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Abstract — A new methodology to analyze electrical systems in the 

time and frequency domain containing a large number of uncertain 

parameters is presented. The methodology is based on screening 

and design of experiments to build surrogate reduced models at a 

well specified set of frequency values. As an example, the conducted 

interferences of a Power Converter with uncertainties in its 

component values are analyzed. The model has a large number of 

parameters, which are described by Probability Density Functions 

(PDF). The output considered is a standard measurement of 

conducted interferences and its PDF is rapidly determined, if 

compared to the Monte Carlo (MC) approach.  
  

Index Terms — Electromagnetic Compatibility, Monte Carlo, Parametric 

Uncertainty, Power Electronics, Probability Density Functions.  

I. INTRODUCTION 

The increased replacement of mechanical systems by electronic devices and the fast development of 

semiconductor technology in the last decades are the main reasons that brought power electronics into 

the vehicle industry, for instance airplanes and hybrid cars [1]. The behavior of these electronic 

systems in the time and frequency domain is very complex due to the nonlinear characteristics of the 

semiconductors, the constantly changing topology of the circuit due to switching, the parasitic effects 

of self and mutual coupling between the components and Printed Circuit Board (PCB) tracks, and the 

high frequency harmonics due to high frequency switching. Nevertheless, it is essential for analysis 

and design of power converters to correctly quantify the impact of these phenomena in certain 

variables of interest. 

Nowadays, many EM modeling tools and circuit solvers for power electronics are available as 

open-source or commercial software, such as Cedrat InCa3D [2] and Synopsys SABER [3], which are 

used for inductive coupling of PCB tracks and high-accurate circuit simulation, respectively. These 

tools can predict, through high-fidelity computer simulations, certain output variables of power 

converters very accurately. 

However, it is often not enough to predict the behavior of an electronic circuit for one set of 

parameter values. In other words, an accurate and deterministic computation does not really 

correspond to reality, where many random phenomena are present, like temperature and humidity 
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variation, production dispersion of components, ageing and external disturbances. These phenomena 

can lead to performance loss and even failure if they are not correctly quantified at design phase. 

In order to perform a robust analysis and design, and thus more realistic, one must not suppose that 

the system parameters are deterministic, but rather random or known up to a certain tolerance. This 

fact motivates the uncertainty analysis in electrical engineering, which is being done recently at 

increasing pace [4]-[15] even though it is a quite new subject in electromagnetic compatibility [16]-

[21]. 

The most common methodology for uncertainty analysis is the Monte Carlo (MC) technique [22], 

but a large number of simulations are required. This approach is thus unfeasible for models requiring 

minutes/hours to simulate. There are several other methodologies in the literature that require less 

simulations than MC in order to quantify the statistical moments (average, standard deviation, 

skewness, kurtosis, etc.) of a system and some of them have already been applied in EMC. 

For instance, the Unscented Transform (UT) [23] was utilized in [24], [25] and [26] to quantify the 

average and standard deviation of the dominant frequency of a cavity, the shielding effectiveness of 

cabinets and the manufacturing uncertainties for microstrip filters respectively. 

However, this methodology is not suitable for models with large number of uncertain parameters, 

once the required number of simulations increase rapidly with the number of dimensions. There are 

other collocation-based methodologies that the number of required simulations increases only linearly 

with the number of dimensions. For instance, a Stroud-based collocation method was applied to 

statistically characterize coupled voltages at the feed pins of cable-interconnected and shielded 

computer cards as well as the terminals of cables situated inside the bay of an airplane cockpit [27]. 

The previous methods allow computing the average and standard deviation of a system with 

parametric uncertainty, with relatively good accuracy, but the output probability density function 

remains unknown. For many cases, the output PDF tends to a normal distribution, which is a result 

from the Central Limit theorem [28], and thus it is possible to estimate confidence intervals. However, 

for all other cases, the value of the standard deviation is not enough to construct accurate lower and 

upper bounds for the output variable. 

In this context, we propose a methodology based on screening and surrogate modeling, which is 

suitable for large-scale problems and shows good agreement with MC, demanding far less simulations 

and time. Moreover, it is suitable for any input PDF and provides great insight of the system behavior. 

II. METHODOLOGY 

A. Screening 

The first step of the methodology consists in reducing the number of uncertain parameters of the 

model, taking advantage of the fact that in many large-scale problems, only a few parameters actually 

have a relevant influence. This step is widely known as screening. It can be carried out by a One-

factor-At-a-Time (OAT) approach [29], considering the system as a black-box model, or by a 
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Reduced OAT (ROAT) using expert knowledge, in order to reduce the number of simulations 

required. The OAT approach leads to the following expression, 

 

      |
  

   
|     |

 (                )   (  ⃗⃗⃗⃗ )

   
|      (1) 

 

where       is the     parameter importance,   is the system model,    is the     uncertain parameter 

of  ,    is the standard deviation of    for (       ),   being the number of parameters and  (  ⃗⃗⃗⃗ ) 

is the evaluation of   at the average input. The OAT approach requires     simulations. After all 

      are calculated, only the ones with the highest values are considered in the next step. The choice 

of how many parameters will be considered is a trade-off between precision and performance. 

