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Recent developments of some asymptotic methods and their
applications for nonlinear vibration equations in engineering
problems:A review

Abstract

This review features a survey of some recent developments

in asymptotic techniques and new developments, which are

valid not only for weakly nonlinear equations, but also for

strongly ones. Further, the achieved approximate analytical

solutions are valid for the whole solution domain. The lim-

itations of traditional perturbation methods are illustrated,

various modified perturbation techniques are proposed, and

some mathematical tools such as variational theory, homo-

topy technology, and iteration technique are introduced to

over-come the shortcomings.In this review we have applied

different powerful analytical methods to solve high nonlin-

ear problems in engineering vibrations. Some patterns are

given to illustrate the effectiveness and convenience of the

methodologies.
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1 INTRODUCTION38

Most of engineering problems, especially some oscillation equations are nonlinear, and in most39

cases it is difficult to solve such equations, especially analytically. Recently, nonlinear oscillator40

models have been widely considered in physics and engineering. It is obvious that there are41

many nonlinear equations in the study of different branches of science which do not have42

analytical solutions. Due to the limitation of existing exact solutions, many analytical and43

numerical approaches have been investigated. Therefore, these nonlinear equations must be44

solved using other methods. Many researchers have been working on various analytical methods45

for solving nonlinear oscillation systems in the last decades. Perturbation technique is one the46

well- known methods [3, 11, 34, 37, 39, 85], the traditional perturbation method contains47

many shortcomings. They are not useful for strongly nonlinear equations, so for overcoming48

the shortcomings, many new techniques have been appeared in open literatures.49

It should be mentioned that several books appeared on the subject of mathematical meth-50

ods in engineering problem during the past decade [10, 48, 54, 77, 113, 125, 133, 137, 144–51

146, 180, 186, 187].52

The aim of this article is to review the recent research on the approximate analytical53

methods for nonlinear vibrations. The applications of these methods have been appeared in54

open literatures in the last three years. There are hundreds of published papers too numerous to55

refer to all of them, but for the purpose of filling the gaps in the present summary, Refs[14, 15,56

28, 30, 36, 40, 47, 55, 66, 75, 76, 83, 88, 89, 94, 142, 166, 170, 173, 178, 192, 193, 210, 217]may57

offer good help in overcoming the inevitable shortcomings in a condensed presentation. To58

show the efficiency and accuracy of the methods some comparisons have done with the results59

obtained by those methods and numerical methods and they are valid for whole domain. Some60

of the ideas first appeared in this review article, and most cited references were published in61

the last three years, revealing the most emerging research fronts. In this review, the basic62

idea of each method is presented then some examples are illustrated and discussed to show the63

application of these methods.64

2 PARAMETERIZED PERTURBATION METHOD (PPM)65

Recently, nonlinear oscillator models have been widely considered in physics and engineering.66

Study of nonlinear problems which are arisen in many areas of physics and also engineering67

is very significant for scientists. Surveys of the literature with numerous references have been68

given by many authors utilizing various analytical methods for solving nonlinear oscillation69

systems. Non-linear problems continue to be as a challenge, and heed has mainly concentrated70

on qualitative changes of systems bifurcations and instability. Parameterized Perturbation71

Method (PPM) is one of the well-known methods for solving nonlinear vibration equations.72

The method was proposed in by He in 1999 [80].It was rarely used recently, but this method is73

a kind of powerful tool for treating weakly nonlinear problems, but they are less effective for74

analyzing strongly nonlinear problems [37, 50, 86, 92, 115, 160].75
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2.1 Basic idea of Parameterized Perturbation Method76

For the nonlinear equation L(u) +N(u) = 0, where L and N are general linear and nonlinear77

differential operators respectively, a linear transformation can be introduced as:78

u = εν (2.1)

We can assume that ν can be written as a power series in ε,as following79

ν = ν0 + εν1 + ε2ν2 + ..., (2.2)

And80

ν = lim
ε→1

ν = ν0 + ν1 + ν2 + ν3 + ... (2.3)

2.2 Application of Parameterized Perturbation Method81

Two examples have considered showing the applicability of this method.82

83

Example 184

Consider the following Duffing equation:85

ü + αu + βu3 = 0, u(0) = A, u̇(0) = 0 (2.4)

We let u = εν in Eq. (2.4) and obtain86

ν̈ + αν + ε2βν3 = 0, ν(0) = A/ε , ν̇(0) = 0 (2.5)

Supposing that the solution of Eq. (2.5)and ω2can be expressed in the form87

ν = ν0 + ε2ν1 + ε4ν2 + ε6ν3 (2.6)

α = ω2 + ε2ω1 + ε4ω2 + ε6ω3 (2.7)

Substituting Eqs. (2.6) and (2.7) into Eq. (2.5) and equating coefficients of like powers of88

