Accessibility / Report Error
Sort publications by
Journal of Venomous Animals and Toxins including Tropical Diseases, Volume: 28, Published: 2022
  • Launching a CDMO in Brazil aiming to develop biopharmaceuticals for clinical trials Editorial

    Ferreira Junior, Rui Seabra; Morales, Marcelo Marcos; Barretti, Pasqual; Barraviera, Benedito

    Abstract in English:

    Abstract The innovation timeline is expensive, risky, competitive, time-consuming, and labor-intensive. In order to overcome such challenges and optimize financial resources, pharmaceutical companies nowadays hire contract development and manufacturing organizations (CDMO) to help them. Based on the experience acquired first from the development of two biopharmaceuticals, the Heterologous Fibrin Sealant and the Apilic Antivenom, and more recently, during their respective clinical trials; the Center for the Study of Venoms and Venomous Animals (CEVAP) proposed to the Ministry of Health the creation of the first Brazilian CDMO. This groundbreaking venture will assist in converting a candidate molecule - from its discovery, proof of concept, product development, up to pilot batch production - into a product. The CDMO impact and legacy will be immense, offering service provision to the public and private sector by producing validated samples for clinical trials and academic training on translational research for those seeking a position in pharmaceutical industries and manufacturing platforms.
  • Toxinology in the proteomics era: a review on arachnid venom proteomics Review

    Marchi, Filipi Calbaizer; Mendes-Silva, Edneia; Rodrigues-Ribeiro, Lucas; Bolais-Ramos, Lucas Gabriel; Verano-Braga, Thiago

    Abstract in English:

    Abstract The word venomics was coined to acknowledge the studies that use omics to investigate venom proteins and peptides. Venomics has evolved considerably over the last 20 years. The first works on scorpion or spider venomics were published in the early 2000’s. Such studies relied on peptide mass fingerprinting (PMF) to characterize venom complexity. After the introduction of new mass spectrometers with higher resolution, sensitivity and mass accuracy, and the next-generation nucleotide sequencing, the complexity of data reported in research on scorpion and spider venomics increased exponentially, which allowed more comprehensive studies. In the present review article, we covered key publications on scorpion venomics and spider venomics, presenting historical grounds and implemented technologies over the last years. The literature presented in this review was selected after searching the PubMed database using the terms “(scorpion venom) AND (proteome)” for scorpion venomics, and “(spider venom) AND (proteome)” for publications on spider venomics. We presented the key aspects related to proteomics in the covered papers including, but not restricted to, the employed proteomic strategy (i.e., PMF, two-dimensional gel electrophoresis, shotgun/bottom-up and/or top-down/peptidome), and the type of mass spectrometer used. Some conclusions can be drawn from the present study. For example, the scorpion genus Tityus is the most studied concerning venomics, followed by Centruroides; whereas for spiders the studied genera were found more equally distributed. Another interesting conclusion is the lack of high throughput studies on post-translational modifications (PTMs) of scorpion and spider proteins. In our opinion, PTMs should be more studied as they can modulate the activity of scorpion and spider toxins.
  • Overview of protein posttranslational modifications in Arthropoda venoms Review

    Melo-Braga, Marcella Nunes de; Moreira, Raniele da Silva; Gervásio, João Henrique Diniz Brandão; Felicori, Liza Figueiredo

    Abstract in English:

    Abstract Accidents with venomous animals are a public health issue worldwide. Among the species involved in these accidents are scorpions, spiders, bees, wasps, and other members of the phylum Arthropoda. The knowledge of the function of proteins present in these venoms is important to guide diagnosis, therapeutics, besides being a source of a large variety of biotechnological active molecules. Although our understanding about the characteristics and function of arthropod venoms has been evolving in the last decades, a major aspect crucial for the function of these proteins remains poorly studied, the posttranslational modifications (PTMs). Comprehension of such modifications can contribute to better understanding the basis of envenomation, leading to improvements in the specificities of potential therapeutic toxins. Therefore, in this review, we bring to light protein/toxin PTMs in arthropod venoms by accessing the information present in the UniProtKB/Swiss-Prot database, including experimental and putative inferences. Then, we concentrate our discussion on the current knowledge on protein phosphorylation and glycosylation, highlighting the potential functionality of these modifications in arthropod venom. We also briefly describe general approaches to study “PTM-functional-venomics”, herein referred to the integration of PTM-venomics with a functional investigation of PTM impact on venom biology. Furthermore, we discuss the bottlenecks in toxinology studies covering PTM investigation. In conclusion, through the mining of PTMs in arthropod venoms, we observed a large gap in this field that limits our understanding on the biology of these venoms, affecting the diagnosis and therapeutics development. Hence, we encourage community efforts to draw attention to a better understanding of PTM in arthropod venom toxins.
  • Back to Tityus serrulatus Lutz & Mello, 1922 (Scorpiones: Buthidae): new comments about an old species Review

    Lourenço, Wilson R.

    Abstract in English:

    Abstract A synopsis on the historical, geographical and ecological aspects related to the most conspicuous scorpion species of the genus Tityus known from Brazil is proposed. Tityus serrulatus Lutz & Mello, 1922 was described precisely one century ago, nevertheless many questions related to its ecological adaptations and geographical expansion remain without a precise response. This species, well known for its infamous reputation of noxious species, is also known for its capacity to reproduce asexually, by parthenogenesis. Although the individuals of a given population are considered clones, a new hypothesis could suggest the occurrence of mutations within isolated individuals, leading to distinct subpopulations that could present better phenotypic performances in ecological habitats distinct from those of the original area of distribution of the species.
  • Late peripheral facial paralysis after COVID-19: a rapid systematic review and two case reports Review

    Cavalcante, Thalitta Mendes; Gubert, Vanessa Terezinha; Lima, Carolina de Deus; Luciano, Larissa Anjos; Croda, Mariana Garcia; Venturini, James; Gasparoto, Antonio Luiz Dal Bello; Santiago, Wellyngton Matheus Souza; Motta-Castro, Ana Rita Coimbra; Reis, Fernanda Paes; Marques, Ana Paula da Costa; Lorenz, Aline Pedroso; Fava, Wellington Santos; Zardin, Marina Castilhos Souza Umaki; Chaves, Cláudia Elizabeth Volpe; Braga, Gabriel Pereira; Paniago, Anamaria Mello Miranda; Oliveira, Sandra Maria do Valle Leone de

    Abstract in English:

    Abstract Peripheral facial paralysis (PFP) has been shown to be a neurological manifestation of COVID-19. The current study presents two cases of PFP after COVID-19, along with a rapid review of known cases in the literature. Both case reports were conducted following CARE guidelines. We also performed a systematic review of PFP cases temporally related to COVID-19 using PubMed, Embase, and Cochrane Library databases on August 30, 2021, using a rapid review methodology. The two patients experienced PFP 102 and 110 days after COVID-19 symptom onset. SARS-CoV-2 RNA was detected in nasal samples through reverse-transcription real-time polymerase chain reaction (RT-qPCR) testing. Anosmia was the only other neurological manifestation. PFP was treated with steroids in both cases, with complete subsequent recovery. In the rapid review, we identified 764 articles and included 43 studies. From those, 128 patients with PFP were analyzed, of whom 42.1% (54/128) were male, 39.06% (50/128) female, and in 23 cases the gender was not reported. The age range was 18 to 59 (54.68%). The median time between COVID-19 and PFP was three days (ranging from the first symptom of COVID-19 to 40 days after the acute phase of infection). Late PFP associated with COVID-19 presents mild symptoms and improves with time, with no identified predictors. Late PFP should be added to the spectrum of neurological manifestations associated with the long-term effects of SARS-CoV-2 infection as a post COVID-19 condition.
  • A scoping study of pulmonary paracoccidioidomycosis: severity classification based on radiographic and tomographic evaluation Review

    Ribeiro, Sergio Marrone; Nunes, Thiago Franchi; Cavalcante, Ricardo de Souza; Paniago, Anamaria Mello Miranda; Pereira, Beatriz Aparecida Soares; Mendes, Rinaldo Poncio

    Abstract in English:

    Abstract The lungs have great importance in patients with paracoccidioidomycosis since they are the portal of entry for the infecting fungi, the site of quiescent foci, and one of the most frequently affected organs. Although they have been the subject of many studies with different approaches, the severity classification of the pulmonary involvement, using imaging procedures, has not been carried out yet. This study aimed to classify the active and the residual pulmonary damage using radiographic and tomographic evaluations, according to the area involved and types of lesions.
  • Linking toxicity and predation in a venomous arthropod: the case of Tityus fuhrmanni (Scorpiones: Buthidae), a generalist predator scorpion Research

    Arroyave-Muñoz, Alejandra; Meijden, Arie van der; Estrada-Gómez, Sebastián; García, Luis Fernando

    Abstract in English:

    Abstract Background: Scorpions are arachnids that have a generalist diet, which use venom to subdue their prey. The study of their trophic ecology and capture behavior is still limited compared to other organisms, and aspects such as trophic specialization in this group have been little explored. Methods: In order to determine the relationship between feeding behavior and venom toxicity in the scorpion species Tityus fuhrmanni, 33 specimens were offered prey with different morphologies and defense mechanisms: spiders, cockroaches and crickets. In each of the experiments we recorded the following aspects: acceptance rate, immobilization time and the number of capture attempts. The median lethal dose of T. fuhrmanni venom against the three different types of prey was also evaluated. Results: We found that this species does not have a marked difference in acceptance for any of the evaluated prey, but the number of capture attempts of spiders is higher when compared to the other types of prey. The immobilization time is shorter in spiders compared to other prey and the LD50 was higher for cockroaches. Conclusions: These results indicate that T. fuhrmanni is a scorpion with a generalist diet, has a venom with a different potency among prey and is capable of discriminating between prey types and employing distinct strategies to subdue them.
  • Comparative venomic profiles of three spiders of the genus Phoneutria Research

    Fernandes, Frederico Francisco; Moraes, Juliana Rodrigues; Santos, Jaqueline Leal dos; Soares, Thiago Geraldo; Gouveia, Vitor José Pinto; Matavel, Alessandra C. S.; Borges, William de Castro; Cordeiro, Marta do Nascimento; Figueiredo, Suely Gomes; Borges, Márcia Helena

    Abstract in English:

    Abstract Background: Spider venoms induce different physio-pharmacological effects by binding with high affinity on molecular targets, therefore being of biotechnological interest. Some of these toxins, acting on different types of ion channels, have been identified in the venom of spiders of the genus Phoneutria, mainly from P. nigriventer. In spite of the pharmaceutical potential demonstrated by P. nigriventer toxins, there is limited information on molecules from venoms of the same genus, as their toxins remain poorly characterized. Understanding this diversity and clarifying the differences in the mechanisms of action of spider toxins is of great importance for establishing their true biotechnological potential. This prompted us to compare three different venoms of the Phoneutria genus: P. nigriventer (Pn-V), P. eickstedtae (Pe-V) and P. pertyi (Pp-V). Methods: Biochemical and functional comparison of the venoms were carried out by SDS-PAGE, HPLC, mass spectrometry, enzymatic activities and electrophysiological assays (whole-cell patch clamp). Results: The employed approach revealed that all three venoms had an overall similarity in their components, with only minor differences. The presence of a high number of similar proteins was evident, particularly toxins in the mass range of ~6.0 kDa. Hyaluronidase and proteolytic activities were detected in all venoms, in addition to isoforms of the toxins Tx1 and Tx2-6. All Tx1 isoforms blocked Nav1.6 ion currents, with slight differences. Conclusion: Our findings showed that Pn-V, Pe-V and Pp-V are highly similar concerning protein composition and enzymatic activities, containing isoforms of the same toxins sharing high sequence homology, with minor modifications. However, these structural and functional variations are very important for venom diversity. In addition, our findings will contribute to the comprehension of the molecular diversity of the venoms of the other species from Phoneutria genus, exposing their biotechnological potential as a source for searching for new active molecules.
  • Voracity, reaction to stings, and survival of domestic hens when feeding on the yellow scorpion (Tityus serrulatus) Research

    Murayama, Gabriel Pimenta; Pagoti, Guilherme Ferreira; Guadanucci, José Paulo Leite; Willemart, Rodrigo Hirata

    Abstract in English:

    Abstract Background: Scorpionism is a worldwide problem that has already made thousands of victims, and multi-disciplinary approaches for controlling their populations are to be more successful. Hens are often mentioned as tools for controlling scorpions; however, systematic/experimental behavioral studies are not available. Moreover, there is no systematic information on the effect of scorpion venoms on hens. Using the venomous yellow scorpion Tityus serrulatus, the present study aimed to clarify the following aspects: (1) voracity of hens, (2) how hens react when stung, (3) the effect of scorpion stings on hen behavior during attacks, and (4) hen survivorship after feeding on scorpions. Methods: We attracted hens with corn powder, offered them scorpions and then recorded the hen-scorpion interaction. To test the effects of the sting we manually removed the scorpion’s telson. Results: We found that some hens ate up to six scorpions within minutes. By means of an ethogram and drawings, we showed that they exhibited several aversive behaviors when capturing scorpions. Removal of the scorpion telson stopped the aversive reactions, which was not observed in the control group. Finally, hens did not exhibit atypical behaviors after 1, 7 and 30 days and were all alive after 30 days. Conclusion: This is the first empirical and video recorded study providing evidence that hens are clearly affected by scorpion venom but do not die. Therefore, they may have potential to be used in biological control of these arthropods.
  • A biocomplex to repair experimental critical size defects associated with photobiomodulation therapy Research

