at the   nodes within the support 

domain and imposing constraints on the polynomial basis functions to guarantee a unique solution [7]. 

Thus two intermediate matrices    and    arise as follows 

   [  
   

     ]
  
  
   

   

     
     

       

(25) 

(26) 

where    is the moment matrix related to the radial basis functions, and    is the moment matrix 

associated to the polynomial terms, given by 

   [

  (  )   (  )    (  )
  (  )   (  )    (  )
    

  (  )   (  )    (  )

] 

   [

  (  )   (  )    (  )
  (  )   (  )    (  )
    

  (  )   (  )    (  )

]   

 

(27) 

 

 

(28) 

From (25), (26) and (20), the shape functions can be expressed as 

 ( )     ( )    
 ( )    [  ( )      ( )              ( ) ] (29) 

where   ( ) is the shape function of the  th support node of   . 
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The shape functions derivatives with respect to the  th dimension are obtained differentiating    

and    with respect to  : 

  ( )

  
 
   ( )

  
   

   ( )

  
     (30) 

As in the polynomial PIM, the aproximations generated by RPIMp possess consistency according 

to the polynomial basis used, and usually linear polynomials are employed. Unlike PIMp, the moment 

matrices of RPIMp do not suffer with singularity problems, thus it is always possible to build shape 

functions using this method. In the other hand, RPIMp is computationally more expensive than PIMp. 

C. T-Schemes for Support Nodes Selection 

To perform the integration of the weakened-weak form (11), an integration mesh is used, which is 

also called background mesh. Once such a mesh is already available, we can use it to select the 

support nodes for constructing the shape functions. If the mesh is composed of triangular cells, T-

schemes [1] can be used for that purpose. The T-schemes select a set of nodes according to the 

available integration cells and work particularly well with the family of point interpolation methods 

[1]. 

In T3-scheme the support nodes are the cell vertices. It is used to construct linear PIM shape 

functions, as shown in Fig. 1. The PIM shape functions generated using T3-scheme are identical to 

those generated by the finite element method. As the number of support nodes is small, the 

computational performance of the numerical method will be higher. T3-scheme is the simplest of the 

T-schemes. 

 

Fig. 1. T3-scheme for support nodes selection. In red are the support nodes for boundary cells and in green the ones for 

interior cells. 

T6-scheme selects 6 nodes for a cell (Fig. 2). For an interior cell, it selects its 3 vertices plus 3 

remote vertices of the three neighbouring cells. For a boundary cell, it selects the 3 vertices, 2 (or 1) 

remote vertices of neighbouring cells and 1 (or 2) node nearest to the centroid of the cell. This scheme 

is usually used for building PIM shape function with radial basis functions, aiming to generate 

approximations with more accuracy and efficiency. 
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Fig. 2. T6-scheme for support nodes selection. In red are the support nodes for boundary cells and in green the ones for 

interior cells. 

The T6/3-scheme is a combination of T6 and T3-schemes (Fig. 3). It selects 6 nodes for 

interpolation of interior cells in the same way as T6-scheme, and 3 nodes for boundary cells as in T3-

scheme. T6/3-scheme is used to build high-order PIM shape functions, where linear interpolation is 

performed on boundary and quadratic interpolation is performed in the interior. 

 

Fig. 3. T6/3-scheme for support nodes selection. In red are the support nodes for boundary cells and in green the ones for 

interior cells. 

T2L-scheme selects two layer of nodes (Fig. 4). The first layer corresponds to the 3 vertices of the 

cell and the second layer holds the nodes that are directly connected to the first layer nodes. This 

scheme generally selects more nodes than T6-scheme, leading to bigger computational costs. T2L-

scheme is used to build PIM shape functions with radial basis functions with higher order of 

consistency and when the nodal distribution is very irregular. T2L-scheme can also be employed to 

build MLS shape functions. 

