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Resonance characteristics of two-span continuous beam under
moving high speed trains

Abstract

The resonance characteristics of a two-span continuous beam

traversed by moving high speed trains at a constant velocity

is investigated, in which the continuous beam has uniform

span length. Each span of the continuous beam is modeled

as a Bernoulli-Euler beam and the moving trains are rep-

resented as a series of two degrees-of-freedom mass-spring-

damper systems at the axle locations. A method of modal

analysis is proposed in this paper to investigate the vibration

of two-span continuous beam. The effects of different influ-

encing parameters, such as the velocities of moving trains,

the damping ratios and the span lengths of the beam, on the

dynamic response of the continuous beam are examined. The

two-span continuous beam has two critical velocities caus-

ing two resonance responses, which is different from simple

supported beam. The resonance condition of the two-span

continuous beam is put forward which depends on the first

and second natural frequency of the beam and the moving

velocity.
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1 INTRODUCTION

With the development of high speed railway, the railway induced vibration has long been an

interesting topic in the field of civil engineering, such as railway bridge vibrations. This has a

huge amount of researches on the dynamic behaviors of railway bridges under the passage of

the high speed trains [3–6, 8, 13–17]. Especially a comprehensive study in this topic can be

found in references [4, 13, 16]. It is well known that the resonant vibrations occur when the

loading frequencies of the moving trains coincide with the natural frequencies of the bridges.

In studying the fundamental problem of train-induced vibrations on bridges, a bridge was

often modeled as a simply supported beam. Yang et al. obtained the condition of resonance

and cancellation for a simple beam due to continuously moving loads and proposed the op-

timal design criteria that are effective for suppressing the resonant response [15]. Xia et al.
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investigated the resonance mechanism and conditions of a train-bridge system using theoretical

derivations, numerical simulations, and experimental data analyses [14]. Li and Su researched

the resonant vibration for a simply supported girder bridge under high-speed trains, using an

idealized vehicle model with a rigid body and four wheelsets [8]. Ju and Lin established a

three dimensional finite element model to investigate the resonant characteristics of the simply

supported bridges with high piers under high-speed trains [5]. But all of the above researches

were based on the simple supported beam. For continuous bridges, Cheung et al. investigated

the dynamic response of multi-span non-uniform bridges under moving vehicles and trains

with the modified beam vibration functions [3]. Kwark et al. studied dynamic responses of

two-span continuous concrete bridges under the Korean high-speed train (KHST) with exper-

imental and theoretical methods [6]. Yau researched the effect of the number of spans on the

impact response of the continuous beams with finite element method [17]. Based on these

investigations, many useful results have been brought out. Unfortunately, no further details

were proposed for the resonance characteristics, especially for the two-span continuous beam.

Because of the continuous action of moving trains, the certain frequencies of excitation

will be imposed on the two-span continuous beam to result in beam resonance. In the present

study, the dynamic response of two-span continuous beam under moving high speed trains

were investigated with modal superposition method and the reasons for beam resonance were

revealed also. Taking the max displacement and the dynamic impact factor of the midpoint of

the beam as indices, several parameters such as moving trains velocities, damping ratios and

span lengths of the beam, are chosen to investigate the effect of moving trains on the dynamic

responses of the beam. Different from simple supported beam, the two-span continuous beam

has two critical velocities causing two resonance responses, which depends on the first and

second natural frequency of the beam and the moving velocity. From resonance view, the

results are useful for suppressing the vibration of the two-span continuous beam under moving

high speed trains.

2 FORMULATION

2.1 Basic considerations

Generally, in real situation the moving trains can not keep in contact with the beam all the

time. Lee discussed the onset of separation between a moving mass and a beam [7], and

Cheng et al. did further investigations to study the onset of separation and reestablishment

of contact between the moving vehicle and the bridge [2]. However, when the mass of the

wheel is much less than the beam, it is can be assumed that the moving trains always keep

in contact with the beam. Cheng et al. also used bridge-track-vehicle element to study the

vibration of railway bridges under moving trains with the contact model [1]. M. Ziyaeifar used

the train and bridge (track) contact model to investigate the vibration of the railway bridge

and its control under a Maxwell (three-element type) vehicle model [20, 21]. In this paper, it

is supposed that the moving trains always keep in contact with the two-span continuous beam.