ε yields the following equations89

ν̈0 + ω2ν0 = 0, ν0(0) = A/ε , ν̇0(0) = 0, (2.8)
90

ν̈1 + ω2ν1 + ω1ν0 + βν30 = 0 , ν1(0) = 0 , ν̇1(0) = 0 (2.9)

Solving Eq. (2.8) results in91

ν0 =
A

ε
cosω t (2.10)

Equation (2.9), therefore, can be re-written down as92
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ν̈1 + ω2ν1 + (ω1 +
3βA2

4ε2
) A
ε
cos (ω t) + βA3

4ε3
cos (3ω t) = 0. (2.11)

Avoiding the presence of a secular terms needs:93

ω1 = −
3βA2

4ε2
(2.12)

Substituting Eq. (2.12) into Eq. (2.7)94

ωPPM =
√

α + 3

4
βA2 (2.13)

Solving Eq. (2.11), gives:95

ν1 = −
A3β

32ω2ε3
(cos (ω t) − cos (3ω t)) (2.14)

Its first-order approximation is sufficient, and then we have:96

u = εν = ε(ν0 + ε2ν1) = A cos (ω t) − A3β

32ω2ε3
[cos (ω t) − cos (3ω t)] (2.15)

The exact frequency of this problem is:97

ωExact = 2π/4
√
2 ∫

π/2

0

dt√
βA2cos2(t)+βA2+2α

(2.16)

Table 2.1 Comparison of the approximate frequencies with the exact period.

A α β Present Study Exact Error %
(PPM) Solution (ωPPM − ωex) /ωex

0.1 0.5 0.1 0.7076 0.7076 0.0000
0.5 0.1 2 0.6892 0.6800 1.3501
1 2 0.5 1.5411 1.5403 0.0520
2 5 2 3.3166 3.2958 0.6313
5 2 5 9.7852 9.5818 2.1228
10 1 0.5 6.2048 6.0772 2.0994
15 0.5 2 18.3848 17.9866 2.2135
20 5 1 17.4642 17.0977 2.1436
The maximum relative error is less than 2.2135% for this example.

98

Example 299

We consider the following nonlinear oscillator [89];100

(1 + u2) ü + u = 0 , u(0) = A , u̇(0) = 0. (2.17)

We let u = ενin Eq. (2.17) and obtain101
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ν̈ + 1.ν + ε2ν2ν̈ = 0, ν(0) = A

ε
, ν̇(0) = 0. (2.18)

Supposing that the solution of Eq. (2.18)and ω2can be expressed in the form102

ν = ν0 + ε2ν1 + ε4ν2 + ... (2.19)

1 = ω2 + ε2ω1 + ε4ω2 + ... (2.20)

Substituting Eqs. (2.19) and (2.20) into Eq. (2.18) and equating coefficients of like powers103

of ε yields the following equations104

ν̈0 + ω2ν0 = 0, ν0(0) =
A

ε
, ν̇0(0) = 0, (2.21)

105

ν̈1 + ω2ν1 + ω1ν0 + ν20 ν̈0 = 0 , ν1(0) = 0 , ν̇1(0) = 0. (2.22)

Solving Eq. (2.21) results in106

ν0 =
A

ε
cosω t (2.23)

Equation (2.22), therefore, can be re-written down as107

ν′′1 + ω2ν1 +
ω1A

ε
cosω t − ω2A3

ε3
cos3 ω t = 0 (2.24)

Or108

ν′′1 + ω2ν1 + (
ω1A

ε
− 3ω2A3

4ε3
) cos 3ω t = 0. (2.25)

We let109

ω1 =
3ω2A2

4ε2
(2.26)

In Eq. (2.25) so that the secular term can be eliminated. Solving Eq. (2.25) yields;110

ν1 =
A3

32ε3
(cosω t − cos 3ω t) (2.27)

Thus we obtain the first-order approximate solution of the original Eq. (2.17), which reads111

u = ε(ν0 + ε2ν1) = A cosω t − A3

32
(cosω t − cos 3ω t) (2.28)

Substituting Eq. (2.26) into Eq. (2.20) results in112

1 = ω2 + ε2ω1 = ω2 + 3ω2A2

4
(2.29)
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Then we have;113

ωPPM =
1

√
1 + 3

4
A2

(2.30)

Eq. (2.30) gives the same frequency as that resulting from the artificial parameter Linstedt–114

Poincare method [89].115

3 VARIATIONAL ITERATION METHOD (VIM)116

Nonlinear phenomena play a crucial role in applied mechanics and physics. By solving nonlin-117

ear equations we can guide authors to know the described process deeply. But it is difficult for118

us to obtain the exact solution for these problems. In recent decades, there has been great devel-119

opment in the numerical analysis and exact solution for nonlinear partial equations. There are120

many standard methods for solving nonlinear partial differential equations. The variational it-121

eration method was first proposed by He [82]used to obtain an approximate analytical solutions122

for nonlinear problems.In VIM in most cases only one iteration leads to high accuracy of the123

solution and it doesn’t need any linearization or discretization, and large computational work.124

