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Abstract: Duffy gene (FY) codifies the transmembrane glycoprotein Duffy (gp-Fy) of 35 to 43 kDa which 
is moderately immunogenic. This glycoprotein is polymorphic, and constitutes the antigens of the Duffy 
histo-blood system which were designated receptors for chemokines and denominated DARC (Duffy 
antigen/receptor for chemokine). This receptor has an important role in the regulation of chemokine levels 
in the circulation, as it binds and adsorbs them on the surface of red cells as a reservoir. It plays a “sink” role, 
which can contribute to homeostasis by removing inflammatory chemokines from circulation as well as 
maintaining them in plasmatic levels. Chronic Chagas’ cardiopathy (CCC) is the most frequent form of the 
disease. It is an inflammatory disease, in which infiltrated inflammatory cells play an important role in the 
development and progress of the infection. High chemokine levels in the plasma have been associated 
with the disease severity in patients with heart failure. In this context, the profile of DARC expression could 
play an important function as a receptor for chemokines in Chagas’ disease, in patients with CCC, as it can 
modulate damage from this inflammatory disease.
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INTRODUCTION

The Duffy gene (FY) codifies the moderately 
immunogenic transmembrane glycoprotein Duffy 
(gp-Fy) of 35 to 43 kDa (1). This glycoprotein is 
polymorphic, and constitutes the antigens of the 
Duffy histo-blood system, which are codified by 
FYA and FYB alleles of the FY gene playing a co-
dominant role. The FYA and FYB alleles differ 
due to substitution of the base G by another A 
in the 125 nucleotide, which develops a common 
polymorphism in the Caucasian population. This 
single nucleotide polymorphism (SNP) results 
in the substitution of amino acid glycine by 
asparagine in position 42 (2).

Although this polymorphism originates 
distinct glycoproteins called Fya and Fyb 
antigens, both have moderate immunogenicity. 

They can be identified with the use of anti-
Fya and anti-Fyb anti-sera, allowing the 
characterization of four erythrocyte phenotypes: 
Fy(a+b–), Fy(a–b+), Fy(a+b+) and Fy(a–b–) (3, 
4). Negative phenotype Duffy [Fy(a–b–)] is the 
result of a variant FYB allele (FYB-33), which 
presents a single point mutation where there is a 
T to C substitution in nucleotide –33 (–33T>C), 
also known as the GATA-BOX, located in the 
promoter region of the FY gene (5, 6).

The differential distribution of DARC 
antigenic determinant between ethnic groups is 
a characteristic of this histo-blood system. As an 
example, FYA is prevalent in European, Chinese, 
Japanese, and Malaysian populations, but rarely 
in African population. And on the other hand, 
in Caucasians, FYB is widely found compared to 
Asian and African populations (7, 8). Homozygote 
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individuals for allele FYB-33 (DARC negative) 
are common in African population, but rare in 
other ethnic groups (9). In Brazil, some studies on 
intra-ethnic genetic diversity in five geographic 
regions have shown some variations in the origin 
and ethnic composition of three subgroups 
(European, African, and mixed descendants) 
(10). Therefore, FY allele frequencies from 
distinct ethic groups are of great importance for 
phenotype and genetic composition distribution 
(11-15).

The Duffy antigen is expressed in erythrocytes, 
Purkinje cells of the cerebellum, and epithelial 
cells of the kidneys and lungs (1, 16-20). 
Erythrocytes with gp-Fy absence do not manifest 
alterations, therefore individuals with phenotype 
Fy (a–b–), who do not present antigen Duffy in 
their erythrocytes, are seemingly normal (21). The 
Duffy antigen was identified as a malaria parasite 
receptor, as individuals who do not express that 
protein in erythrocytes cannot be invaded by 
Plasmodium knowlesi or Plasmodium vivax (22, 
23). Several studies in Brazil have demonstrated 
the association between the Duffy antigen and 
malaria by P. vivax; the first was by Colauto et 
al. (24). However, recent studies have verified 
infection by P. vivax in Fy (a–b–) individuals 
from Brazil and Eastern Africa (25-28). Genetic 
mechanisms for the Duffy-negative phenotype in 
erythrocytes have preserved its expression in the 
endothelium determining an important role in 
inflammation physiopathology (16, 19).

Antigens of the Duffy blood system were 
designated chemokine receptors and denominated 
Duffy antigen/receptor for chemokine (DARC), 
as a result of experiments performed in Duffy 
positive individuals, who absorbed interleukin-8 
(CXCL8/IL-8) on the erythrocyte surface (1, 29-
32). 

Chemokines are small cytokines of 8 to 10 kDa 
that directly induce cell movement through the 
organism or induce specific functions in activated 
cells (33, 34). They are classified in subfamilies 
according to the number and location of the 
amino-terminal cysteine residues. Of these, two 
main subfamilies are highlighted: CC, in which 
the cysteine residues are adjacent, and CXC, in 
which these residues are separated by an amino 
acid (35, 36). 