D. Construction of the Smoothing Domains 

As seen in Section II-C, smoothed gradients are calculated based on smoothing domains. The 

procedure for construction of these domains leads to different numerical approximation 

characteristics. Two requirements are imposed on the smoothing domains: (I) the intersection between 

any two subdomains must be empty, i.e., there must be no overlap between them, and (II) the union of 
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the subdomains must completely cover the problem domain. Three point interpolation methods based 

on smoothing gradients derive from the way that the smoothing domains are constructed: NS-PIM, 

ES-PIM and CS-PIM. 

 

Fig. 4. T2L-scheme for support nodes selection. 

The Node-Based Smoothing Point Interpolation Method (NS-PIM) [8] constructs the smoothing 

domains based on the nodes of the triangular mesh. For each node  , a smoothing domain   
  is 

created connecting sequentially the centroid of the cells which are incident to node   to the mid-edge-

points, as it can be seen in Fig. 5. Therefore, the number of smoothing subdomains is equal to number 

of nodes in the mesh, and the requirements (I) and (II) are met. 

 

Fig. 5. Node based smoothing subdomain   
 . The centroids of the cells are represented by triangles and mid-edge-points by 

diamonds. The unit outwards normals on   
  are represented by vectors. 

The Edge-Based Smoothing Point Interpolation Method (ES-PIM) [9] constructs its smoothing 

domains based on the edges of the triangular mesh. For each edge  , a smoothing domain   
  is 

created connecting the endpoints of edge   to the centroids of the adjacent cells, as shown in Fig. 6. 

Clearly, requirements (I) and (II) are met, and the number of smoothing domains corresponds to the 

number of edges in the mesh. 

The Cell-Based Smoothing Point Interpolation Method (CS-PIM) [10] constructs its smoothing 

domains based on the cells of the triangular mesh, taking each triangle   as a smoothing domain   
 , 
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as shown in Fig. 7. For that reason, CS-PIM is very similar to the finite element method. 

Requirements (I) and (II) are met and the number of smoothing domains matches the number of 

triangles in the mesh. 

 

Fig. 6. Edge based smoothing subdomain   
 . The centroids of the cells are represented by triangles.  The unit outwards 

normals on   
  are represented by vectors. 

 

 

Fig. 7. Cell based smoothing subdomain   
 . The centroids of the cells are represented by triangles.  The unit outwards 

normals on   
  are represented by vectors. 

IV. NUMERICAL RESULTS 

In this section we investigate the performance of the gradient smoothing methods presented in 

Section III. In the following problems, the errors on the approximated potentials are calculated using a 

set of sampled points. The error measure is defined as 

   √
∑ (  

    
 )
   

   

∑ (  
 )
   

   

 (31) 

where    is the number of sampled points,   
  is the analytical solution at the  th point and   

  is the 

numerical solution at the  th point. 
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A. Example 1: Parallel Plate Capacitor 

The first test problem is the parallel plate capacitor with one dielectric. The goal is to verify if the 

methods can reproduce a linear field, represented by the electric potential. The plates are located at 

    and     and are at voltages 100V and 10V, respectively. The problem analytical solution is 

            (32) 

A distribution of 5   5 nodes is used in a square domain with the dimension of 1   1. We test the 

methods NS-PIM, ES-PIM and CS-PIM with T3-scheme. The norm of error    are 3.67   10
-16

,  2.04 

  10
-16

 and 1.86   10
-16

, respectively. This example shows numerically that the three methods can 

reproduce linear fields exactly (to machine accuracy), which ensures a second order convergence in 

   norm [1]. 

B. Example 2: Parallel Plate Capacitor with Two Dielectric 

The problem of Example 1 is revisited, but with the presence of two dielectrics having relative 

permittivities of 1 and 5. The interface between the two dielectric is at      . The purpose of this 

example is to test whether the methods can treat discontinuities in the solution due to the presence of 

different media in the domain. The problem analytical solution is 

   {
                       
                     

 (33) 

Again, a distribution of 5   5 nodes is used. We test NS-PIM, ES-PIM and CS-PIM with T3-

scheme. The norm of error    are 1.16   10
-16

, 7.12   10
-17

 and 5.36   10
-17

, respectively. The results 

show that the three methods can reproduce exactly (to machine accuracy) the discontinuity of the 

solution at the interface between the materials. 