The VIM is useful to obtain exact and approximate solutions of linear and nonlinear differen-125

tial equations [35, 57, 62, 99, 104, 117, 122, 136, 139, 153, 167, 177, 179, 184, 191, 202, 206].We126

have considered three examples to show the implement of the VIM.127

3.1 Basic idea of Variational Iteration Method128

To illustrate its basic concepts of the new technique, we consider following general differential129

equation[82]:130

Lu +Nu = g (x) (3.1)

Where, L is a linear operator, and N a nonlinear operator, g(x) an inhomogeneous or forcing131

term. According to the variational iteration method, we can construct a correct functional as132

follows:133

u(n+1)(t) = un(t) + ∫
t

0
λ{Lun(τ) +Nũn(τ) − g(τ)}dτ (3.2)

Where λ is a general Lagrange multiplier, which can be identified optimally via the varia-134

tional theory, the subscript n denotes the nth approximation, ũn is considered as a restricted135

variation, i.e. ˜ = 0 n δu.136

For linear problems, its exact solution can be obtained by only one iteration step due to137

the fact that the Lagrange multiplier can be exactly identified.138
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3.2 Application of Variational Iteration Method139

Example 1140

The equation of motion of a mass attached to the center of a stretched elastic wire in141

dimensionless is[181]:142

ü + u − ηu√
1 + u2

= 0 , 0 < λ ≤ 1 (3.3)

With initial conditions143

u(0) = A , u̇(0) = 0 (3.4)

Assume that the angular frequency of the system (3.3) is ω, we have the following linearized144

equation:145

ü + ω2u = 0 (3.5)

So we can rewrite Eq. (3.3) in the form146

ü + ω2u + g(u) = 0 (3.6)

Where g(u) = (1 − ω2)u − ηu√
1+u2

147

Applying the variational iteration method, we can construct the following functional equa-148

tion:149

un+1(t) = un(t) + ∫
t

0
λ(ü(τ) + ω2un(τ) − g(τ))dτ (3.7)

Where g̃ is considered as a restricted variation, i.e.,δg̃ = 0.150

Calculating variation with the respect to un and nothing thatδg̃(un) = 0. We have the151

following stationary conditions:152

λ′′ + ω2λ(τ) = 0,
λ(τ) ∣τ=t = 0,
1 − λ′(τ) ∣τ=t = 0.

(3.8)

The Lagrange multiplier, therefore, can be identified as;153

λ = 1

ω
sinω(τ − t) (3.9)

Substituting the identified multiplier into Eq.(3.7) results in the following iteration formula:154

un+1(t) = un(t) +
1

ω
∫

t

0
sinω(τ − t) × (ü(τ) + u(τ) − ηu(τ)√

1+u2(τ)
)dτ (3.10)

Assuming its initial approximate solution has the form155
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u0 = A cos(ω t) (3.11)

And substituting Eq. (3.11) into Eq. (3.3) leads to the following residual:156

R0(t) = −Aω2 cos(ωt) +A cos(ωt) − ( Aη√
1 +A2

+ 1

2

A3ηω2t2

(1 +A2)
+O(t3)) cos(ωt). (3.12)

By the formulation (3.10), we can obtain157

u1(t) = A cos(ωt) + ∫
t

0

1

ω
sinω(τ − t)R0(τ)dτ., (3.13)

In order to ensure that no secular terms appear in u1, resonance must be avoided. To do158

so, the coefficient of cos(ω t)in Eq. (3.12) requires being zero, i.e.,159

ωV IM =

√
1 +A2 −

√
1 +A2η

√
1 +A2

(3.14)

And period of oscillation for this system by variational iteration method is;160

TV IM =
2π
√
1 +A2

√
1 +A2 −

√
1 +A2η

(3.15)

Table 3.1 Comparison of the approximate periods with the exact period[1].

A η T V IM Texact[181] Error %

0.1 0.1 6.621237 6.62168 0.00669

1 0.1 6.517854 6.537508 0.300634

10 0.1 6.314678 6.322938 0.130635

0.1 0.5 8.863794 8.869257 0.061595

1 0.5 7.814722 7.992133 2.21982

10 0.5 6.445572 6.490208 0.687744

0.1 0.75 12.47385 12.49673 0.183088

1 0.75 9.168186 9.625404 4.750118

10 0.75 6.531632 6.602092 1.067237
Table 3.1 shows an excellent agreement of the VIM with the exact one.