These chemokines can also be divided into 
inflammatory and homeostatic proteins, based 
on the conditions and production site (35-39). 

Inflammatory (or induced) chemokines, such as 
CXCL8/IL-8, CCL5/RANTES, CCL11/eotaxin, 
CCL4/MIP-1 CCL2/MCP-1, and CXCL10/IP-
10 are produced by several cells in response to 
inflammatory stimulus. They work in recruiting 
cells such as monocytes, granulocytes and T 
cells (effector) to inflammation sites. While 
homeostatic (or constitutive) chemokines are 
expressed constitutively, and they can be involved 
in both lymphoid cell organization and basal 
leucocyte traffic (36, 40).

IL-8 is involved in the monocyte and 
neutrophil recruitment and activation process for 
sites of acute inflammatory response. It presents 
certain longevity in these sites, being produced at 
the beginning of inflammatory response and is 
active for a long period of time; days and weeks. 
Several studies have been performed on IL-8 
and cardiovascular diseases, some identified this 
chemokine in vascular injury sites, while others 
demonstrated that it plays a role in several phases 
of atherosclerosis, as either a marker or a potential 
therapeutic target (41). Experiments carried out 
by Kim et al. (42) have shown IL-8 as having 
considerable relevance in the pathogenesis of 
the hypertension. Simonini et al. (43) evaluated 
its participation in the angiogenic activity of 
the atherosclerosis. They concluded that IL-8 
is an important angiogenesis mediator. Other 
authors have demonstrated that its neutralization 
significantly reduces the degree of necrosis 
in an animal model of myocardial ischemia-
reperfusion injury (41, 44).

Unlike other chemokine receptors, DARC 
is a promiscuous receptor, because it interacts 
with both CC and CXC classes with high 
affinity, while most chemokine receptors link 
themselves to just one of the classes (31, 45-48). 
The Duffy antigen is a receptor for inflammatory 
chemokines. Experiments have demonstrated 
DARC has an affinity with the following 16 
chemokines: CXCL1, CXCL2, CXCL3, CXCL4, 
CXCL5, CXCL6, CXCL7, CXCL8, CXCL11, 
CCL2, CCL5, CCL7, CCL11, CCL13, CCL14, 
and CCL17 (49, 50). Immunohistochemical 
studies have demonstrated DARC expression on 
the surface of venule and small vein endothelial 
cells, considered important sites for recruiting 
leukocytes to inflammation areas, induced by 
chemokines and facilitating their movement 
through the endothelium of different tissues (16, 
51, 52). Studies suggest DARC contribution in 
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chemokine transcytosis from the intravascular to 
the extravascular space, favoring the migration 
of leukocytes involved in inflammation (50, 53). 
DARC plays an important role in the regulation 
of circulation chemokine levels, as it binds to 
and adsorbs them on the surface of red cells, as 
a chemokine reservoir performing a “sink” role 
(29, 50). Therefore, DARC can collaborate with 
homeostasis in the removal of inflammatory 
chemokines in the circulation, thus avoiding 
the loss of these inflammatory mediators for 
organs and distant tissues, as well as maintaining 
them in plasma levels, due to subsequent 
liberation from the erythrocyte surface (50, 54). 
However, the theory that DARC plays a “sink” 
function has been questioned. Some authors 
have demonstrated that there is no chemokine 
intracellular variation associated to DARC (55). 
Thus, further investigations are needed to better 
understand this role of DARC. 

DARC is involved in several “classic” 
chemokine receptor diseases such as giant cell 
arteritis, renal diseases and transplantations, as 
well as during acute transplant rejection (56, 57-
60). Susceptibility to asthma was correlated with 
the absence of DARC expression in red cells from 
certain Afro-descendant populations (61). A 
recent study showed that the absence of DARC 
in erythrocytes resulted in a 40% increase in the 
risk of acquiring HIV; however, these individuals 
presented a short-term progression of the disease 
(55, 62). Epidemiological data suggest that DARC 
absence in the erythrocyte has contributed 
to an increase in prostate cancer incidence 
and mortality (46, 63). DARC expression in 
cancerous lung cells may be associated with 
decreased tumor vascularization and a reduction 
in metastatic potential, as well as a decrease 
breast cancer cell growth, due to sequestration of 
angiogenic chemokines and inhibition of tumor 
vascularization (64, 65). 

DARC AND CHAGAS’ DISEASE

Chagas’ disease was described by the 
great scientist Carlos Chagas in 1909. It is a 
parasitic disease that occurs particularly in 
America. Its etiological agent is the flagellated 
protozoan Trypanosoma cruzi belonging to the 
phylum Protozoa, order Kinetoplastida, family 
Trypanosomatidae and the gender Trypanosoma 
(66, 67). The main transmission form to the human 

host is by insects of the order Hemiptera, family 
Reduviidae and genera Triatoma, Panstrongylus 
and Rhodnius (68, 69). Other transmission 
mechanisms such as blood transfusions and 
congenital transmission have also been reported 
in mainly urban areas and non-endemic countries 
(70). Nearly 15 to 16 million people are infected 
by T. cruzi in Latin America (71). 

