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Abstract
Background: Studies on toad poison are relevant since they are considered a good 
source of toxins that act on different biological systems. Among the molecules found 
in the toad poison, it can be highlighted the cardiotonic heterosides, which have a 
known mechanism that inhibit Na+/K+-ATPase enzyme. However, these poisons have 
many other molecules that may have important biological actions. Therefore, this work 
evaluated the action of the low molecular weight components from Rhinella schneideri 
toad poison on Na+/K+-ATPase and their anticonvulsive and / or neurotoxic effects, in 
order to detect molecules with actions of biotechnological interest.
Methods: Rhinella schneideri toad (male and female) poison was collected by pressuring 
their parotoid glands and immediately dried and stored at -20 °C. The poison was dialysed 
and the water containing the low molecular mass molecules (< 8 kDa) that permeate 
the dialysis membrane was collected, frozen and lyophilized, resulting in the sample 
used in the assays, named low molecular weight fraction (LMWF). Na+/K+ ATPase was 
isolated from rabbit kidneys and enzyme activity assays performed by the quantification 
of phosphate released due to enzyme activity in the presence of  LMWF  (1.0; 10; 
50 and 100 µg/mL) from Rhinella schneideri poison. Evaluation of the L-Glutamate 
(L-Glu) excitatory amino acid uptake in brain-cortical synaptosomes of Wistar rats 
was performed using [3H]L-glutamate and different concentration of LMWF (10-5 to 
10 µg/µL). Anticonvulsant assays were performed using pentylenetetrazole (PTZ)  and 
N-methyl-D-aspartate (NMDA) to induce seizures in Wistar rats (n= 6), which  were 
cannulated in the lateral ventricle and treated with different concentration of LMWF 
(0.25; 0.5; 1.0; 2.0; 3.0 and 4.0 µg/µL) 15 min prior to the injection of the seizure agent. 
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Results: LMWF induced a concentration-dependent inhibition of Na+/K+-ATPase (IC50% 
= 107.5 µg/mL). The poison induces an increased uptake of the amino acid L-glutamate 
in brain-cortical synaptosomes of Wistar rats. This increase in the L-glutamate uptake 
was observed mainly at the lowest concentrations tested (10-5 to 10-2 µg/µL). In addition, 
this fraction showed a very relevant central neuroprotection on seizures induced by 
PTZ and NMDA. 
Conclusions: LMWF from Rhinella schneideri poison has low molecular weight 
compounds, which were able to inhibit Na+/K+-ATPase activity, increase the L-glutamate 
uptake and reduced seizures induced by PTZ and NMDA. These results showed that 
LMWF is a rich source of components with biological functions of high medical and 
scientific interest.

Background 
Toxins and animal poisons as well as the molecules that are 
synthesized by plants are considered natural products and have 
emerged throughout the evolutionary process due to adaptation 
in various livable environments. These molecules generally 
interact with specific targets and, because of this interaction, 
they are capable of inducing pharmacological or toxicological 
effects [1, 2].

Rhinella schneideri (B. schneideri Werner, 1894) is a toad 
belonging to Bufonidae family and popularly known as true 
toad [3, 4]. These animals showed amendments in their skin, 
which allowed the adaptation in the terrestrial environment. 
These modifications came in their skin with glands that produce 
a wide variety of molecules that enable to defend themselves 
against pathogenic agents and predators [5, 6].

Among the molecules that were found in the toad poison, 
it can be mentioned bufadienolides, peptides, alkaloids and 
biogenic amines [7–11].

The crude toad poison, as well as isolated molecules have 
shown wide variety of biological effects, such as antibacterial 
and antifungical, antileishmanial and antitrypanosomal, 
cardiotonic, diuretic, antiproliferative and cytotoxic [12–16]. 
Effects on the central and peripheral nervous system were also 
related. Symptoms like salivation, hallucination and seizures 
were observed in cases of ingestion of the poison [9].  Poisoned 
dogs showed mydriasis, nystagmus and opisthotonus [17, 18]. 
Some studies suggest mechanisms of interaction between 
bufadienolides and the neuromuscular junction [19, 20], causing 
blockage of synaptic transmission [17, 21]. Molecules such as 
resibufogenin and cinobufagin demonstrated actions on voltage-
gated potassium channels and resibufogenin also in the voltage-
gated sodium channels [22, 23].