161

Example 2162

For the second example, we consider Duffing equation:163

ü + u + εu3 = 0 (3.16)

With initial conditions164
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u(0) = A , u̇(0) = 0 (3.17)

Assume that the angular frequency of the Eq.(3.16) is ω, we have the following linearized165

equation:166

ü + ω2u = 0 (3.18)

So we can rewrite Eq. (3.16) in the form167

ü + ω2u + g(u) = 0 (3.19)

Where g(u) = u + εu3 − ω2u.168

Applying the variational iteration method, we can construct the following functional equa-169

tion:170

un+1(t) = un(t) + ∫
t

0
λ(ü(τ) + ω2un(τ) − g(τ))dτ (3.20)

Where g̃ is considered as a restricted variation, i.e.,δg̃ = 0.171

Calculating variation with the respect to un and nothing that δg̃(un) = 0. We have the172

following stationary conditions:173

λ′′ + ω2λ(τ) = 0,
λ(τ) ∣τ=t = 0,
1 − λ′(τ) ∣τ=t = 0.

(3.21)

The Lagrange multiplier, therefore, can be identified as;174

λ = 1

ω
sinω(τ − t) (3.22)

Substituting the identified multiplier into Eq.(3.20) results in the following iteration for-175

mula:176

un+1(t) = un(t) +
1

ω
∫

t

0
sinω(τ − t) × (ün(τ) + un(τ) + εu3

n(τ))dτ (3.23)

Assuming its initial approximate solution has the form177

u0 = A cos(ω t) (3.24)

And substituting Eq. (3.24) into Eq. (3.16) leads to the following residual:178

R0(t) = (1 − ω2 + 3

4
εA2)A cos (ωt) + 1

4
εA3 cos (3ωt) . (3.25)

By the formulation (3.23), we can obtain179
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u1(t) = A cos(ωt) + ∫
t

0

1

ω
sinω(τ − t)R0(τ)dτ., (3.26)

To avoid secular terms appear in u1,the coefficient of cos (ω t) in Eq. (3.25)requires being180

zero, i.e.181

ωV IM =
√

1 + 3

4
εA2 (3.27)

And period of this system is ;182

TV IM =
2π√

1 + (3/4) εA2
(3.28)

The exact solution is[89]:183

TExact =
4√

1 + εA2
∫

π/2

0

dt√
1 − k sin2 t

(3.29)

Where k = 0.5εA2/ (1 + εA2).184

185

Example 3186

The governing equation of Mathieu-Duffing system which is considered in this study is187

described by the following high-order nonlinear differential equation[45];188

ü + [δ + 2εcos(2t)]u − ϕu3 = 0 (3.30)

Where dots indicate differentiation with respect to the time (t), ε<<1 is a small parameter,ϕ189

is the Parameter of nonlinearity and δ is the transient curve and can be defined as [45];190

δ = ϕu2
0(1 −

2ε

2 + ϕu2
0

). (3.31)

The initial condition considered in this study is defined by [45];191

u(0) = 0.1 , u̇(0) = 0 (3.32)

According to the VIM, we can construct the correction functional of Eq. (3.30) as follows192

u(n+1)(t) = un(t) + ∫
τ

0
λ{ün + [δ + 2εcos(2τ)]un − ϕu3

n}dτ (3.33)

Where λ is General Lagrange multiplier.193

Making the above correction functional stationary, we can obtain following stationary con-194

ditions195
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λ′′(τ) = 0,
λ(τ)τ=t = 0,

1 − λ′(τ) ∣τ=t = 0,
(3.34)

The Lagrange multiplier, can be identified as:196

λ = τ − t (3.35)

Leading to the following iteration formula197

u(n+1)(t) = un(t) + ∫
t

0
(τ − t){ün + [δ + 2εcos(2t)]un − ϕu3

n}dτ (3.36)

If, for example, the initial conditions are u(0) = 0.1 andu̇(0) = 0, we began withu0(t) = 0.1, by198

the above iteration formula (3.33) we have the following approximate solutions199

u1(t) = 0.1 − 0.05ε − 0.05δt2 + 0.05εcos(2t) + 0.0005ϕt2 (3.37)

In the same way, we obtain as u2 (t)follows:200

u2(t) = 0.1 − 0.05ε − 0.05δt2 + 0.05εcos(2t) + 0.0005ϕt2 + 0.1875ε2 − 0.328125 × 10−3ϕε2

+0.2724609375 × 10−5ϕ2ε2 − 0.5625 × 10−5εϕ2 + 0.9461805556 × 10−4εϕ3

+6.696428 × 10−8δ2ϕ2t8 + 1.171875 × 10−7ε2ϕ2t2 + 0.125 × 10−5ϕ2t4 + 3.75 × 10−8t3εϕ3sin(2t)
+0.140625 × 10−4εδϕ2cos(2t) + 8.4375 × 10−8t2εϕ3cos(2t) + 0.1875 × 10−5t2ε2ϕ2cos(2t)