Inflammatory cytokines play a central role in 
infection by T. cruzi. The acute phase of Chagas’ 
disease is characterized by an exacerbated 
production of inflammatory cytokines, including 
IL-12, TNF-α, and IFN-γ, and chemokines such 
as CCL2, CCL3, CCL4, CCL5, and CXCL10 
(72, 73). CCL5 and CCL2, which bind to the 
Duffy antigen, have been singled out from these 
inflammatory mediators. 

After the acute phase, most individuals are 
asymptomatic as they present the indeterminate 
form of Chagas’ disease, while between 30 to 
40% of parasitized individuals can develop heart, 
digestive, or mixed problems. The most frequent 
form, inflammatory myocardiopathy also known 
as chronic chagasic cardiopathy (CCC) accounts 
for 20 to 30% of individuals (74). 

CCC is an inflammatory disease, characterized 
by the presence of diffuse myocarditis with a 
remodeling process of intense myocardial fibrosis, 
hypertrophy, and lesion of cardiac muscular 
fibers (75, 76). Clinical data suggest that the 
inflammatory infiltrate plays an important role 
in the development and progression of Chagas’ 
disease, as mononuclear infiltrate is associated 
with greater cardiomyocyte destruction and 
local fibrosis in CCC (76, 77). Development 
of this myocardiopathy involves three possible 
pathogenic mechanisms: cardiac dysautonomia, 
microcirculation changes, and tissue damage 
resulting from the inflammatory and immune 
responses (73). 

The chronic phase of the disease also presents 
high inflammatory cytokine production, possibly 
due to longer exposure to the parasite. An 
increase in plasmatic TNF-α and IFN–γ levels 
occurs; this is also observed in patients with the 
indeterminate form of the disease. Individuals 
with CCC present high TNF-α and CCL2 levels 
in the circulation in relation to those with the 
indeterminate form (73). It is important to point 
out the inflammatory chemokines whose receptor 
is DARC; these include CXCL8/IL-8, CCL5/
RANTES, CCL11/eotaxin, and CCL2/MCP-1. 
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High chemokine concentrations in plasma 
have been associated with disease severity in 
patients with CCC, for example high levels of 
CCL2 and TNF-α, the latter directly correlating 
with the degree of heart failure in these patients 
(78). Experiments carried out by Cunha-Neto et 
al. (79) suggest that IFN-γ and CCL2 are related to 
gene expression of the cardiomyocytes involved in 
the pathological hypertrophy process. Moreover, 
the intensity of acute and chronic myocarditis in 
mice (C3H/He) infected with Colombian strain 
was directly associated with CCL2 concentration 
in the heart (80). 

High expression of CCR5 (receptor for 
CCL3, CCL4, and CCL5) was detected in 
leukocyte patients with chagasic cardiomyopathy. 
Polymorphism in the promoter region of the 
CCR5 gene (CCR5 59029 A→G), associated with 
lower CCR5 expression in leukocytes was more 
frequent in asymptomatic patients than those 
with chagasic cardiomyopathy (78, 81). Others 
studies have shown that mice lacking the CCR5 
receptor present a significant reduction of cardiac 
inflammatory infiltrate, suggesting the importance 
of this receptor in lymphocyte migration and 
control of local parasite replication (82). It is 
important to emphasize that DARC presents a 
significant homology with receptor CCR5, and it 
is also a receptor for chemokine CCL5 (55). 

Studies carried out by Damås et al. (83) have 
demonstrated the presence of CCL2 and CXCL8 
in cardiomyocytes. This suggests the important 
role these cells play in the inflammatory process, 
either by chemokine production, or by expressing 
their receptor. High chemokine expression and 
corresponding receptors in the myocardium 
and circulating leukocytes suggests a relevant 
function for these mediators in various forms of 
myocardial failure (84). Experiments carried out 
with patients who presented with CCC revealed 
high chemokine expression in heart tissue. 
Other data suggest that local production of these 
inflammatory mediators can perform a highly 
important function in the heart damage observed 
in CCC (85).

CONCLUDING REMARKS

Although investigated in several studies, the 
actual role of chemokines in myocardium disease 
is not completely explained. In this context, the 
profile of DARC expression plays an important 

role as a chemokine receptor in Chagas’ disease 
patients with CCC. It can modulate damage by this 
inflammatory disease. However, many aspects of 
Duffy antigen biology should be considered when 
determining their effective functions, because 
despite all the knowledge on the relationship 
between DARC structure/function and tissue 
location, its effective role still remains uncertain 
in normal and damaged physiology.
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