Acessibilidade / Reportar erro

Analysis and Comparison of Sensors for Measurements of Partial Discharges in Hydrogenerator Stator Windings

Abstract

In order to measure electrical signals produced by partial discharges in hydrogenerators stator windings, capacitive couplers are regularly used. They are electrically connected to the windings and therefore, require undesired insulation intrusion. For avoiding such an intrusion, a microstrip directional coupler is used, which is experimentally and numerically investigated in this work. This electromagnetic field sensor is analyzed initially via computer simulation using the finite-difference time-domain method. This numerical analysis is fulfilled considering the coupler placed over a stator bar. Experimental high-voltage tests with generator windings were also performed. We compare the results of the measurements obtained by using various sensors and show that the microstrip directional coupler has some important advantages over traditional capacitive sensors such as complete conductive insulation from the windings and the capacity of detecting shorter PD pulses due to their wider bandwidth.

Partial discharges; hydrogenerator stator windings; microstrip directional coupler; high-voltage experiments; FDTD simulations

Sociedade Brasileira de Microondas e Optoeletrônica e Sociedade Brasileira de Eletromagnetismo Praça Mauá, n°1, 09580-900 São Caetano do Sul - S. Paulo/Brasil, Tel./Fax: (55 11) 4238 8988 - São Caetano do Sul - SP - Brazil
E-mail: editor_jmoe@sbmo.org.br