The following assumptions are also made for the formulation of the vibration problem of the
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two-span continuous beam subjected to moving trains as in Figure 1:

1. The moving trains are modeled as a series of two degrees-of-freedom mass-spring-damper

systems at the axle locations, and each mass-spring-damper system consists of a sprung

mass and an unsprung mass interconnected by a spring and a dashpot.

2. The two-span continuous beam is modeled as an elastic Bernoulli-Euler beam with uni-

form span length.

3. The high speed trains travel at a constant speed v. And for the initial conditions, the

first mass-spring-damper system is located at the left-hand end of the continuous beam.
 

 

 

 

Figure 1 Two-span continuous beam under moving trains.

2.2 Vehicle

As shown in Figure 1, it is assumed that there are Nv moving mass-spring-damper systems

in direct contact with the beam. For the typical kth moving mass-spring-damper system, the

sprung mass m1 and the unsprung mass m2 are interconnected by a spring of stiffness k1
and a dashpot of damping coefficient c1. The motion of unsprung mass is constrained by the

displacement of the beam, so its vertical displacement is also the beam vertical displacement

where the kth system is located. When the kth mass-spring-damper system runs on the two-

span continuous beam, the motion equation of the sprung mass m1 can be written as

m1Z̈k(t) + c1 [Żk(t) − ẏ(xk, t)] + k1 [Zk(t) − y(xk, t)] = 0 (1)

where m1 is the mass of sprung mass, Zk and y(xk, t) are vertical displacements of sprung

mass and unsprung mass, dots represent differentiation with respect to time t.

2.3 Two-span continuous beam

As shown in Figure 1, a two-span continuous beam with each span length l subjected to

a series of mass-spring-damper systems is analyzed. Suppose the distance of the kth mass-
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spring-damper system from the left-hand end of the continuous beam is xk. Then the motion

equation for moving trains on the two-span continuous beam can be written as

EIy
′′′′
(x, t) +mÿ (x, t) + cẏ (x, t) = F (x, t) (2)

where m is the constant mass per unit length, EI is the bending stiffness, c the damping of

the beam, y(x, t) the displacement of the beam, and dots and primes represent differentiation

with respect to time t and coordinate x.

F (x, t) =
Nv

∑
k=1
{(m1 +m2) g −m2ÿ (xk, t) + c1 [Żk(t) − ẏ(xk, t)] + k1 [Zk(t) − y(xk, t)]}

⋅ δ (x − xk) ⋅ [H(t − tk) −H(t − tk −∆t)]
(3)

Here, tk the arriving time of the kth mass-spring-damper system at the beam, tk = xk/v.
∆t the time of the load passing the beam, ∆t = 2l/v, H(⋅) is a unit step function, and δ(⋅) is
the Dirac delta function.

Based on the modal superposition method, the solution of Eq. (2) can be expressed as

y(x, t) =
∞
∑
n=1

qn(t)ϕn(x) (n = 1,2⋯∞) (4)

where qn(t) is the nth modal amplitude and ϕn(x) is the nth mode shape function of the

beam.

Substituting Eq. (4) and Eq. (3) into Eq. (2), and multiplying by ϕn and integrating the

resultant equation with respect to x between 0 and 2l ; and then applying the orthogonality

conditions, the equation of motion in terms of the modal displacement qn(t) is given as:

q̈n(t) + 2ξnωnq̇n(t) + ω2
nqn(t) =

Fn(t)
Mn

(5)

where ωn, ξn, Fn(t) and Mn are the modal frequency, the damping ratio, the generalized force

and the modal mass of the nth mode, respectively, and

Fn (t) =
Nv

∑
k=1
{(m1 +m2) gϕn (xk) −m2

∞
∑
i=1
q̈i (t)ϕi (xk)ϕn (xk) + [k1Zk(t) + c1Żk(t)]ϕn (xk)

−
∞
∑
i=1
[k1qi(t) + c1q̇i(t)]ϕi(xk)ϕn(xk)} ⋅ [H(t − tk) −H(t − tk −∆t)]

(6)

Mn = ∫
2l

0
mϕ2

n
(x)dx (7)