The classical mechanism of the cardiotonic steroid molecules 
is to bind on the extracellular surface of the enzyme Na+/K+-
ATPase, inhibiting its functioning [24, 25].  This action may 
also influence the performance of the nervous system [26]. 
On the other hand, it has demonstrated that the specificity 
of bufadienolides for the Na+/K+-ATPase in neurons is lower 
than in cardiac cells, suggesting that neurotoxicity may not be 
connected to it [27]. 

Na+/ K+-ATPase is an abundant protein in central nervous 
system cells, and the evaluation of its activity can help in the 
elucidation of neurotoxic activities [28].

One of the most common neurological diseases existing 
in the world population is epilepsy, and most of the patients 
who present this pathology do not respond to drug treatments 
[29, 30]. Epilepsy refers to any type of disease characterized 
by the occurrence of spontaneous and recurrent seizures, 
caused by paroxysmal discharges of brain neurons, affecting 
about 700.000 people in the United States and around 5 
million people worldwide, representing approximately 1% 
of the world’s population. It is believed that dysfunctions in 
the chemical balance of neurotransmitters may be the main 
cause of both development and maintenance of epileptiform 
electrical activity [30–33].

The study of new promising compounds for the treatment 
of epilepsy is extremely important, since 30% to 40% of 
patients with epilepsy disease have seizures relapses during 
the treatment and do not respond to current antiepileptic 
drugs [34].

Epilepsy is a large limiting factor in people’s social lives, having 
a huge impact on the health care system and work productivity 
[31, 35]. Therefore, studies that search for new molecules that 
can act at synapses and that present potential medical use in 
humans are relevant. Poisons can be considered rich natural 
sources of bioactive molecules [36–38]. In this context, this 
work evaluated the neuroprotective potential of LMWF from 
Rhinella scheneideri poison, treating seizures induced by PTZ 
and NMDA. 

Material and Methods
The handling of experimental animals was performed according 
to the Principles Ethical in Animal Experimentation (Brazilian 
College of Animal Experimentation [39], the Guiding Principles 
for Research Involving Animals and Human Beings - American 
Physiology Society and Ethical Guidelines for Investigations 
of Experimental Pain in Conscious Animals [37]. The Ethics 
Committee on Animal Use (CEUA) of University of São Paulo 
- Campus of Ribeirão Preto (Protocol 09.1.148.53.9) approved 
this study.
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Rhinella schneideri poison and low molecular weight 
fraction (LMWF)
The Rhinella schneideri toad poison was collected by pressuring 
their parotoid glands of adult, male and female toads, from the 
animal facility of the University of São Paulo in Ribeirão Preto, 
accredited by Brazilian Institute of Environment and Renewable 
Natural Resources (IBAMA), under register number 1506748, 
for scientific purposes. Animals were previously cleaned and 
the poison dried and immediately stored at -20 °C. The dried 
poison (400 mg) suspended in 30 mL of MiliQ® water and the 
suspension was subjected to dialysis using Fisherbrand® 6000-
8000 MWCO membranes. Four water changes were carried 
out in periods of six hours. The four waters changes containing 
the low molecular mass molecules that permeate the dialysis 
membrane were collected, frozen and lyophilized, resulting 
in the sample used in the assays, named the low molecular 
weight fraction (LMWF).

Inhibition of Na+/K+-ATPase enzyme assays
Na+/K+-ATPase enzyme sample was obtained and purified as 
described by Yoneda, [40]. The inhibition of the enzymatic 
activity of Na+/K+-ATPase (ATPase activity) was assayed 
discontinuously for 30 minutes at 37 °C in a final volume of 
1.0 mL. Standard assay conditions were 50 mM HEPES buffer, 
pH 7.5, containing 3 mM ATP, 10 mM KCl, 5 mM MgCl2, and 
50 mM NaCl with 4 different concentrations (1.0, 10.0, 50.0 
and 100.0 µg/mL) of LMWF. The reaction was initiated by the 
addition of 30 µL of the enzyme and it was interrupted with 
0.5 mL of cold 30% trichloroacetic acid (TCA). Samples were 
centrifuged at 4000 g and 500 µL were taken from supernatant 
to quantify the phosphate released from ATP hydrolysis. The 
quantification was performed according to Heinonen and Lathi, 
[39], which is a colorimetric method. One volume of ammonium 
molybdate solution (10 mM), containing H2SO4 (5N) was added 
to the sample, after that, 2 volumes of acetone, and finally 1 
volume of citric acid (0,4M). Each addition was followed by vortex 
and the absorbance of the yellow solution measured at 355 nm. 
The amount of released phosphate was quantified comparing 
with a curve standardized previously in which known amounts 
of phosphate were dosed following the same procedure. The 
measurements were performed in triplicate. Control without 
enzyme (negative control), to eliminate background influence 
on results, and control without LMWF (positive control, 100 
% ATPase activity) included in each experiment. 