−0.375 × 10−5tε2ϕ2sin(2t) + 0.00025t2ϕεcos(2t) − 0.375 × 10−5εϕ2cos(2t)t2

−2.34375 × 10−7ε2ϕ2cos2(2t)t2 − 0.87890625 × 10−5ϕε2δcos(2t)2 − 0.025t2δεcos(2t)
+0.00028125ϕε2δcos(2t) − 0.000703125ϕεδ2cos(2t) − 0.0005625ϕεδcos(2t)

−0.140625 × 10−4εδϕ2 + 0.05tδεsin(2t) − 0.5 × 10−3tϕεsin(2t) + 0.75 × 10−5εϕ2sin(2t)t
−1.125 × 10−7tεϕ3sin(2t) − 9.375 × 10−9t4εϕ3cos(2t) + 0.5625 × 10−3ϕεδ + 0.70312 × 10−3ϕεδ2

−0.2724609375 × 10−3ϕε2δ − 0.05δε + 0.00075ϕε + 7.03125 × 10−8εϕ3 + 4.6875 × 10−7ε2ϕ2t4

+0.9461805556 × 10−4ϕε3 − 0.5625 × 10−5εϕ2 − 0.46875 × 10−4ϕε2δt4 + 0.000125ϕεδt4

−0.125 × 10−4t6ϕδ2ε + 2.5 × 10−9ϕ3t6 + 0.2724609375 × 10−5ε2ϕ2 − 0.328125 × 10−3ϕε2

+0.1875 × 10−5t4δεϕ2cos(2t) + 2.23214285710−12ϕ4t8 − 7.03125 × 10−8εϕ3cos(2t)
−0.28125 × 10−5ε2ϕ2cos(2t) − 0.75 × 10−3ϕεcos(2t) + 0.375 × 10−3ϕε2cos(2t)

−0.46875 × 10−4ϕε2cos2(2t) − 0.34722222 × 10−5ϕε3cos3(2t) + 0.5625 × 10−5εϕ2cos(2t) + ...
(3.38)

And so on. In the same manner, the rest of the components of the iteration formula can201

be obtained.202

Figures 3.1 to 3.3 indicate that the VIM experiences a high accuracy. The figures illustrate203

the time history diagram of the displacement, velocity and phase plan, respectively.204

Latin American Journal of Solids and Structures 1(2012) 1 – 93



Mahmoud Bayat et al / Recent developments of some asymptotic methods and their applications for nonlinear vibration

equations in engineering problems:A review 13

 0 1 2 3 4 5 6 7 8
0.0980

0.0985

0.0990

0.0995

0.1000

u

time

 VIM
RK

Figure 3.1 Comparison of time history diagram of displacements between VIM and RK solutions at
φ = 2,ε = 0.01,u(0) = 0.1,u̇(0) = 0.
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Figure 3.2 Comparison of time history diagram of velocity between VIM and RK solutions atφ = 2,ε =
0.01,u(0) = 0.1,u̇(0) = 0.
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Figure 3.3 Comparison of VIM with RK ,u̇versus uatϕ= 2, ε = 0.01, δ = 0.02
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4 HOMOTOPY PERTURBATION METHOD (HPM)205

Until recently, the application of the homotopy perturbation method in nonlinear problems206

has been devoted by scientists and engineers, because this method is to continuously deform a207

simple problem easy to solve into the difficult problem under study. The homotopy perturba-208

tion method proposed by He in 1999[81]. Elementary introduction and interpretation of the209

method are given in the following publications [5, 9, 24, 27–33, 59, 63, 64, 68, 84, 91, 93, 95,210

96, 98, 101, 102, 123, 148, 168, 174, 176, 208, 218]. HPM can solve a large class of nonlinear211

problems with approximations converging rapidly to accurate solutions. This method is the212

most effective and convenient one for both weakly and strongly nonlinear equations.213

4.1 Basic idea of Homotopy Perturbation Method214

To explain the basic idea of the HPM for solving nonlinear differential equations, one may215

consider the following nonlinear differential equation[81]:216

A (u) − f (r) = 0 r ∈ Ω (4.1)

That is subjected to the following boundary condition:217

B (u, ∂u
∂t
) = 0 r ∈ Γ (4.2)

Where A is a general differential operator, B a boundary operator, f (r) is a known analyt-218

ical function, Γ is the boundary of the solution domain(Ω), and ∂u/∂t denotes differentiation219

along the outwards normal to Γ. Generally, the operator A may be divided into two parts: a220

linear part L and a nonlinear part N. Therefore, Eq. (4.1) may be rewritten as follows:221

L (x) +N (x) − f (r) = 0 r ∈ Ω (4.3)

In cases where the nonlinear Eq. (4.1) includes no small parameter, one may construct the222

following homotopy equation223

H (ν, p) = (1 − p) [L (ν) −L (u0)] + p [A (ν) − f (r) ] = 0 (4.4)

Where224

ν (r, p) ∶ Ω × [0,1]→ R (4.5)