C. Example 3: Square Domain with Senoidal Dirichlet Boundary Condition 

In this example we test the methods against a problem with a senoidal Dirichlet boundary condition. 

The problem domain is a square with the dimension of 1   1, as shown if Fig. 8. The boundaries at 

   ,     and     are at an electric potential of 10V. The top boundary (   ) has a potential 

given by a sine function with a maximum value of 100V. We test NS-PIM, ES-PIM and CS-PIM with 

T-schemes and shape functions generated by PIMp and RPIMp with Multiquadrics RBF [1]. The 

problem analytical solution is 

   
     (  )     (  )

    ( )
    (34) 

The first step is to verify if the models can approximate the electric potential correctly. For so, the 

solution is computed along the line       for the models NS-PIM with T6/3-scheme, ES-PIM with 

T3 and T6/3 schemes and, finally, ES-PIM with shape functions generated by RPIMp (ES-RPIM) and 

T2L-scheme for support nodes selection. Fig. 9 shows the analytical and numerical solutions for 

comparison. It can be seen that the results produced by all the models are in accordance with the 

analytical solution. 
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Fig. 8. Problem domain of Example 3. 

 

 

Fig. 9. Electric potential along       calculated using different methods based on gradient smoothing. 

In order to investigate the convergence rate of the methods to the exact solution, four nodes 

distributions are used to calculate the error in norm of   . We also test the finite element method for 

comparison. All models use the same sets of nodes and the same meshes. Fig. 10 shows the solution 

error on logarithm scale for different nodal densities represented by the nodal spacing  . As expected, 

FEM achieves a convergence rate around 2.0 (2.04), which is the theoretical value for linear models 

based on weak forms. CS-PIM produces the same numerical solution than FEM, which is also 

expected because its smoothing domains are the triangles of the mesh. Except the quadratic ES-PIM, 

that has a rate of 1.94, all the methods have convergence rates greater than the finite element method. 

It can be observed that the node based smoothing methods are less accurate than FEM. On the other 

hand, the edge based smoothing methods generate the best results, especially when they build their 

shape functions using radial basis functions. This is also expected once they use T6 and T2L-schemes, 
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which select more support nodes for building the shape functions and increase the accuracy of the 

approximation. 

The highest convergence rate (2.36) is obtained by ES-RPIM with T2L-scheme, indicating the 

presence of superconvergence [1]. Another model with a good rate (2.24) is the ES-PIM with T3-

scheme, whose solution is also more accurate than FEM. This method is particularly interesting 

because it uses few support nodes, having thus a good computational efficiency in terms of memory 

usage and run time, and also it has no parameter to be adjusted as the models that use RBFs. 

According to the authors' experience, determining these parameters is a hard task because they can 

vary from problem to problem, meaning that there is not a deterministic way for calculating them, 

while their values impact significantly on the quality of the numerical solution. 

 

Fig. 10. Convergence rates in norm of error    for gradient smoothing methods and FEM. 

Proceeding with the investigation of the characteristics of the smoothing methods, an analysis 

relative to the computational efficiency of the models is performed. Since the edge based smoothing 

models presented the best results for convergence rate and accuracy, they are the only ones that are 

put to the test.  

It is known that the finite element method has a computational processing time considerably lower 

than the traditional meshless methods, namely EFG and MLPG, when considering that they use the 

same set of nodes. However, a fairer comparison is to evaluate the computational performance with 

respect to the accuracy of the numerical approximation. Following this line, the finite element method 

still overcomes the traditional meshless methods. This scenario changes when the former is compared 



Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 12 No. 2, December 2013 

Brazilian Microwave and Optoelectronics Society-SBMO received 21 Oct 2012; for review 7 Dec 2012; accepted 15 July 2013 

Brazilian Society of Electromagnetism-SBMag © 2013 SBMO/SBMag ISSN 2179-1074 

 

519 

against the gradient smoothing methods. The errors in norm of    as a function of processing time 

spent by the models are shown in Fig. 11. All the smoothing models, except ES-PIM (T6/3), have 

computational efficiency comparable to the finite element method. In particular, it can be seen that 

ES-PIM with T3-scheme is the most computational efficient in terms of run time, as previously 

pointed out,  and it overcomes even the finite element method for the considered scenario. This result 

is due to the fact that ES-PIM (T3) generates more accurate solution than FEM for the same mesh 

with a not so much more processing time, that is, the difference between the processing time are 

compensated with a greater accuracy for the gradient smoothing method. 