Anticonvulsant activity in pentylenetetrazole (PTZ) 
or N-methyl-D-aspartate (NMDA)-induced acute 
seizure models 
Wistar male rats (200 to 250 g) were purchased from the Central 
Animal Facility of the University of São Paulo, Ribeirão Preto 
Campus. Animals were kept in pairs in wire-mesh cages in a 
room with a 12-h dark/light cycle (lights on at 7:00 a.m.). Food 
and water were offered ad libitum. After a period of two days 

of habituation, animals were injected with atropine sulfate 
(0.5 mg/kg, i.p.) and anesthetized with ketamine (80 mg/kg) 
combined with xylazine (10 mg/kg). Then, they were positioned 
on a stereotaxic Stoelting-Standard®. Local injection of lidocaine 
(2%) was performed and a 10 mm cannula was implanted AP - 0.9 
mm, ML - 1.6 mm, DV - 3.4 mm, based on Bregma, according 
to the atlas of Paxinos & Watson [41].  After implantation, the 
cannula was fixed with dental acrylate. After the surgery, the 
animals received prophylactic antibiotic against infections 
(pentabiotic 50 mg/kg, i.p.). Animals were allowed to rest for 5–7 
days to recover from the surgery. After the post-surgical time, 
animals (n = 6 per group) were injected by i.c.v., with 1.0 µL of 
different dilutions of the LMWF (0.25 to 4 μg/μL) or vehicle. 
After 15 min, each group received an injection of NMDA (0.17 
µg/µL, i.c.v.) or PTZ (85 mg/kg, i.p., 0.1 mL). The behavior of 
all groups was videotaped for 30 min to assess seizure score 
according to Racine index [42].

Assessment of LMWF activity on the uptake of the 
excitatory amino acid L-Glutamate in brain-cortical 
synaptosomes of Wistar rats
Cerebral cortices of male Wistar rats (200 to 250 g) were 
rapidly removed and homogenized on ice with 0.32 M sucrose 
using Potter-Elhvejen Labo Stirrer LS-50 (Yamato, USA) type 
equipment. The sample was centrifuged for 10 min at 1700 x 
g (4 °C) and the supernatant centrifuged for 20 min at 21200 
x g (4 °C). The pellet was resuspended in Krebs-phosphate 
buffer (in mM: 124 NaCl, 5 KCl, 1.2 KH2 PO4, 0.75 CaCl2, 
1.2 MgSO4, 20 Na2 HPO4, 10 glucose, pH 7.4), and used in 
the assay of [3H]-L-Glutamate uptake. The protein content 
was determined by Lowry et al. [43], modified by Hartree, 
[44]. The synaptosomes were resuspended in Krebs-phosphate 
buffer and preincubated for 5 min at 37 °C in the presence or 
absence of different concentrations of LMWF (10-5 to 10 µg/
µL). The uptake experiment was initiated by addition of [3H]-
L-Glutamate (36 nM, final concentration) to the synaptosomes 
suspension (100 μg protein/mL) and incubated for 3 minutes 
at 37 °C. The reaction was finished by centrifugation at 4 °C. 
Aliquots of the supernatant were transferred to scintillation 
tubes containing 5 mL of water-miscible biodegradable 
scintillation liquid (ScintiVerse, Fisher Scientific, USA), and 
their radioactivities were quantified by a liquid scintillation 
spectrophotometer (Beckman, model LS-6800) with 2% error 
and counting efficiency for 3H+ of 50% [45]