In Eq. (4.4), p ∈ [0 , 1] is an embedding parameter and u0 is the first approximation that225

satisfies the boundary condition. One may assume that solution of Eq. (4.4) may be written226

as a power series in p, as the following:227

ν = ν0 + pν1 + p2ν2 +⋯ (4.6)

The homotopy parameter p is also used to expand the square of the unknown angular228

frequency u as follows:229
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ω0 = ω2 − pω1 − p2ω2 − ... (4.7)

Or230

ω2 = ω0 + pω1 + p2ω2 + ... (4.8)

Where ω0 is the coefficient of u(r) in Eq. (4.1) and should be substituted by the right hand231

side of Eq. (4.8). Besides, ωi (i = 1,2, ...) are arbitrary parameters that have to be determined.232

The best approximations for the solution and the angular frequency ω are233

u = limp→1ν = ν0 + ν1 + ν2 +⋯ (4.9)

ω2 = ω0 + ω1 + ω2 + ... (4.10)

When Eq. (4.4) corresponds to Eq. (4.1) and Eq. (4.9) becomes the approximate solution234

of Eq. (4.1)235

4.2 Application of Homotopy Perturbation Method236

Example 1.237

We consider the mathematical pendulum. When friction is neglected; the differential equa-238

tion governing the free oscillation of the mathematical pendulum is given by[82];239

θ̈ +Ω2 sin θ = 0, θ(0) = A, θ̇(0) = 0 (4.11)

 
Figure 4.1 The simple pendulum

When θ designates the deviation angle from the vertical equilibrium position, Ω2 = g
l
where240

g is the gravitational acceleration, l the length of the pendulum[82].241

In order to apply the homotopy perturbation method to solve the above problem, the242

approximation sin θ ≈ θ − (1/6) θ3 + (1/120) θ5is used243

Now we apply homotopy perturbation to Eq. (4.11). We construct a homotopy in the244

following form:245

H (θ, p) = (1 − p) [θ̈ +Ω2θ] + p [θ̈ +Ω2 (θ − (1/6) θ3 + (1/120) θ5)] = 0 (4.12)
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According to HPM, we assume that the solution of Eq. (4.12) can be expressed in a series246

of p;247

θ(t) = θ0(t) + pθ1(t) + p2θ2(t) + ..... (4.13)

Just the coefficient of θ,(Ω2) expanded into a series in p in a similar way:248

Ω2 = ω2 − pω1 − p2ω2 + ... (4.14)

Substituting Eq.(4.13) and Eq. (4.14) into Eq. (4.12) after some simplification and substi-249

tution and rearranging based on powers of p-terms, we have:250

p0 ∶ θ̈0 + ω2θ0 = 0, θ0(0) = A, θ̇0(0) = 0 (4.15)

p1 ∶ θ̈1 + ω2θ1 = ω1θ + (
Ω2

6
)ω2θ3 − ( Ω

2

120
)ω2θ5, θ1(0) = 0, θ̇1(0) = 0 (4.16)

.

.

.

Considering the initial conditions θ0(0) = Aand θ̇0(0) = 0 the solution of Eq. (4.15) is251

θ0 = A cos ωt Substituting the result into Eq. (4.16), we have:252

p1 ∶ θ̈1 + ω2θ1 = ω1A cos (ωt) + 1

6
ω2A 3 cos3 (ωt) − 1

120
ω2A 5 cos5 (ωt) (4.17)

For achieving the secular term, we use Fourier expansion series as follows:253

Φ(ω, t) = (−1
8
ω2A3 + 1

192
ω2A5 − ω1A) cos(ω t) − 1

24
ω2A3cos(3ω t)

+ 1
1920

ω2A5cos(5ω t) + 1
384

ω2A5cos(3ω t)

=
∞
∑
n=0

b2n+1 cos [(2n + 1)ωt]

= b1 cos(ωt) + b3 cos(3ωt) + ...

(4.18)

Substituting Eq. (4.18) into right hand of Eq. (4.17) yields:254

p1 ∶ θ̈1+ω2θ1 = [−(1/8)ω2A3 + (1/192)ω2A5 − ω1A] cos(ω t) +
∞
∑
n=0

b2n+1 cos [(2n + 1)ωt] (4.19)

Avoiding secular term, gives:255

Latin American Journal of Solids and Structures 1(2012) 1 – 93



Mahmoud Bayat et al / Recent developments of some asymptotic methods and their applications for nonlinear vibration

equations in engineering problems:A review 17

ω1 = −
1

192
ω2A2(−24 +A2) (4.20)

From Eq. (4.14) and settingp = 1, we have:256

Ω2 = ω2 − ω1 (4.21)

Comparing Eqs. (4.20) and (4.21), we can obtain:257

ω = Ω
√

1 − 1

8
A2 + 1

192
A4 (4.22)

The exact frequency of this problem is:258

ωExact = 2π/2
√
2 ∫

π/2

0

A sin2(t)dt
Ω
√
cos (A cos(t)) − cos(A)

(4.23)

Table 4.1 Comparison of the approximate frequencies with the exact period.