Subsequently, substituting Eq. (6) into Eq. (5), the motion equation of the two-span

continuous beam can be written as
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q̈n(t) +
m2

Mn

Nv

∑
k=1

∞
∑
i=1
q̈i (t)ΦinkH̃k + 2ξnωnq̇n(t) +

c1
Mn

Nv

∑
k=1

∞
∑
i=1
q̇i (t)ΦinkH̃k

+ ω2
nqn(t) +

k1
Mn

Nv

∑
k=1

∞
∑
i=1
qi (t)ΦinkH̃k −

k1
Mn

Nv

∑
k=1

Zk(t)ΦnkH̃k −
c1
Mn

Nv

∑
k=1

Żk(t)ΦnkH̃k

= (m1 +m2) g
Mn

Nv

∑
k=1

ΦnkH̃k

(8)

where Φink = ϕi (xk)ϕn (xk), Φnk = ϕn (xk) and H̃k = [H (t − tk) −H (t − tk −∆t)].
Then substituting Eq. (4) into Eq. (1), the motion equation of the sprung mass m1 can

be written as

m1Z̈k(t) + c1Żk(t) + k1Zk(t) −
∞
∑
i=1
[c1q̇i (t) + k1qi (t)]ϕi (xk) = 0 (9)

2.4 Natural frequency and mode shape functions

The mode shape of the two-span continuous beam can be divided into two groups, which are

symmetrical and asymmetrical, respectively [12]. The circular frequency can be identified as

ωi = λ2i

√
EI

m
=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

( i+1
2l
π)2
√

EI
m

i = 1, 3, 5, 7,⋯

(0.25+i/2
l

π)
2√

EI
m

i = 2, 4, 6, 8,⋯
(10)

When i=1,3,5. . . and x ∈ [0,2l], the mode shape is expressed as

ϕi(x) = sin(λix) (11)

When i=2,4,6. . . and x ∈ [0, l],

ϕi(x) =
sin(λix)
sin(λil)

− sinh(λix)
sinh(λil)

(12)

When i=2,4,6. . . and x ∈ [l,2l],

ϕi(x) = cos(λix − λil) − cosh(λix − λil) − [sin(λix − λil) − sinh(λix − λil)] ⋅ cot(λil) (13)

3 SOLUTION

After obtaining the natural frequencies and mode shape functions of the two-span continuous

beam, suppose that Nb modes are used in this paper. Combining Eq. (8) and (9), the equations

of motion in modal space are given in matrix form as
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MÜ +CU̇ +KU = F (14)

where M, C, K are the mass, damping and stiffness matrices; Ü , U̇ , U the vectors of accelera-

tions, velocities and displacement respectively; and F the vector of external forces. So U and

F are the (Nb +Nv) × 1 dimensional vectors,

U = [ q1 q2 ⋯ qNb
Z1 Z2 ⋯ ZNv

]′ (15a)

F = [ ρ1ψ1 ρ2ψ2 ⋯ ρNb
ψNb

0 0 ⋯ 0 ]′ (15b)

where ρn = (m1+m2)g
Mn

and ψn =
Nv

∑
k=1

ΦnkH̃k.

Especially, M, C, K can be assembled with four matrices.

M = [ Mbb Mbv

Mvb Mvv
] , (16a)

C = [ Cbb Cbv

Cvb Cvv
] , and (16b)

K = [ Kbb Kbv

Kvb Kvv
] . (16c)

For mass matrix M,

Mbb =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 +∆1Θ11 ∆1Θ21 ⋯ ∆1ΘNb1

∆2Θ12 1 +∆2Θ22 ⋯ ∆2ΘNb2

⋯ ⋯ ⋱ ⋯
∆Nb

Θ1Nb
∆Nb

Θ2Nb
⋯ 1 +∆Nb

ΘNbNb

⎤⎥⎥⎥⎥⎥⎥⎥⎦Nb×Nb

, (17a)

Mvv =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

m1

m1

⋱
m1

⎤⎥⎥⎥⎥⎥⎥⎥⎦Nv×Nv

, (17b)

Mbv = 0, (17c)

Mvb = 0. (17d)