    Buchaim, Daniela Vieira; Andreo, Jesus Carlos; Pomini, Karina Torres; Barraviera, Benedito; Ferreira Júnior, Rui Seabra; Duarte, Marco Antonio Hungaro; Alcalde, Murilo Priori; Reis, Carlos Henrique Bertoni; Teixeira, Daniel de Bortoli; Bueno, Cleuber Rodrigo de Souza; Detregiachi, Cláudia Rucco Penteado; Araujo, Adriano Cressoni; Buchaim, Rogério Leone

    Abstract in English:

    Abstract Background: The association of scaffolds to repair extensive bone defects can contribute to their evolution and morphophysiological recomposition. The incorporation of particulate biomaterials into three-dimensional fibrin bioproducts together with photobiomodulation therapy (PBM) has potential and can improve regenerative medicine procedures. The objective of this experiment was to evaluate the effects of PBM therapy on critical size defects filled with xenogenic bone substitute associated with fibrin biopolymer. Methods: A critical defect of 8 mm was performed in 36 Wistar male adult rats that were divided into four groups. Groups BC and BC-PBM were defined as controls with defects filled by a clot (without or with PBM, respectively) and groups XS and XS-PBM that comprised those filled with biocomplex Bio-OssTM in association with fibrin biopolymer. PBM was applied immediately after the surgery and three times a week every other day, with the parameters: wavelength of 830 nm, energy density 6.2 J/cm2, output power 30 mW, beam area of 0.116 cm2, irradiance 0.258,62 W/cm2, energy/point 0.72 J, total energy 2.88 J. Fourteen and 42 days after the surgery, animals were euthanatized and subjected to microtomography, qualitative and quantitative histological analysis. Results: The BC-PBM and XS-PBM groups had a similar evolution in the tissue repair process, with a higher density of the volume of new formed bone in relation to the groups without PBM (p = 0.04086; p = 0.07093, respectively). Intense vascular proliferation and bone deposition around the biomaterial particles were observed in the animals of the groups in which biocomplex was applied (XS and XS-PBM). Conclusion: PBM therapy allowed an improvement in the formation of new bone, with a more organized deposition of collagen fibers in the defect area. Biocomplex favored the insertion and permanence of the particulate material in bone defects, creating a favorable microenvironment for accelerate repair process.
  • Compositional and toxicological investigation of pooled venom from farm-raised Naja atra Research

    Xiao, Gang; Liu, Junqi; Peng, Lingfeng; Yang, Yang; Sun, Zhiliang

    Abstract in English:

    Abstract Background: Naja atra is a venomous snake species medically relevant in China. In the current study, we evaluated the composition and toxicological profile of venom collected from farm-raised N. atra. Methods: Venom was collected from third-generation captive bred N. atra on a snake farm in Hunan Province, China. The venom was analyzed using sodium dodecyl sulfate polyacrylamide gel electrophoresis and nano-liquid chromatography with electrospray ionization tandem mass spectrometry. In addition, hemolytic activity, median lethal dose, serum biochemical and histopathological parameters were accessed. Results: N. atra venom proteome was dominated by phospholipase A2 (46.5%) and three-finger toxins (41.4 %), and a set of common low relative abundance proteins, including cysteine-rich secretory proteins (4.7%), NGF-beta (2.4%), snake venom metalloproteinase (1.5%), glutathione peroxidase (0.6%), vespryn (0.3%), and 5ʹ-nucleotidases (0.2%) were also found. Furthermore, the venom exhibited direct hemolytic activity, neurotoxicity, myotoxicity, and high lethal potency in mice, with a subcutaneous median lethal dose of 1.02 mg/kg. Histopathological analysis and serum biochemical tests revealed that venom caused acute hepatic, pulmonary and renal injury in mice. Conclusion: This study revealed the composition and toxicity of venom collected from farm-raised N. atra, thereby providing a reference for the analysis of venom samples collected from captive-born venomous snakes in the future.
  • A new therapeutic approach for bone metastasis in colorectal cancer: intratumoral melittin Research

    Rocha, Mackson Martins; Dariva, Isabela; Zornoff, Gabriela Comelli; De Laurentis, Giovanna Sanches; Mendes, Giulia Carli; Santana, Maycon Giovani; Miguel, Guilherme Chohfi de; Ferreira Junior, Rui Seabra; Sciani, Juliana Mozer; Priolli, Denise Gonçalves

    Abstract in English:

    Abstract Background: Melittin has shown antiproliferative effects on tumor cells. Therefore, it comprises a valuable compound for studies on cancer treatment. To the best of our knowledge, no studies have reported melittin effects on bone metastasis. Herein, we propose an approach based on intrametastatic melittin injection to treat bone metastases in colorectal cancer. Methods: Following the characterization of melittin and antiproliferative tests in vitro, a single dose was injected through intrametastatic route into the mouse bone metastasis model. Following treatment, metastasis growth was evaluated. Results: A single dose of melittin was able to inhibit metastasis growth. Histological analysis showed necrosis and inflammatory processes in melittin-treated metastasis. Except by mild weight loss, no other systemic effects were observed. Conclusion: Our data suggest that melittin might be a promising agent for the future development of treatment strategies aiming to reduce the bone metastasis skeletal-related impact in colorectal cancer patients with bone metastasis.
  • Antimicrobial activity and partial chemical structure of acylpolyamines isolated from the venom of the spider Acanthoscurria natalensis Research

    Barth, Tania; Silva, Aline; Santos, Simone Setubal dos; Santos, Jane Lima; Andrade, Patrícia Diniz; Tsai, Jessica; Caldas, Eloísa Dutra; Castro, Mariana de Souza; Pires Júnior, Osmindo Rodrigues

    Abstract in English:

    Abstract Background: Acylpolyamines are one of the main non-peptide compounds present in spider venom and represent a promising alternative in the search for new molecules with antimicrobial action. Methods: The venom of Acanthoscurria natalensis spider was fractionated by reverse-phase liquid chromatography (RP-HPLC) and the antimicrobial activity of the fractions was tested using a liquid growth inhibition assay. The main antimicrobial fraction containing acylpolyamines (ApAn) was submitted to two additional chromatographic steps and analyzed by MALDI-TOF. Fractions of interest were accumulated for ultraviolet (UV) spectroscopy and ESI-MS/MS analysis and for minimum inhibitory concentration (MIC) and hemolytic activity determination. Results: Five acylpolyamines were isolated from the venom with molecular masses between 614 Da and 756 Da, being named ApAn728, ApAn614a, ApAn614b, ApAn742 and ApAn756. The analysis of UV absorption profile of each ApAn and the fragmentation pattern obtained by ESI-MS/MS suggested the presence of a tyrosyl unit as chromophore and a terminal polyamine chain consistent with structural units PA43 or PA53. ApAn presented MIC between 128 µM and 256 µM against Escherichia coli and Staphylococcus aureus, without causing hemolysis against mouse erythrocytes. Conclusion: The antimicrobial and non-hemolytic properties of the analyzed ApAn may be relevant for their application as possible therapeutic agents and the identification of an unconventional chromophore for spider acylpolyamines suggests an even greater chemical diversity.
  • Pinching or stinging? Comparing prey capture among scorpions with contrasting morphologies Research