A Ω Present Study Exact Error %
(HPM) Solution (ωHPM − ωex) /ωex

0.1 2 1.99875 1.99875 0.0000
0.2 3 2.992503 2.992502 0.0001
0.5 4 3.937665 3.937579 0.0022
0.8 2 1.920555 1.92025 0.0159
1 1 0.938194 0.937792 0.0429
1.2 2 1.822965 1.821145 0.0999
1.5 1 0.863202 0.860608 0.3013
1.8 0.5 0.403012 0.399787 0.8066
2 1 0.763763 0.7525 1.4968

259

Example 2260

The motion of a particle on a rotating parabola is considered for second example. The261

governing equation of motion and can be expressed as;262

ü + auu̇2 + auü + α1u + α2u
3 + α3u

5 = 0, u(0) = A, u̇(0) = 0 (4.24)

Now we apply homotopy-perturbation to Eq(4.24).We construct a homotopy in the follow-263

ing form:264

H (u, p) = (1 − p) [ü + α1u] + p [ü + auu̇2 + auü + α1u + α2u
3 + α3u

5] = 0 (4.25)

According to HPM, we assume that the solution of (4.25) can be expressed in a series of p265

u(t) = u0(t) + pu1(t) + p2u2(t) + ..... (4.26)
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The coefficient α1 expanded into a series in p in a similar way.266

α1 = ω2 − pω1 − p2ω2 + ... (4.27)

Substituting (4.26) and (4.27) into (4.25) after some simplification and substitution and267

rearranging based on powers of p-terms, we have:268

p0 = ü0 + ω2u0 = 0, u0(0) = A, u̇0(0) = 0 (4.28)

And,269

p1 = ü1 + ω2u1 = ω1u0 − au0u̇
2
0 − au0ü0 − α2u

3
0 − α3u

5
0, u1(0) = 0, u̇ (0) = 0 (4.29)

Considering the initial conditions u0(0) = A and u̇0(0) = 0 the solution of Eq. (4.28) is270

u0 = A cos (ωt) Substituting the result into Eq. (4.29), we have:271

p1 = ü1 + ω2u1 = ω1A cos(ωt) − aω2A3 cos(ωt) sin2(ωt) − aω2A3 cos3(ωt)
− α2A

3 cos3(ωt) − α3A
5 cos5(ωt) (4.30)

No secular term in p1 requires that272

ω1 = −
1

8
A2 (−4aω2 + 6α2 + 5α3A

2) (4.31)

Substituting (4.31) in to Eq (4.27) and setting p = 1, we can obtain the frequency of the273

nonlinear oscillator as follows:274

ωHPM =
1

2

√
(2 +A2a) (8α1 + 5A4α3 + 6α2A2)

(2 +A2a)
(4.32)

Table 4.2 shows the high accuracy of the Homotopy Perturbation Method with the Runge-275

Kutta Method.276

277

Example 3278

In this section, we will consider the system with linear and nonlinear springs in series as it279

is shown in Fig. 4.2.280

In this figure, k1 is the stiffness coefficient of the first linear spring , the coefficients asso-281

ciated with the linear and nonlinear portions of spring force in the second spring with cubic282

nonlinear characteristic are described by k2 and k3, respectively. Let ε be defined as:283

ε = k2/k3 (4.33)

The case of k3 > 0 corresponds to a hardening spring while k3 < 0 indicates a softening284

one.285
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Table 4.2 Comparison of HPM solution and Runge-Kutta algorithm.

Case1: A = 0.5, a = 0.2, Case2: A = 1, a = 0.5, α1 = 1,
α1 = 2, α3 = 0.5 α2 = 0.5, α3 = 0.2

t HPM Runge -Kutta t HPM Runge -Kutta
u(t) u(t) u(t) u(t)

0 0.4 0.4 0 1 1
0.5 0.299437 0.299766 0.5 0.860691 0.853713
1 0.049196 0.049299 1 0.469752 0.457651
1.5 -0.225475 -0.225875 1.5 -0.080103 -0.072308
2 -0.387780 -0.387848 2 -0.600724 -0.581112
2.5 -0.355266 -0.355443 2.5 -0.927124 -0.919896
3 -0.144634 -0.144902 3 -0.988938 -0.989543
3.5 0.137916 0.138260 3.5 -0.774269 -0.769674
4 0.351899 0.352131 4 -0.325557 -0.324619
4.5 0.389486 0.389524 4.5 0.237755 0.215412
5 0.231375 0.231700 5 0.715872 0.692419
5.5 -0.042066 -0.042245 5.5 0.972568 0.966842
6 -0.295018 -0.294619 6 0.955930 0.958391