For damping matrix C,

Cbb =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

2ξ1ω1 + Γ1Θ11 Γ1Θ21 ⋯ Γ1ΘNb1

Γ2Θ12 2ξ2ω2 + Γ2Θ22 ⋯ Γ2ΘNb2

⋯ ⋯ ⋱ ⋯
ΓNb

Θ1Nb
ΓNb

Θ2Nb
⋯ 2ξNb

ωNb
+ ΓNb

ΘNbNb

⎤⎥⎥⎥⎥⎥⎥⎥⎦Nb×Nb

, (18a)
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Cvv =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

c1
c1
⋱

c1

⎤⎥⎥⎥⎥⎥⎥⎥⎦Nv×Nv

, (18b)

Cbv =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−Γ1Ψ11 −Γ1Ψ12 ⋯ −Γ1Ψ1Nv

−Γ2Ψ21 −Γ2Ψ22 ⋯ −Γ2Ψ2Nv

⋯ ⋯ ⋱ ⋯
−ΓNb

ΨNb1 −ΓNb
ΨNb2 ⋯ −ΓNb

ΨNbNv

⎤⎥⎥⎥⎥⎥⎥⎥⎦Nb×Nv

, (18c)

Cvb =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−c1Φ11 −c1Φ21 ⋯ −c1ΦNb1

−c1Φ12 −c1Φ22 ⋯ −c1ΦNb2

⋯ ⋯ ⋱ ⋯
−c1Φ1Nv

−c1Φ2Nv
⋯ −c1ΦNbNv

⎤⎥⎥⎥⎥⎥⎥⎥⎦Nv×Nb

. (18d)

For stiffness matrix K,

Kbb =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ω2
1 +Λ1Θ11 Λ1Θ21 ⋯ Λ1ΘNb1

Λ2Θ12 ω2
2 +Λ2Θ22 ⋯ Λ2ΘNb2

⋯ ⋯ ⋱ ⋯
ΛNb

Θ1Nb
ΛNb

Θ2Nb
⋯ ω2

Nb
+ΛNb

ΘNbNb

⎤⎥⎥⎥⎥⎥⎥⎥⎦Nb×Nb

, (19a)

Kvv =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

k1
k1
⋱

k1

⎤⎥⎥⎥⎥⎥⎥⎥⎦Nv×Nv

, (19b)

Kbv =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−Λ1Ψ11 −Λ1Ψ12 ⋯ −Λ1Ψ1Nv

−Λ2Ψ21 −Λ2Ψ22 ⋯ −Λ2Ψ2Nv

⋯ ⋯ ⋱ ⋯
−ΛNb

ΨNb1 −ΛNb
ΨNb2 ⋯ −ΛNb

ΨNbNv

⎤⎥⎥⎥⎥⎥⎥⎥⎦Nb×Nv

, (19c)

Kvb =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−k1Φ11 −k1Φ21 ⋯ −k1ΦNb1

−k1Φ12 −k1Φ22 ⋯ −k1ΦNb2

⋯ ⋯ ⋱ ⋯
−k1Φ1Nv

−k1Φ2Nv
⋯ −k1ΦNbNv

⎤⎥⎥⎥⎥⎥⎥⎥⎦Nv×Nb

. (19d)

where ∆n = m2

Mn
, Γn = c1

Mn
, Λn = k1

Mn
, Θin =

Nv

∑
k=1

ΦinkH̃k, Ψnk = ΦnkH̃k.

To obtain simultaneously the dynamic responses of the two-span continuous beam, the

equations of motion as given in Eq. (14) will be solved in a step-by-step integration method

using the Newmark-β method [11, 13]. The integration scheme of Newmark-β method consists

of the following equations:

{Ü}
t+∆t

= a0 ({U}t+∆t − {U}t) − a2 {U̇}t − a3 {Ü}t (20)
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{U̇}
t+∆t

= {U̇}
t
+ a6 {Ü}t + a7 {Ü}t+∆t

(21)

where the coefficients are

α0 =
1

β∆t2
, α1 =

γ

β∆t
, α2 =

1

β∆t
, α3 =

1

2β
− 1,

α4 =
γ

β
− 1, α5 =

∆t

2
(γ
β
− 2), α6 =∆t(1 − γ), α7 = γ∆t. (22)

In this study, β=1/4 and γ=1/2 are selected, which implies a constant acceleration with

unconditional numerical stability.