    García, Luis Fernando; Valenzuela-Rojas, Juan Carlos; González-Gómez, Julio César; Lacava, Mariángeles; Meijden, Arie van der

    Abstract in English:

    Abstract Background: Scorpions can use their pincers and/or stingers to subdue and immobilize their prey. A scorpion can thus choose between strategies involving force or venom, or both, depending on what is required to subdue its prey. Scorpions vary greatly in the size and strength of their pincers, and in the efficacy of their venom. Whether this variability is driven by their defensive or prey incapacitation functionis unknown. In this study, we test if scorpion species with different pincer morphologies and venom efficacies use these weapons differently during prey subjugation. To that end, we observed Opisthacanthus elatus and Chactas sp. with large pincers and Centruroides edwardsii and Tityus sp. with slender pincers. Methods: The scorpion pinch force was measured, and behavioral experiments were performed with hard and soft prey (Blaptica dubia and Acheta domesticus). Stinger use, sting frequency and immobilization time were measured. Results: We found that scorpions with large pincers such as O. elatus produce more force and use the stinger less, mostly subjugating prey by crushing them with the pincers. In C. edwardsii and Tityus sp. we found they use their slender and relatively weak pincers for holding the prey, but seem to predominantly use the stinger to subjugate them. On the other hand, Chactas sp. uses both strategies although it has a high pinch force. Conclusions: Our results show that scorpionspecies with massive pincers and high pinch force as O. elatus use the stinger less for prey subjugation than scorpionspecies with slenderpincers.
  • Comparative compositional and functional venomic profiles among venom specimens from juvenile, subadult and adult Russell’s viper ( Daboia siamensis ): correlation with renal pathophysiology in experimental rabbits Research

    Chaiyabutr, Narongsak; Chanhome, Lawan; Vasaruchapong, Taksa; Laoungbua, Panithi; Khow, Orawan; Rungsipipat, Anudep; Reamtong, Onrapak; Sitprija, Visith

    Abstract in English:

    Abstract Background: Eastern Russell’s viper (Daboia siamensis) is one of the most medically significant snakes responsible for the development of acute renal failure. However, variation of the clinical picture and renal pathophysiology following bites by young and adult D. siamensis have not been elucidated. Methods: In this study, we analyzed the venomic profiles of D. siamensis at different maturation stages of juvenile, subadult and adult groups. The same pooled venom from each group was subjected to enzymatic, electrophoretic and proteomic analysis, including sublethal toxicity (0.1 mg/kg iv.) examined on bodily functions by comparing the venom compositional and functional profiles among venom specimens from juvenile, subadult and adult D. siamensis by correlating them with the renal pathophysiology in experimental rabbits. Results: The comparative studies revealed that juvenile venom possessed higher phospholipase A2, metalloproteinase and serine proteinase levels, while subadult and adult venoms contained more L-amino acid oxidase, phosphodiesterase, the Kunitz-type serine protease inhibitor, disintegrin families and endothelial growth factor. An in vivo study revealed that the adult and subadult venoms caused persistent hypotension and bradycardia, while thrombocytopenia was a more characteristic effect of juvenile venom. All venom age groups showed significant reductions in renal hemodynamics and electrolyte excretions. The juvenile venom caused a higher tubulonephrosis lesion score than adult and subadult venoms. Conclusions: The D. siamensis venom shows an ontogenetic shift in its compositions and activities. Renal function alterations after envenomation depend on either the synergistic actions of different venom components or the disproportionate expression between the concentrations of enzymatic and non-enzymatic proteins in each age venom group. The high proportion of enzymatic toxin proteins in the juvenile venom results in greater nephrotoxicity.
  • β-micrustoxin (Mlx-9), a PLA2 from Micrurus lemniscatus snake venom: biochemical characterization and anti-proliferative effect mediated by p53 Research

    Santos, Natália Fernanda Teixeira dos; Imberg, Andréia de Souza; Mariano, Douglas Oscar Ceolin; Moraes, Angelina Cirelli de; Andrade-Silva, Jessica; Fernandes, Cristina Maria; Sobral, Ana Cláudia; Giannotti, Karina Cristina; Kuwabara, Wilson M. Tatagiba; Pimenta, Daniel Carvalho; Maria, Durvanei Augusto; Sandoval, Maria Regina Lopes; Afeche, Solange Castro

    Abstract in English:

    Abstract Background Endogenous phospholipases A2 (PLA2) play a fundamental role in inflammation, neurodegenerative diseases, apoptosis and cellular senescence. Neurotoxins with PLA2 activity are found in snake venoms from the Elapidae and Viperidae families. The mechanism of action of these neurotoxins have been studied using hippocampal and cerebellar neuronal cultures showing [Ca2+]i increase, mitochondrial depolarization and cell death. Astrocytes are rarely used as a model, despite being modulators at the synapses and responsible for homeostasis and defense in the central nervous system. Preserving the cell division ability, they can be utilized to study the cell proliferation process. In the present work cultured astrocytes and glioblastoma cells were employed to characterize the action of β-micrustoxin (previously named Mlx-9), a PLA2 isolated from Micrurus lemniscatus snake venom. The β-micrustoxin structure was determined and the cell proliferation, cell cycle phases and the regulatory proteins p53, p21 and p27 were investigated. Methods β-micrustoxin was characterized biochemically by a proteomic approach. Astrocytes were obtained by dissociation of pineal glands from Wistar rats; glioblastoma tumor cells were purchased from ATCC and Sigma and cultured in DMEM medium. Cell viability was evaluated by MTT assay; cell proliferation and cell cycle phases were analyzed by flow cytometry; p53, p21 and p27 proteins were studied by western blotting and immunocytochemistry. Results Proteomic analysis revealed fragments on β-micrustoxin that aligned with a PLA2 from Micrurus lemniscatus lemniscatus previously identified as transcript ID DN112835_C3_g9_i1/m.9019. β-micrustoxin impaired the viability of astrocytes and glioblastoma tumor cells. There was a reduction in cell proliferation, an increase in G2/M phase and activation of p53, p21 and p27 proteins in astrocytes. Conclusion These findings indicate that β-micrustoxin from Micrurus lemniscatus venom could inhibit cell proliferation through p53, p21 and p27 activation thus imposing cell cycle arrest at the checkpoint G2/M.
  • Biochemical and proteomic analyses of venom from a new pit viper, Protobothrops kelomohy Research

    Chanhome, Lawan; Khow, Orawan; Reamtong, Onrapak; Vasaruchapong, Taksa; Laoungbua, Panithi; Tawan, Tanapong; Suntrarachun, Sunutcha; Sitprija, Siravit; Kumkate, Supeecha; Chaiyabutr, Narongsak

    Abstract in English:

    Abstract Background: A new pit viper, Protobothrops kelomohy, has been recently discovered in northern and northwestern Thailand. Envenoming by the other Protobothrops species across several Asian countries has been a serious health problem since their venom is highly hematotoxic. However, the management of P. kelomohy bites is required as no specific antivenom is available. This study aimed to investigate the biochemical properties and proteomes of P. kelomohy venom (PKV), including the cross-neutralization to its lethality with antivenoms available in Thailand. Methods: PKV was evaluated for its neutralizing capacity (ER50), lethality (LD50), procoagulant and hemorrhagic effects with three monovalent antivenoms (TAAV, DSAV, and CRAV) and one polyvalent (HPAV) hematotoxic antivenom. The enzymatic activities were examined in comparison with venoms of Trimeresurus albolabris (TAV), Daboia siamensis (DSV), Calloselasma rhodostoma (CRV). Molecular mass was separated on SDS-PAGE, then the specific proteins were determined by western blotting. The venom protein classification was analyzed using mass spectrometry-based proteomics. Results: Intravenous LD50 of PKV was 0.67 µg/g. ER50 of HPAV, DSAV and TAAV neutralize PKV at 1.02, 0.36 and 0.12 mg/mL, respectively. PKV exhibited procoagulant effect with a minimal coagulation dose of 12.5 ± 0.016 µg/mL and hemorrhagic effect with a minimal hemorrhagic dose of 1.20 ± 0.71 µg/mouse. HPAV was significantly effective in neutralizing procoagulant and hemorrhagic effects of PKV than those of TAAV, DSAV and CRAV. All enzymatic activities among four venoms exhibited significant differences. PKV proteome revealed eleven classes of putative snake venom proteins, predominantly metalloproteinase (40.85%), serine protease (29.93%), and phospholipase A2 (15.49%). Conclusions: Enzymatic activities of PKV are similarly related to other viperid venoms in this study by quantitatively hematotoxic properties. Three major venom toxins were responsible for coagulopathy in PKV envenomation. The antivenom HPAV was considered effective in neutralizing the lethality, procoagulant and hemorrhagic effects of PKV.
  • Standardization of molecular techniques for the detection and characterization of intestinal protozoa and other pathogens in humans Research

    Ysea, Maria Alejandra Vethencourt; Umaña, Mariana Cedeño; Fuentes, Sofia Pereira; Campos, Idalia Valerio; Carmona, Misael Chinchilla

    Abstract in English:

    Abstract Background: The intrinsic sensitivity limitations of basic parasitological methods, along with the particular biological characteristics of parasites, make these methods ineffective to differentiate morphologically indistinguishable species. Molecular detection and characterization techniques could be used to overcome these problems. The purpose of this work was to standardize molecular polymerase chain reaction (PCR) techniques, described in the literature, for the detection and molecular characterization of intestinal protozoa and other pathogens in humans. Methods: DNA was extracted from human or animal feces, previously washed or cultured in Boeck Drbohlav's Modified Medium. DNA extraction was performed with Machery-Nagel extraction kits. The standardization of the PCR, nested-PCR or RFLP techniques was carried out according to the literature. For each molecular technique performed, the sensitivity of the test was determined based on the minimun quantity required of DNA (sensitivity A) and the minimum quantity of life forms that the test detected (sensitivity B). Results: Sensitivity A was 10 fg for G. duodenalis, 12.5 pg for Entamoeba histolytica or Entamoeba dispar, 50 fg for Cryptosporidium spp., 225 pg for Cyclospora spp. and 800 fg or 8 fg for Blastocystis spp. after performing a 1780 bp PCR or 310 bp nested PCR, respectively. The sensitivity B was 100 cysts for G. duodenalis, 500 cysts for E. histolytica or E. dispar, 1000 oocysts for Cyclospora spp. and 3600 or four vegetatives forms for PCR or nested PCR of Blastocystis spp., respectively. Conclusions: The molecular detection of protozoa and chromist was achieved and the molecular characterization allowed the genotyping of some of the parasites such as Giardia duodenalis, Cryptosporidium spp., and Blastocystis spp. This study summarizes the molecular techniques for epidemiological studies in humans and animals, and helps in the investigation of their transmission sources in countries where intestinal parasites are a public health problem.
  • Isolation and characterization of five novel disulfide-poor conopeptides from Conus marmoreus venom Research

    Fu, Ying; Zhang, Yu; Ju, Shuang; Ma, Bokai; Huang, Wenwen; Luo, Sulan

    Abstract in English:

    Abstract Background: Conopeptides from cone snail venom have aroused great interest related to the discovery of novel bioactive candidates, due to their excellent prospects for the treatment of various health problems such as pain, addiction, psychosis and epilepsy. In order to explore novel biopeptides, we investigated the structure and function of five novel conopeptides isolated from the venom of Conus marmoreus from South China Sea. Methods: C. marmoreus crude venom was prepared, fractionated and purified by HPLC system. The primary sequences of the five novel disulfide-poor conopeptides Mr-1 to Mr-5 were identified by comprehensive analysis of de novo MALDI-TOF tandem mass spectrometry and Edman degradation data. In order to investigate their function, these five conopeptides were synthesized by Fmoc-SPPS chemistry, and their biological effects at several heterologous rat nicotinic acetylcholine receptor (nAChR) subtypes (α1β1δε, α3β2, α3β4, α4β2) were determined by electrophysiological technique. Results: Five novel disulfide-poor conopeptides were identified and named as follows: Mr-1 (DWEYHAHPKPNSFWT), Mr-2 (YPTRAYPSNKFG), Mr-3 (NVIQAPAQSVAPP NTST), Mr-4 [KENVLNKLKSK(L/I)] and Mr-5 [NAVAAAN(L/I)PG(L/I)V]. None of them contains a disulfide bond. The sequences of conopeptides Mr-2 to Mr-5 do not belong to any category of the known disulfide-poor conopeptides. No significant activity against the above nAChR subtypes were observed for the five conopeptides at 100 µM. Conclusion: We purified and structurally characterized five novel disulfide-poor conopeptides from C. marmoreus crude venom and first investigated their nAChR inhibitory effects. This work expanded our knowledge on the structure and function of disulfide-poor conopeptides from this cone snail venom.
  • In vitro and in silico evaluation of the schistosomicidal activity of eugenol derivatives using biochemical, molecular, and morphological tools Research

    Souza, Isabella Maria Monteiro de; Novaes, Romulo Dias; Gonçalves, Reggiani Vilela; Fialho, Felipe Leonardo Bley; Carvalho, Diogo Teixeira; Souza, Thiago Belarmino de; Dias, Danielle Ferreira; Lavorato, Stefânia Neiva; Souza, Raquel Lopes Martins; Marques, Marcos José; Castro, Aline Pereira

    Abstract in English:

    Abstract Background Eugenol shows both antibacterial and antiparasitic activities, suggesting that it might be evaluated as an option for the treatment of praziquantel-resistant schistosome. Methods The in vitro activities of three eugenol derivatives (FB1, FB4 and FB9) on adult worms from Schistosoma mansoni were examined by fluorescence and scanning electron microscopy to analyze effects on the excretory system and integument damage, respectively. Biochemical tests with verapamil (a calcium channel antagonist) and ouabain (a Na+/K+-ATPase pump inhibitor) were used to characterize eugenol derivative interactions with calcium channels and the Na+/K+-ATPase, while in silico analysis identified potential Na+/K+-ATPase binding sites. Results The compounds showed effective doses (ED50) of 0.324 mM (FB1), 0.167 mM (FB4), and 0.340 mM (FB9). In addition, FB4 (0.322 mM), which showed the lowest ED50, ED90 and ED100 (p < 0.05), caused the most damage to the excretory system and integument, according to both fluorescence and scanning electron microscopy analysis. The death of adult worms was delayed by ouabain treatment plus FB1 (192 versus 72 hours) and FB9 (192 versus 168 hours), but the response to FB4 was the same in the presence or absence of ouabain. Besides, no changes were noted when all of the eugenol derivatives were combined with verapamil. Moreover, FB1 and FB9 inhibited Na+/K+-ATPase activity according to in silico analysis but FB4 did not show a time-dependent relationship and may act on targets other than the parasite Na+/K+-ATPase. Conclusion Eugenol derivatives, mainly FB4 when compared to FB1 and FB9, seem to act more effectively on the integument of adult S. mansoni worms.
  • Venom composition of Trimeresurus albolabris, T. insularis, T. puniceus and T. purpureomaculatus from Indonesia Research

    Anita, Syahfitri; Sadjuri, Arif Rahman; Rahmah, Latri; Nugroho, Herjuno Ari; Mulyadi,; Trilaksono, Wahyu; Ridhani, Wiwit; Safira, Nabila; Bahtiar, Hariman; Maharani,; Hamidy, Amir; Azhari, Adriansjah

    Abstract in English:

    Abstract Background: Several studies have been published on the characterization of Trimeresurus venoms. However, there is still limited information concerning the venom composition of Trimeresurus species distributed throughout Indonesia, which contributes to significant snakebite envenomation cases. The present study describes a comparative on the composition of T. albolabris, T. insularis, T. puniceus, and T. purpureomaculatus venoms originated from Indonesia. Methods: Protein content in the venom of four Trimeresurus species was determined using Bradford assay, and the venom proteome was elucidated using one-dimension SDS PAGE nano-ESI- LCMS/MS shotgun proteomics. Results: The venom of T. albolabris contained the highest protein content of 11.1 mg/mL, followed by T. puniceus, T. insularis and T. purpureomaculatus venom with 10.7 mg/mL, 8.9 mg/mL and 5.54 mg/mL protein, respectively. In total, our venomic analysis identified 65 proteins belonging to 16 protein families in T. purpureomaculatus; 64 proteins belonging to 18 protein families in T. albolabris; 58 different proteins belonging to 14 protein families in T. puniceus; and 48 different proteins belonging to 14 protein familiesin T. insularis. Four major proteins identified in all venoms belonged to snake venom metalloproteinase, C-type lectin, snake venom serine protease, and phospholipase A2. There were 11 common proteins in all venoms, and T. puniceus venom has the highest number of unique proteins compared to the other three venoms. Cluster analysis of the proteins and venoms showed that T. puniceus venom has the most distinct venom composition. Conclusions: Overall, the results highlighted venom compositional variation of four Trimeresurus spp. from Indonesia. The venoms appear to be highly similar, comprising at least four protein families that correlate with venom’s toxin properties and function. This study adds more information on venom variability among Trimeresurus species within the close geographic origin and may contribute to the development of optimum heterologous antivenom.
  • Hemolymph of triatomines presents fungistatic activity against Cryptococcus neoformans and improves macrophage function through MCP-I/TNF-α increase Research

    Menezes-Silva, Luísa; Catarino, Jonatas da Silva; Faria, Laura Caroline de; Pizzolante, Bárbara Cristina; Andrade-Silva, Leonardo Eurípedes; Silva, Marcos Vinicius da; Rodrigues Júnior, Virmondes; Sales-Campos, Helioswilton; Oliveira, Carlo José Freire

    Abstract in English:

    Abstract Background: Triatomines are blood-feeding arthropods belonging to the subfamily Triatominae (Hemiptera; Reduviidae), capable of producing immunomodulatory and water-soluble molecules in their hemolymph, such as antimicrobial peptides (AMPs). In this work, we evaluated the antifungal and immunomodulatory activity of the hemolymph of Meccus pallidipennis (MPH) and Rhodnius prolixus (RPH) against Cryptococcus neoformans. Methods: We assessed the activity of the hemolymph of both insects on fungal growth by a minimum inhibitory concentration (MIC) assay. Further, RAW 264.7 macrophages were cultivated with hemolymph and challenged with C. neoformans. Then, their phagocytic and killing activities were assessed. The cytokines MCP-1, IFN-γ, TNF-α, IL-10, IL-12, and IL-6 were measured in culture supernatants 4- and 48-hours post-infection. Results: Both hemolymph samples directly affected the growth rate of the fungus in a dose-dependent manner. Either MPH or RPH was capable of inhibiting fungal growth by at least 70%, using the lowest dilution (1:20). Treatment of RAW 264.7 macrophages with hemolymph of both insects was capable of increasing the production of MCP-I and TNF-α. In addition, when these cells were stimulated with hemolymph in the presence of C. neoformans, a 2- and a 4-fold increase in phagocytic rate was observed with MPH and RPH, respectively, when compared to untreated cells. For the macrophage killing activity, MPH decreased in approximately 30% the number of viable yeasts inside the cells compared to untreated control; however, treatment with RPH could not reduce the total number of viable yeasts. MPH was also capable of increasing MHC-II expression on macrophages. Regarding the cytokine production, MCP-I and TNF-α, were increased in the supernatant of macrophages treated with both hemolymphs, 4 and 48 hours after stimulation. Conclusion: These results suggested that hemolymph of triatomines may represent a source of molecules capable of presenting antifungal and immunomodulatory activity in macrophages during fungal infection.
  • Antifungal activity of liriodenine on clinical strains of Cryptococcus neoformans and Cryptococcus gattii species complexes Research

    Levorato-Vinche, Adriele Dandara; Melhem, Marcia de Souza Carvalho; Bonfietti, Lucas Xavier; de-la-Cruz-Chacón, Iván; Boaro, Carmen Sílvia Fernandes; Fabro, Alexandre Todorovic; Ferreira, Gisela; Silva, Julhiany de Fátima da; Santos, Daniela Carvalho dos; Pereira, Beatriz Aparecida Soares; Marçon, Camila; Maza, Lariza; Carvalho, Lídia Raquel de; Mendes, Rinaldo Poncio

    Abstract in English:

    Abstract Background: Cryptoccocal meningitis continues to present high incidence among AIDS patients. The treatment of choice is the synergistic combination of flucytosine (5-FC) with amphotericin B deoxycholate (AmBd) or its lipid formulations. However, 5-FC is unavailable in many countries and AmB demands hospitalization. The combination of AmB with the fungistatic fluconazole (FLC) or the use of high FLC daily doses alone became the choice. Nonetheless, sterilization of cerebrospinal fluid is delayed with FLC monotherapy, mainly with high fungal burden. These findings suggest the search for new antifungal compounds, such as liriodenine. Methods: Liriodenine antifungal activity was evaluated by three procedures: determining the minimum inhibitory concentration (MIC) on 30 strains of the Cryptococcus neoformans (C. neoformans) complex and 30 of the Cryptococcus gattii (C. gattii) complex, using EUCAST methodology and amphotericin B deoxycholate as control; performing the time-kill methodology in two strains of the C. neoformans complex and one of the C. gattii complex; and injury to cryptococcal cells, evaluated by transmission electron microscopy (TEM). Liriodenine absorption and safety at 0.75 and 1.50 mg.kg-1 doses were evaluated in BALB/c mice. Results: Liriodenine MICs ranged from 3.9 to 62.5 μg.mL-1 for both species complexes, with no differences between them. Time-kill methodology confirmed its concentration-dependent fungicidal effect, killing all the strains below the limit of detection (33 CFU.mL-1) at the highest liriodenine concentration (32-fold MIC), with predominant activity during the first 48 hours. Liriodenine induced severe Cryptococcus alterations - cytoplasm with intense rarefaction and/or degradation, injury of organelles, and presence of vacuoles. Liriodenine was better absorbed at lower doses, with no histopathological alterations on the digestive tract. Conclusion: The fungicidal activity confirmed by time-kill methodology, the intense Cryptococcus injury observed by TEM, the absorption after gavage administration, and the safety at the tested doses indicate that the liriodenine molecule is a promising drug lead for development of anticryptococcal agents.
  • Inhibitory activities of propolis, nisin, melittin and essential oil compounds on Paenibacillus alvei and Bacillus subtilis Research

    Sani, Alessandra Aguirra; Pereira, Ana Flávia Marques; Furlanetto, Alessandra; Sousa, Débora Silva Marques de; Zapata, Tatiane Baptista; Rall, Vera Lucia Mores; Fernandes Júnior, Ary

    Abstract in English:

    Abstract Background Natural products represent important sources of antimicrobial compounds. Propolis and compounds from essential oils comprise good examples of such substances because of their inhibitory effects on bacterial spores, including bee pathogens. Methods Ethanol extracts of propolis (EEP) from Apis mellifera were prepared using different methods: double ultrasonication, double maceration and maceration associated with ultrasonication. Together with the antimicrobial peptides nisin and melittin, and compounds present in the essential oils of clove (Syzygium aromaticum) and cinnamon (Cinnamomum zeylanicum), assays were carried out on one Bacillus subtilis isolate and Paenibacillus alvei (ATCC 6344) against vegetative and sporulated forms, using the resazurin microtiter assay. Synergism with all the antimicrobials in association with tetracycline was verified by the time-kill curve method. Potassium and phosphate efflux, release of proteins and nucleic acids were investigated. Results EEPs showed the same MIC, 156.25 µg/mL against B. subtilis and 78.12 µg/mL against P. alvei. The peptides showed better activities against B. subtilis (MIC of 12 µg/mL for melittin and 37.50 µg/mL for nisin). Antimicrobials showed similar inhibitory effects, but cinnamaldehyde (39.06 µg/mL) showed the best action against P. alvei. Melittin and nisin showed the greatest capacity to reduce spores, regarding B. subtilis there was a 100% reduction at 6.25 and 0.78 µg/mL, respectively. Concerning P. alvei, the reduction was 93 and 98% at concentrations of 80 µg/mL of melittin and 15 µg/mL of nisin. EEPs showed the highest effects on the protein release against B. subtilis and P. alvei. Nucleic acid release, phosphate and potassium efflux assays indicated bacterial cell membrane damage. Synergism between antimicrobials and tetracycline was demonstrated against both bacteria. Conclusion All antimicrobials tested showed antibacterial activities against vegetative and sporulated forms of P. alvei and B. subtilis, especially nisin and melittin. Synergism with tetracycline and damage on bacterial cell membrane also occurred.
  • New multienzymatic complex formed between human cathepsin D and snake venom phospholipase A2 Research

    Moraes, Jeane do Nascimento; Francisco, Aleff Ferreira; Dill, Leandro Moreira; Diniz, Rafaela Souza; Oliveira, Claudia Siqueira de; Silva, Tainara Maiane Rodrigues da; Caldeira, Cleópatra Alves da Silva; Corrêa, Edailson de Alcântara; Coutinho-Neto, Antônio; Zanchi, Fernando Berton; Fontes, Marcos Roberto de Mattos; Soares, Andreimar Martins; Calderon, Leonardo de Azevedo

    Abstract in English:

    Abstract Background Cathepsin D (CatD) is a lysosomal proteolytic enzyme expressed in almost all tissues and organs. This protease is a multifunctional enzyme responsible for essential biological processes such as cell cycle regulation, differentiation, migration, tissue remodeling, neuronal growth, ovulation, and apoptosis. The overexpression and hypersecretion of CatD have been correlated with cancer aggressiveness and tumor progression, stimulating cancer cell proliferation, fibroblast growth, and angiogenesis. In addition, some studies report its participation in neurodegenerative diseases and inflammatory processes. In this regard, the search for new inhibitors from natural products could be an alternative against the harmful effects of this enzyme. Methods An investigation was carried out to analyze CatD interaction with snake venom toxins in an attempt to find inhibitory molecules. Interestingly, human CatD shows the ability to bind strongly to snake venom phospholipases A2 (svPLA2), forming a stable muti-enzymatic complex that maintains the catalytic activity of both CatD and PLA2. In addition, this complex remains active even under exposure to the specific inhibitor pepstatin A. Furthermore, the complex formation between CatD and svPLA2 was evidenced by surface plasmon resonance (SPR), two-dimensional electrophoresis, enzymatic assays, and extensive molecular docking and dynamics techniques. Conclusion The present study suggests the versatility of human CatD and svPLA2, showing that these enzymes can form a fully functional new enzymatic complex.
  • Prospecting for candidate molecules from Conus virgo toxins to develop new biopharmaceuticals Research

    Mohamed, Anas A.; Nabil, Zohour I.; El-Naggar, Mohamed S.