Results
Na+/K+-ATPase inhibition assays
The assay performed with Na+/K+-ATPase enzyme isolated from 
the membrane has shown a dose-dependent inhibition. The IC 
50%, the concentration that caused 50% of inhibition, determined 
by the fit of the graph (exponential decay), was 107.5 μg/mL (Fig. 1). 
This fraction probably contains the bufadienolides, considered 
mainly responsible for the inhibitory action of the enzyme.
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LMWF anticonvulsant activity in PTZ-induced 
seizure model 
Pretreatment with different concentrations of LMWF inhibited 
tonic-clonic seizures induced by systemic injection of PTZ in a 
dose-dependent manner. Treatment with LMWF at doses of 2, 3 
and 4 μg/μL significantly protected animals from PTZ-induced 
seizures (χ 2 = 10.26, 4, p = 0.0362) (Fig. 2A). Also, animals treated 
with LMWF at concentrations of 2 and 3 μg/μL that developed 
tonic-clonic seizures presented a higher latency than the animals 
in the control group [F (4.5) = 7.74; p = 0.0032]  (Fig. 2B).

LMWF anticonvulsant activity in NMDA-induced 
seizure model  
In NMDA-induced seizure experiment the frequency of animals 
protected against seizures was significantly higher in animals 
treated with LMWF doses of 0.5, 1, 2 and 3 μg/μL (χ 2 = 15.67, 
5, p = 0.0079) (Fig. 3A). Moreover, animals that received the 
concentration of 0.5 μg/μL and developed seizures presented a 
significantly higher latency to tonic-clonic behavior compared 
to control group [F (4.5) = 7.74; p = 0.0032] (Fig. 3B).

Assessment of LMWF activity on the uptake of the 
excitatory amino acid [3H]-L-Glutamate in brain-
cortical synaptosomes of Wistar rats
LMWF, which probably contains bufadienolides, induces 
increased uptake of the amino acid [3H]-L-Glutamate in brain-
cortical synaptosomes of Wistar rats. This increase in uptake was 
observed mainly at the lowest concentrations tested (10-5 to 10-2) 
(Fig. 4). However, it has observed that at higher concentrations 
(10 µg/mL) this effect is reversed, reaching values equal to those 
of the control. This unexpected effect may be a consequence of 
the presence of components with antagonistic actions present 
in LMWF.

Discussion
The results showed that when exposed to different concentrations 
of LMWF, the Na+/K+-ATPase enzyme had its activity inhibited 
in a dose-dependent manner. An IC50% of 107.5 μg/mL obtained 
for LMWF under the assay conditions. This is an important result 
for pharmacological and toxicological evaluation of the sample.

The Na+/K+-ATPase, or Na+/K+ pump, is an enzyme located 
in the plasma membrane of a large part of the eukaryotic cells 
and carries the Na+ and K+ ions against their electrochemical 
gradients, presenting a vital role for cellular homeostasis. It is 
also responsible for initiating cellular signalling processes that 
involve reactive oxygen species, important in several pathologies. 
The inhibition and the onset of the signalling function of Na+/
K+-ATPase caused by the interaction with cardiotonic glycosides 
which bind on the α-subunit of the enzyme classically known 
[28, 46]. In addition, it is also known and documented that 
different components from frog poisons have antineoplastic 

Figure 1. Inhibition Assays of Na+/K+-ATPase Enzyme. Enzymatic 
inhibition activity induced by LMWF (1; 10; 50 and 100 μg/mL) had 
demonstrated a dose dependent concentration and the IC50 was 107.5 µg/
mL. Control without enzyme (negative control) and control without LMWF 
(positive control, 100 % ATPase activity in figure) included in each experiment. 
The assay was performed in triplicate.

Figure 2. LMWF anticonvulsant activity in PTZ-induced seizure 
model. A: Percentages of animals protected against PTZ-induced seizures 
after injection of different concentrations of LMWF. The frequencies of 
protected animals were analyzed using the chi-square test, followed by 
Fischer’s test. *p <0.05 . ** p <0.01 compared to the control. B: Mean ± SEM 
of the latencies for triggering seizures in animals not protected against PTZ-
induced seizures after injection of different concentrations of LMWF. Data 
were analyzed using one-way ANOVA followed by the Tukey post-test. *p 
<0.05 and **p <0.01 compared to the control. The numbers in parentheses 
above the columns represent the number of animals used.
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activities and actions on the central nervous system due to their 
effects on Na+/K+-ATPase [7]. 