4 NUMERICAL INVESTIGATION

 

 

 

 

 

 

(a) CRH high speed train
 

 

 

 

(b) Axle arrangements of CRH high speed train model

Figure 2 CRH high speed train and axle arrangements.

Consider a two-span continuous beam with l=20m, EI=2.5×1010 Nm2, m=3.4088×104
kg/m, ξ=0.025. CRH (China Railway High-speed) high speed train consisting of eight cars,

as shown in Figure 2(a), is used as the external moving trains acting on the beam. Figure

2(b) shows the axle arrangements of CRH high speed train model, with the full length of

each car dv=25m, the rated distance between the two bogies of a car dc=17.5m, and the fixed

distance between the two wheel-axles of a bogie dw=2.5m. Each wheel assembly is modelled as

an equivalent 2DOF system with a sprung mass m1=9500kg, an unsprung mass m2=3300kg,

a spring with stiffness k1=2.5×105 N/m and a dashpot with damping coefficient c1=4.5×104
Ns/m. The properties of the two-span continuous beam and the moving CRH high speed train

model are also listed in Table 1 and 2.
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Table 1 Properties of the two-span continuous beam.

l(m) EI (Nm2) m(kg/m) ξ ω1 (rad/s) ω2 (rad/s)

20 2.5×1010 3.4088×104 0.025 21.13 33.02

Table 2 Properties of the moving CRH high speed train model.

Nv dv(m) dc(m) dw(m) m1(kg) m2(kg) k1(N/m) c1(Ns/m)

4×8 25 17.5 2.5 9500 3300 2.5×105 4.5×104

Figure 1 shows a two-span continuous beam with each span length l subjected to a series

of mass-spring-damper systems at constant speed v and Figure 2 shows the moving CRH

high speed train model. To compute the dynamic response of the two-span continuous beam

under moving trains, the number of modes of the beam should be considered first. In order to

verify that a sufficient number of modes has been used in the analysis, we first compute the

displacement response at the midpoint of each span of the two-span continuous beam under

the CRH high speed train at 250km/h using either 2, 4, or 6 modes. From the convergent

verification of computed results in Figure 3, the first 6 modes are sufficient to compute the

displacement response of the two-span continuous beam under moving trains. For this reason,

the same number of modes will be considered in the following examples.
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(b) 2nd span

Figure 3 Test of convergence.

4.1 Effect of moving trains velocities

To compare the resonance characteristics of simple supported beam with the two-span contin-

uous beam, a simple supported beam was chosen with span length l=20m, EI=2.5×1010 Nm2,
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m=3.4088×104 kg/m, ξ=0.025. Then the displacement responses of the two beams under mov-

ing CRH high speed trains were computed. For different moving trains velocities from 5km/h

to 600km/h, the max displacement solved for the midpoint of each span of the continuous

beam and the simple supported beam has been plotted against the moving trains velocities in

Figure 4.
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 Figure 4 Max displacement for the midpoint of the two beams vs moving trains velocities.

As one can see, for the two-span continuous beam, there exist two resonant peaks for the

max displacement response curves of the 1st and 2nd span of the continuous beam. As shown

in Figure 4, the two critical velocities of the two-span continuous beam are about 300km/h

and 465km/h respectively. To illustrate the resonant phenomena of the two-span continuous

beam subjected to the trains traveling at velocities of 300km/h and 465km/h, the time history

responses of the midpoint displacement of the beam have been plotted in Figure 5. Both

the displacement responses of the 1st and 2nd span are built up continuously as there are

more moving loads passing through the beam. This is so called resonance phenomenon for

train-induced response of railway bridges [15].

As one can see, for simple-supported beam, there exists only one resonant peak for the

max displacement response curves. As shown in Figure 4, the critical velocity of the simple

supported beam is about 300km/h. So when the moving high speed trains is certain, the first

critical velocity of the two-span continuous beam is the same with the simple supported beam.

But at that resonance condition the max displacement of the simple supported beam is much

larger than the two-span continuous beam.