Another possibility for evaluating the important parameters with potentially less than     

simulations is to use expert knowledge about the model. One must not evaluate the       for a certain 

   in which: its relevance is known a priori or its relevance is similar to another parameter’s relevance 

due to symmetry or due to physical characteristics. Fig. 1 shows a hypothetical example of converter 

with parameters                      . Suppose that the parameter     is known as important a 

priori and that    and   ,    and   , and    and    have similar nominal values and PDF’s, 

respectively. An OAT approach would require 8 simulations (   ), one for each parameter and one 

at the average input whereas a ROAT with expert knowledge requires 4 simulations (   ), 

supposing              ,              ,               and         is high. For large-

scale systems with hundreds of parameters, this reduction can be significant. 

 

 

Fig. 1. Converter example for OAT and ROAT approaches for screening 

 

B. Surrogate Modeling 

Once the screening step is performed and a subset of relevant parameters is determined, the next 

step is to find a surrogate model for the converter which is cheap to evaluate but still accurate enough 

to compute the output PDF’s. First, we perform a Design of Experiments (DoE) [30] in order to 

determine a set of input parameter values in which the converter model should be evaluated. This set 

of points is chosen based on which surrogate model one is trying to determine. Then, the converter is 

evaluated at the DoE points and a surrogate model is fitted to the data. There’s again a tradeoff 



Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 12, No. 2, December 2013 

Brazilian Microwave and Optoelectronics Society-SBMO received 21 Oct 2012; for review 7 Dec 2012; accepted 4 July 2013 

Brazilian Society of Electromagnetism-SBMag © 2013 SBMO/SBMag ISSN 2179-1074 

 

457 

between precision and performance, since the number of required model evaluations increase rapidly 

with the order of fitting. 

Another possibility is again to use expert knowledge in order to reduce the number of model 

evaluations. For instance, one knows a priori that not all cross term effects between parameters are 

relevant in circuits. More specifically, one must not consider a cross term effect between a resistance 

and a capacitance but one should consider the effect between an inductance and a capacitance. This 

prior knowledge can greatly reduce the complexity of the surrogate modeling, as it will be shown in 

the results section. 

C. Uncertainty Propagation 

The last step of the methodology is the uncertainty propagation using the reduced surrogate model. 

Since the surrogate model has not too many inputs and it’s computationally cheap, any propagation 

methodology can be applied. In section IV, we present results using Monte Carlo approach applied to 

the surrogate model and compare with Monte Carlo applied directly to the computationally expensive 

model. In Fig. 2, an overview of the methodology is presented. 

 

Fig. 2. Overview of the Methodology 

III. HIGH-FIDELITY SIMULATION MODEL 

The high-fidelity simulation model of a power converter consists of a schematic of an electrical 

circuit containing voltage sources, resistors, capacitors, inductors and semiconductor devices. This 

model is obtained by an extensive modeling approach, using a Partial Element Equivalent Circuit 

(PEEC) [31] and [32] to describe mutual coupling between PCB tracks. PEEC is available 

commercially by the software in [2]. The final model was implemented in Simulink® 
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SimPowerSystems™ and it is presented in Fig. 3. 

There are 121 uncertain parameters in this model. The output variable is computed as follows: first, 

a time-domain simulation is performed by an algorithm based on Runge-Kutta [33]-[34]; then, a 

resampling at constant time step followed by a Fourier Transform is performed on the voltage across 

the resistor    in Fig. 3; finally, the result at frequencies 20kHz, 200kHz, 2MHz and 20MHz is 

considered, in dB, which allows a good estimation of the conducted EMI in the relevant frequency 

range, which is from 20kHz to 30MHz. Fig. 4 presents a block diagram of the model. 

 

Fig. 3. Converter example for OAT and ROAT approaches for screening 

 

 

Fig. 4. Block diagram of the model 

 

IV. RESULTS 

The results will be presented for two uncertainty scenarios, described by a Uniform PDF with 

Standard Deviation (  ) of 5.77% of the nominal value and a truncated Normal PDF with    of 5% 

of the nominal value, Nevertheless, the methodology allows the use of any kind of probability density 

function. 
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A. Screening 

The first step consists of applying (1) to the converter presented in Fig. 3 and to select a subset of 

parameters which are still enough to describe the system behavior in the presence of uncertainties. 