    Abstract in English:

    Abstract Background A combination of pharmacological and biomedical assays was applied in this study to examine the bioactivity of Conus virgo crude venom in order to determine the potential pharmacological benefit of this venom, and its in vivo mechanism of action. Methods Two doses (1/5 and 1/10 of LC50, 9.14 and 4.57 mg/kg) of the venom were used in pharmacological assays (central and peripheral analgesic, anti-inflammatory and antipyretic), while 1/2 of LC50 (22.85 mg/kg) was used in cytotoxic assays on experimental animals at different time intervals, and then compared with control and reference drug groups. Results The tail immersion time was significantly increased in venom-treated mice compared with the control group. Also, a significant reduction in writhing movement was recorded after injection of both venom doses compared with the control group. In addition, only the high venom concentration has a mild anti-inflammatory effect at the late inflammation stage. The induced pyrexia was also decreased significantly after treatment with both venom doses. On the other hand, significant increases were observed in lipid peroxidation (after 4 hours) and reduced glutathione contents and glutathione peroxidase activity, while contents of lipid peroxidation and nitric oxide (after 24 hours) and catalase activity were depleted significantly after venom administration. Conclusion These results indicated that the crude venom of Conus virgo probably contain bioactive components that have pharmacological activities with low cytotoxic effects. Therefore, it may comprise a potential lead compound for the development of drugs that would control pain and pyrexia.
  • Recombinant expression and antigenicity of two peptide families of neurotoxins from Androctonus sp. Research

    Cardoso-Arenas, Samuel; Clement, Herlinda; Arenas, Iván; Olvera, Felipe; Zamudio, Fernando; Caliskan, Figen; Corrales-García, Ligia Luz; Corzo, Gerardo

    Abstract in English:

    Abstract Background: Scorpion neurotoxins such as those that modify the mammalian voltage-gated sodium ion channels (Nav) are the main responsible for scorpion envenomation. Their neutralization is crucial in the production of antivenoms against scorpion stings. Methods: In the present study, two in silico designed genes - one that codes for a native neurotoxin from the venom of the Anatolian scorpion Androctonus crassicauda, named Acra 4 - and another non-native toxin - named consensus scorpion toxin (SccTx) obtained from the alignment of the primary structures of the most toxic neurotoxins from the Middle Eastern and North African scorpions - were recombinantly expressed in E. coli Origami. Results: Following bacterial expression, the two expressed neurotoxins, hereafter named HisrAcra4 and HisrSccTx, were obtained from inclusion bodies. Both recombinant neurotoxins were obtained in multiple Cys-Cys isoforms. After refolding, the active protein fractions were identified with molecular masses of 8,947.6 and 9,989.1 Da for HisrAcra4 and HisrSccTx, respectively, which agreed with their expected theoretical masses. HisrAcra4 and HisrSccTx were used as antigens to immunize two groups of rabbits, to produce either anti-HisrAcra4 or anti-HisrSccTx serum antibodies, which in turn could recognize and neutralize neurotoxins from venoms of scorpion species from the Middle East and North Africa. The antibodies obtained from rabbits neutralized the 3LD50 of Androctonus australis, Leiurus quinquestriatus hebraeus and Buthus occitanus venoms, but they did not neutralize A. crassicauda and A. mauritanicus venoms. In addition, the anti-HisrAcra4 antibodies did not neutralize any of the five scorpion venoms tested. However, an antibody blend of anti-HisrAcra4 and anti-HisrSccTx was able to neutralize A. crassicauda and A. mauritanicus venoms. Conclusions: Two recombinant Nav neurotoxins, from different peptide families, were used as antigens to generate IgGs for neutralizing scorpion venoms of species from the Middle East and North Africa.
  • Persistent SARS-CoV-2 antigen presence in multiple organs of a naturally infected cat from Brazil Case Report

    Jarrah, Samar Afif; Kmetiuk, Louise Bach; Carvalho, Otávio Valério de; Sousa, Alessandra Tammy Hayakawa Ito de; Souza, Valeria Regia Franco; Nakazato, Luciano; Colodel, Edson Moleta; Santos, Andrea Pires dos; Pettan-Brewer, Christina; Hahn, Rosane Christine; Slhessarenko, Renata Dezengrini; Ubiali, Daniel Guimarães; Pereira, Asheley Henrique Barbosa; Morais, Helio Autran de; Biondo, Alexander Welker; Dutra, Valéria

    Abstract in English:

    Abstract Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiological agent of the disease coronavirus 2019 (COVID-19) in humans. SARS-CoV-2 has been identified in cats with or without clinical signs. Case presentation: We describe the pathological and molecular findings in a six-month-old asymptomatic cat with SARS-CoV-2 infection from Brazil, belonging to a human family with COVID-19 cases. The pool of nasopharynx and oropharynx swabs at day zero tested positive by RT-qPCR for SARS-CoV-2. No amplification resulted from molecular testing performed on days 7 and 14. The cat was hit by a car and died 43 days after the molecular diagnosis. Immunohistochemistry at post-mortem examination demonstrated nucleocapsid protein in samples from the lungs, kidneys, nasal conchae, trachea, intestine, brain and spleen. Conclusion: The present study has highlighted the possibility that viral antigens can be detected by immunohistochemistry in multiple organs six weeks after infection, although the same tissues tested negative by RT-PCR.
  • S- and P-type cobra venom cardiotoxins differ in their action on isolated rat heart Short Report

    Averin, Alexey S.; Goltyaev, Mikhail V.; Andreeva, Tatyana V.; Starkov, Vladislav G.; Tsetlin, Victor I.; Utkin, Yuri N.

    Abstract in English:

    Abstract Background: The cardiovascular system is one of the first systems to be affected by snake toxins; but not many toxins exert a direct effect on the heart. Cobra venom cardiotoxins are among those few toxins that attack the heart. Although the two cardiotoxin types (S and P) differ in their central-loop structure, it is not known whether they differ in their effect on the mammalian heart. We compared the effects of S- and P-type cardiotoxins, CTХ-1 and CTХ-2, respectively, from the cobra Naja oxiana, on the isolated rat heart. Methods: An isolated rat heart perfused according to the Langendorff technique was used in this study to investigate the activity of cardiotoxins CTX-1 and CTX-2. The following parameters were registered: the left ventricular developed pressure, calculated as the difference between systolic and diastolic pressure in the left ventricle, the end-diastolic pressure, the heart rate, time to maximal end-diastolic pressure (heart contracture), and time to depression of the heart contraction. Results: Both cardiotoxins at the concentration of 5 μg/mL initially produce a slight increase in systolic intraventricular pressure, followed by its rapid decrease with a simultaneous increase in diastolic intraventricular pressure until reaching contracture. CTX-2 blocks cardiac contractions faster than CTX-1; in its presence the maximum diastolic pressure is reached faster and the magnitude of the developed contracture is higher. Conclusion: The P-type cardiotoxin CTX-2 more strongly impairs rat heart functional activity than the S-type cardiotoxin CTX-1, as expressed in its faster blockage of cardiac contractions as well as in more rapid development and greater magnitude of contracture in its presence.
Centro de Estudos de Venenos e Animais Peçonhentos (CEVAP/UNESP) Av. Universitária, 3780, Fazenda Lageado, Botucatu, SP, CEP 18610-034, Brasil, Tel.: +55 14 3880-7693 - Botucatu - SP - Brazil
E-mail: editorial.jvatitd@unesp.br