Na+/K+-ATPase inhibitors present a high binding affinity that 
can modify according to the type of structure that these molecules 

have. The bonds can be stronger or weaker depending on the 
steroid nucleus or the lactone [47]. The LMWF is composed of a 
great variety of molecules and, among them, those responsible 
for the inhibition of this enzyme.

The results also demonstrated the suppression of generalized 
tonic-clonic seizures induced by PTZ or NMDA. In assays 
that LMWF was not able to inhibit seizures, it increased the 
latency time to trigger the symptoms. However, when the dose 
increased, it was observed a reduction in the percentage of 
protected animals and a decrease in the latency time for the onset 
of seizures. The results indicated that the toxins present in LMWF 
differed in relation to the effect induced in the central nervous 
system (CNS). Probably, some of them have depressant effects 
and others excitatory effects. Depending on the concentration 
of the fraction one or the other action becomes more effective.

Some works described that extracts of plants of the genus 
Kalanchoe (Crassulaceae) that contains bufadienolides, inhibit 
Na+ /K+-ATPase activity, cause seizures and show depressant 
actions in CNS. Oleandrin, a plant cardenolide, was also 
described as neuroprotective [48–51]. These effects are similar 
to those observed with LMWF. 

Considering that LMWF increases the uptake of the excitatory 
amino acid L-Glutamate in brain-cortical synaptosomes of 
Wistar rats, this action can be related to the protection against 
seizure effect observed in the seizure assays.

Neuronal damages including cell death can be avoided by 
performing the glutamate decrease in the synaptic cleft, and the 
uptake carried out by these transporters is the main mechanism 
for the end of excitatory neurotransmission [52, 53].

Since the classic action of bufadienolides in the inhibition of 
Na+/K+-ATPase enzyme, and considering that they are essential 
for the functionality of central nervous system cells, it is certain 
that these toxins will have actions on this system [7, 28]. This 
inhibition affects the flow of ions, causing an influence on 
the transport of glutamate. The extracellular concentration of 
glutamate is controlled by a family of sodium-dependent carrier 
proteins, the excitatory amino acid transporters (EAATs), which 
are divided into 5 structurally distinct subtypes (EAATs 1-5) and 
they are directly implicated in several pathologies such as epilepsy, 
Alzheimer’s, cerebral ischemia, among others. Some of the carriers 
are directed by a gradient of sodium and potassium [54, 55]. 

These results strongly suggest that there are molecules in 
the LMWF that have anticonvulsive potential and can be an 
interesting tool in the study and prospection of new anticonvulsant 
drugs. Additionally, these results are unprecedented and open 
perspectives for the development of new researches, aiming the 
characterization of the neuroprotective mechanism of LMWF 
components.

Conclusion
The results show that LMWF was able to inhibit convulsive 
seizures induced by PTZ and NMDA and when it was not able 
to inhibit the seizures, it increased the seizure latency time. 

Figure 3. LMWF anticonvulsant activity in NMDA-induced seizure 
model. A: Mean percentages of animals protected against NMDA-induced 
seizures after injection of different concentrations of LMWF. Data analyzed 
using the chi-square test followed by Fischer’s test. * p <0.05 and ** p <0.01 
compared to the control. B: Mean ± SEM of the latencies for triggering seizures 
in animals not protected against NMDA-induced seizures after injection of 
different concentrations of LMWF. Data were analyzed using ANOVA test 
followed by Tukey post-test.  * p <0.05 and ** p <0.01. The numbers in 
parentheses above the columns represent the number of animals used.

Figure 4. Assessment of [3H]-L-GLU uptake induced by LMWF 
into synaptosomes.  Effects of increasing concentrations of LMWF (10-5 
to 10 μg/μL) on [3H]-L-Glu uptake. Data presented as mean ± SEM of three 
experiments performed in triplicate. Statistical significance was determined by 
the Newman Keuls post-test. * p <0.001 compared to the control.
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LMWF was also able to inhibit the Na+/K+-ATPase and increase 
the levels of [3H]-L-glutamate uptake. LMWF is a rich source 
of components with biological functions of high medical and 
scientific interest. It has molecules that explore the central 
nervous system, triggering positive responses in relation to the 
assays performed. However, other studies with isolated molecules 
should be performed to assess their pharmacological potential.
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