Besides, for the two-span continuous beam, it is observed that the max displacement at

both resonant speeds for the second span is larger than that of the first span. These conclusions

are consistent with the previous literature [18]. This can be attributed to the uplift action by

the last moving vehicle from the first span and entance into the second span. For this reason,
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(b) 2nd span

Figure 5 Resonant response of midpoint displacement of 1st and 2nd span.

only the dynamic response of the second span will be considered in the subsequent research.

Resonance is produced by the periodic repetition of moving high speed trains circulating

along the bridge. It can be deduced from Figure 2 that the most important characteristic

length related to the appearance of resonance must be the length of the vehicle, which has

been validated by Museros P. [9]. For moving trains traveling on the beam, the resonant

condition of the beam can be derived as follows [13, 14]:

vbrn =
3.6 ⋅ fbn ⋅ d

i
, (n = 1,2,3⋯; i = 1,2,3,⋯) (23)

where vbrn is the resonant moving trains velocity (km/h); fbn is the nth natural frequency of

the beam (Hz); d is the characteristic length of the moving high speed trains (m); i represents

the number of complete oscillation cycles for the nth mode of the beam to vibrate during the

passage of two adjacent loads [10, 19].

For the two-span continuous beam, the exact natural frequencies corresponding to the

first and second modes are 21.13rad/s and 33.02rad/s respectively listed in Table 1, and the

characteristic length is taken as the load interval which is approximately 25m. So the first and

second resonant moving trains speeds for resonant conditions estimated by Eq. (23) are

vbr1 =
3.6 ⋅ fb1 ⋅ d

i
= 3.6 × 21.13 × 25

1 × 2 × π
= 302.67km/h

vbr2 =
3.6 ⋅ fb2 ⋅ d

i
= 3.6 × 33.02 × 25

1 × 2 × π
= 472.98km/h

For the simple supported beam, the first natural frequency is 21.13rad/s also. So the

moving trains speeds for resonant conditions estimated by Eq. (23) is
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vbr1 =
3.6 ⋅ fb1 ⋅ d

i
= 3.6 × 21.13 × 25

1 × 2 × π
= 302.67km/h

The resonant moving loads speeds estimated by Eq. (23) are in good accordance with

the critical moving loads speeds from the simulated results, as shown in Figure 4. So for the

simple supported beam it is evident that the resonant peak is mainly due to coincidence of the

excitation frequencies implied by the moving trains at different speeds with the first frequency

of the beam. But for the two-span continuous beam, the two resonant peaks are mainly with

the first and second frequencies of the beam.

4.2 Effect of damping ratios

Theoretically, the structural damping is difficult to determine. Generally, the range of damping

ratios is between 0.01 and 0.06. The damping ratio of the two-span continuous beam has been

chosen as 0.01, 0.02, 0.04 and 0.06 to study the effect of damping on the dynamic response of

the beam. The moving trains velocity is also from 5km/h to 600km/h, the max displacement

solved for the midpoint of the beam has been plotted against the moving trains velocities in

Figure 6.
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Figure 6 Max displacement of the beam with different damping ratios vs moving trains velocities.

As shown in Figure 6, it is proved that the damping ratio of the two-span continuous

beam has little impact on the maximum deflection of the midpoint of the beam when moving

trains travel except at the critical velocities. But in resonance condition, the damping of the

beam can suppress the vibration of the beam obviously, and with the increase of the damping

ratio the max deflection of the beam decreases rapidly. When the damping ratio ξ is 0.01,

0.02, 0.04 and 0.06 respectively, the critical velocities of the two-span continuous beam are

approximate, as 300km/h and 465km/h. So damping ratio does not affect the critical velocity
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of the continuous beam, and it only affects the max deflection of the beam. Taking into the

effect of the damping ratios on the continuous beam resonance is little, in the following research

the damping ratio ξ=0.025 is still used.

4.3 Effect of span length

In order to study the effect of different span length on the dynamic responses of the two-span

continuous beam, the dynamic impact factor of the midpoint of the beam is taken as index.

The dynamic impact factor for the displacement of the two-span continuous beam subjected

to the moving trains is defined as [15]

I = yd(x) − ys(x)
ys(x)

(24)

where yd(x ) and ys(x ) denote the max dynamic and static displacement of the two-span con-

tinuous beam at position x due to the action of moving trains respectively. In this paper, when

the high speed trains move at a much lower velocity, such as 0.36km/h, then the displacement

of the beam was taken as the static displacement.