 

Fig. 11. Computational efficiency comparison for gradient smoothing methods and FEM. Error in norm of    vs processing 

time. 

D. Example 4: Radial Magnetic Bearing 

This example deals with an eight pole radial magnetic bearing taken from [11]. Fig. 12 shows the 

bearing geometry. In the original example, the ferromagnetic material has a nonlinear  -  curve. In 

this work, the nonlinearity is neglected for simplicity. 

The example is a magnetostatic problem where the unknown is the magnetic vector potential   in 

 -direction. The magnetic flux density   is computed in the entire bearing using ES-PIM with T3-

scheme and a mesh of 20513 nodes and 40464 triangular elements (Fig. 13). The flux lines are 

concentrated mostly in the ferromagnetic material and the levels of   are in accordance with [11]. 
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Fig. 12. Eight pole radial magnetic bearing. Dimensions are in inches. Figure taken from [11]. 

 

 

Fig. 13. Magnetic flux density (T) computed by ES-PIM with T3-scheme. Flux lines are also shown. 

The previous mesh is used by ES-PIM and FEM to compute   at a radial segment in the upper left 

leg, from (0, 0) to (-0.9, 2.2). For comparison, a reference solution is adopted as the numerical 
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approximation generated by FEM using a mesh with 189492 nodes and 377677 triangular elements. 

The results are shown in Fig. 14 and 15 for ES-PIM and FEM, respectively. It can be seen that at the 

central region of the leg, ES-PIM is more accurate than FEM. The four maximum absolute percentual 

errors for each model are computed and indicated with red circles in the figures, and their values are 

listed in Table I. 

 

Fig. 14. Magnetic flux density (T) computed by ES-PIM with T3-scheme at a radial segment in the upper left leg.  Red 

circles indicate where the four max percentual differences occur in the center region of the leg. 

 

Fig. 15. Magnetic flux density (T) computed by FEM at a radial segment in the upper left leg. Red circles indicate where the 

four max percentual differences occur in the center region of the leg. 
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TABLE I. MAXIMUM ABSOLUTE PERCENTUAL ERROR (%) FOR MAGNETIC DENSITY FLUX IN THE CENTRAL REGION OF THE UPPER 

LEFT LEG  OF THE BEARING OF ES-PIM AND FEM NUMERICAL SOLUTIONS.  

ES-PIM (T3) FEM  

1.77 2.71 

1.66 2.44 

1.21 2.12 

1.20 2.07 

 

V. CONCLUSION 

An study of meshless point interpolation methods based on weakened-weak forms with gradient 

smoothing was presented. The methods NS-PIM, ES-PIM and CS-PIM and their formulations for 

static problems were derived. Four numerical examples were solved, covering both electrostatics and 

magnetostatics. 

The numerical results showed that the gradient smoothing methods have convergence rates of the 

same order or higher than the finite element method, as suggested for models with W
2
 formulations. 

Edge based smoothing methods have the best convergence rates and accuracies. In addition, these 

models presented comparable or higher computational efficiency than the finite element method when 

accuracy is considered.  

An eight pole radial magnetic bearing problem was solved to test ES-PIM in a real and more 

complex problem. It was shown that the approximation generated by ES-PIM is also better than the 

one generated by FEM for this problem. 

In general, edge based smoothing models proved to be the most attractive in terms of convergence 

rate, accuracy and computational efficiency. In particular, ES-PIM with T3-scheme is chosen by the 

author as the best gradient smoothing model. 
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