Fig. 5 to Fig. 8 show the results for the four frequencies mentioned previously. 

 

Fig. 5. Ranking of parameters using (1) at 20kHz 

 

Fig. 6. Ranking of parameters using (1) at 200kHz 
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Fig. 7. Ranking of parameters using (1) at 2MHz 

 

Fig. 8. Ranking of parameters using (1) at 20MHz 

 
The selected relevant parameters from the OAT approach are presented in Table II. It was necessary 

122 evaluations of the converter model (approximately 20 minutes) in order complete this procedure. 

All computational times mentioned in this paper is related to the following processor and memory: 

Intel(R) Core(TM) i7-2860QM @ 2.50GHz Quad Core and 16GB RAM. 
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TABLE II. SELECTED RELEVANT PARAMETERS (OAT) 

Frequency (MHz) Parameters 

0.02             ( )      ( )       ( )       (     ) 

0.2           ( )      ( )      ( )       (     ) 

2                ( )      ( )       ( ) 

20                 ( ) 

 

It is possible to obtain similar results with fewer simulations by using expert knowledge about the 

model instead of considering it a black-box. For instance, it is known that: the input DC voltage has a 

high rank (a priori knowledge), the parameters of the Line Impedance Stabilization Network (LISN) 

have low rank since its uncertainty is low, the PCB mutual coupling inductances (72 parameters) can 

be evaluated twice in the diagonal and twice outside the diagonal of the 2 matrices supposing that the 

rank is similar for the other entries,       and       have similar rank, and       (       ) have 

similar rank. Fig. 9 illustrates the ROAT procedure. 

 

 

Fig. 9. Expert knowledge in ROAT approach 

 
The selected relevant parameters from the ROAT approach are presented in Table III. It was 

necessary 30 evaluations of the converter model (approximately 5 minutes) in order complete this 

procedure. The only parameter missing in ROAT was the inductance   , which we supposed a priori 

not to be relevant. 
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TABLE III. SELECTED RELEVANT PARAMETERS (ROAT) 

Frequency (MHz) Parameters 

0.02          ( )      ( )       ( )       (     ) 

0.2           ( )      ( )      ( )       (     ) 

2                ( )      ( )       ( ) 

20                 ( ) 

 

B. Surrogate Modeling 

The step following the Screening consists of finding surrogate models with the selected relevant 

parameters. The Latin Hypercube Sampling (LHS) [35]-[36] with 100 sample points was utilized and 

the required time was approximately 17 minutes. Moreover, a polynomial of 3
rd

 order with 2
nd

 order 

interactions was used as a surrogate model and fitted to the data after the model evaluations. The 

number of sample points is a trade-off between precision and performance. 

Expert knowledge can reduce the required model evaluations to 15 sample points (approximately 3 

minutes); since it is known that there are no interactions between resistive and capacitive parameters. 

The results from the reduced models using expert knowledge are very similar to the black-box 

approach. 

C. Uncertainty Propagation 

The last step of the methodology consists of propagating the parameter uncertainty to the output of 

interest. Since the surrogate models are polynomials of 3
rd

 order, the Monte Carlo method is efficient 

and easy to implement. The results are presented in Fig. 10 and Fig. 11 as a comparison between 

Monte Carlo method applied directly to the power converter model and Monte Carlo method applied 

to the surrogate without and with expert knowledge. In all cases,     evaluations were sufficient for 

convergence, but the time required for the first case was 28 hours whereas for the second and third 

case was 5 seconds. 

In Table IV, a performance comparison between the methodologies given by high-fidelity model 

evaluations and total required time is presented. 
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Fig. 10. Output PDF’s for Uniform PDF input 

 

 

Fig. 11. Output PDF’s for Normal PDF input 
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TABLE IV. COMPARISON BETWEEN METHODOLOGIES 

Methodology 
High-fidelity 

Model Evaluations 

Time 

Monte Carlo     28 hours 

Screening + Surrogate 222 39 minutes 

Screening + Surrogate  + Expert Knowledge 45 8 minutes 

 

V. CONCLUSION 

A methodology based on screening and surrogate modeling for the assessment of conducted EMI of 

power converters with parametric uncertainties has been presented. Within the methodology 

framework, high-fidelity models can be seen as black-box models or as circuit models. The last allows 

one to use expert knowledge to reduce computational effort. The parametric uncertainty can be 

described by any probability density functions. 

The methodology presented allows rapid assessment of the impact of parametric uncertainty in 

high-fidelity simulation models, taking advantage of input parameter dominance and meta-modeling. 

It was validated by classical Monte Carlo method and it showed high accuracy. Moreover, insight 

about which parameters actually influence the output can be rapidly obtained. 
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