As we all know, with different span lengths, the section stiffness and the unit-length mass

should be changed. But in this paper, to study the effect of span length to the resonance

conditions in theoretically only, the other parameter values of the beam are supposed to be

the same with section 4.1. The span length of the continuous beam is chosen from 10m to

30m and the moving trains velocity is from 5km/h to 600km/h also. The dynamic impact

factor solved for the midpoint of the beam has been plotted against the span lengths and the

velocities in Figure 7(a), with its contour lines given in Figure 7(b).

 

 

 

 

 (a) I-L-v

 

50 100 150 200 250 300 350 400 450 500 550 600
10

12

14

16

18

20

22

24

26

28

30

Velocity/(km/h)

S
pa

n 
le

ng
ht

/(
m

)

0.98

0.98

0.98

0.98

0.98

0.98

0.98

0.982.56

2.56

2.56

2.56

2.56

2.56

2.56

2.56

2.56

3.62

3.62

3.62

3.62

5.22

5.225.22

5.22
6.78

6.
78

6.78

 

 

 

 

(b) Contour lines

Figure 7 Effects of span lengths and velocities on the dynamic impact factor of the midpoint of the beam.

As one can see from Figure 7(a) and 7(b), two resonance bands were excited for the two-

span continuous beam under moving trains. With the decrease of span length, the resonance
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bands of the two-span continuous beam moves shift to higher moving trains velocities areas,

and at the same time the vibration intensified strongly. When the span length is certain, there

are two critical velocities, under which the dynamic impact factor of the beam is large, and

the resonance occurred. So to suppress the vibration of the two-span continuous beam under

moving high speed trains, the two resonances should be considered together.

5 CONCLUSIONS

In this paper according to the vibration differential equation of two-span continuous beam

under moving trains, the resonance characteristics of the beam is investigated. Then the

influences of moving load velocities, damping ratios and span lengths of the beam to the

vibration of the two-span continuous beam were studied in detail. On the base of the study,

the following conclusions can be drawn:

1. The two-span continuous beam has two critical velocities causing the resonance response,

which is different from simple supported beam. These two resonances are mainly due

to the coincidence of the excitation frequencies implied by the moving trains at different

speeds with the first and second natural frequency of the continuous beam.

2. The damping ratios of the two-span continuous beam has great impact on the maximum

deflection merely on the conditions of moving trains at the critical velocity, otherwise, it

has little effect on suppressing the vibration of the beam. On the resonance condition,

the bigger damping ratios lead to the smaller deflection.

3. The two-span continuous beam has two resonance bands. So to control the vibration

of the two-span continuous beam, the two resonance should be considered together.

From resonance view, the results are useful for suppressing the vibration of the two-span

continuous beam under moving high speed trains.

Acknowledgment The author would like to thank Prof. Jenn-Shin Hwang of National Tai-

wan University of Science and Technology (NTUST) for the convenient studying environ-

ment when he statyed in NTUST. The research reported herein is supported by Natural Sci-

ence Foundation of China (50578010, 50978024), National Postdoctoral Foundation of China

(20090450289) and Doctoral Disciplinary Special Research Project of Chinese Ministry of Ed-

ucation (20090009120020)

References
[1] Y.S. Cheng, F.T.K. Au, and Y.K. Cheung. Vibration of railway bridges under a moving train by using bridge-track-

vehicle element. Engineering Structures, 23(5):1597–1606, 2001.

[2] Y.S. Cheng, F.T.K. Au, Y.K. Cheung, and D.Y. Zheng. On the separation between moving vehicles and bridge.
Journal of Sound and Vibration, 222(5):781–801, 1999.

Latin American Journal of Solids and Structures 7(2010) 185 – 199



Y. Wang et al / Resonance characteristics of two-span continuous beam under moving high speed trains 199

[3] Y. K. Cheung, F. T. K. Au, D. Y. Zheng, and Y.S. Cheng. Vibration of multi-span non-uniform bridges under moving
vehicles and trains by using modified beam vibration functions. Journal of Sound and Vibration, 228(3):611–628,
1999.
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