Let x and y denote the absolute displacements of the connection point of two springs, and286

the mass m, respectively. By introducing two new variables287

u = y − x, r = x. (4.34)

Telli and Kopmaz [185] obtained the following governing equation for υ and r:288

(1 + 3 εη u2)ü + 6 εηuu̇2 + ω2
eu + εω2

eu
3 = 0, (4.35)

r = x = ξ (1 + εu2)u, y = (1 + ξ + ξ εu2)u, (4.36)

Where a prime denotes differentiation with respect to time and289

ξ = k2/k1, η = ξ

1 + ξ
, ω2

0 =
k2

m(1 + ξ)
. (4.37)

Eq. (4.35) is an ordinary differential equation in u. For Eq. (4.35), we consider the290

following initial conditions:291

u(0) = A, u̇(0) = 0 (4.38)

Eq. (4.35) can be rewritten as the following form:292

ü + 1.u = p. [−3 ü ε η u2 − 6 ε η u u̇2 − ω2
0εu

3 − ω2
0u + u] = 0, p ∈ [0,1]. (4.39)

Substituting Eqs. (4.6)and (4.7) into Eq. (4.39) and expanding, we can write the first two293

linear equations as follows:294
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Figure 4.2 Nonlinear free vibration of a system of mass with serial linear and Nonlinear stiffness on a frictionless

contact surface[185]

p0 ∶ ü0 + ω2u0 = 0, u0(0) = A, u̇0(0) = 0 (4.40)

p1 ∶ ü1 + ω2u1 = −3u”
0ηεu

2
0 − 6ηεu0u

′2
0 ω

2
0εu

3
0 + (1 + γ1 − ω2

0)u0, ⋮ (4.41)

Solving Eq. (4.40) gives: u0 = A cosω t. Substituting u0 into Eq. (4.41) , yield:295

p1 u1 + ω2u1 = 9A3ηεω2 cos3 ω t − 6ηεω2A3 cosω t+ (1 + γ1 − ω2
0)A cosω t − ω2

0εA
3 cos3 ω t,⋮

(4.42)

For achieving the secular term, we use Fourier expansion series as follows:296

9A3η εω2 cos3 ω t − 6η εω2A3 cosω t − ω2
0εA

3 cos3 ω t

=
∞
∑
n=0

b2n+1 cos [(2n + 1)ωt]

= b1 cos (ω t) + b3 cos(3ω t) + ...
≈ 3A3ε

4
(η ω2 − ω2

0) cos (ω t) + ... .

(4.43)

Substituting Eq. (4.43) into Eq. (4.42) yields:297

p1 ∶ ü1 + ω2u1 = [
3A2ε

4
(ηω2 − ω2

0) + (1 + γ1 − ω2
0)] ×A cos(ω t) (4.44)

Avoiding secular term, gives:298

γ1 =
3A2ε

4
(ω2

0 − ηω2) + (ω2
0 − 1) (4.45)

From Eq. (4.7) and settingp = 1, we have:299

γ1 = ω − 1 (4.46)

Comparing Eqs. (4.45) and (4.46), we can obtain:300

ωHPM =
3A2ε

4
(ω2

0 − ηω2) + ω2
0 (4.47)

Solving Eq. (4.47), gives:301
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ωHPM =
ω0

√
(4 + 3A2εη) (4 + 3A2ε)

4 + 3A2εη
, (4.48)

Table 4.3 Comparison of error percentages corresponding to various parameters of system

Constant parameters Relative error %
m A ε k1 k2 ωHPM numerical ωHPM−ωnum

ωnum

1 0.5 0.5 50 5 2.220265 2.220231 0.00153
1 0.5 0.5 50 5 3.162277 3.175501 0.41644
1 2 0.5 5 5 1.889822 1.903569 0.72170
1 2 0.5 5 50 2.192645 2.195284 0.12021
3 5 1 8 16 1.612706 1.615107 0.14866
3 5 1 10 5 1.739775 1.749115 0.53398
5 10 2 12 16 1.545360 1.545853 0.03189
2 2 -0.1 10 10 1.434860 1.446389 0.00520
3 4 -0.02 30 10 1.313064 1.318370 0.40247
4 10 -0.008 6 3 0.703731 0.705412 0.23830

Table 4.3 represents the comparisons of angular frequencies for different parameters via302

numerical is presented in Table 1. The maximum relative error between the HPM results and303

numerical results is 0.72170 %.304

5 ITERATION PERTURBATION METHOD (IPM)305

The study of nonlinear oscillators is of interest to many researchers and various methods of306

solution have been proposed. The iteration perturbation method (IPM) is considered to be307

one of the powerful methods which is capable for nonlinear problems, it can converge to an308

accurate solution for smooth nonlinear systems. The iteration perturbation method was first309

proposed by He [87] in 2001 and used to give approximate solutions of the problems of nonlinear310

oscillators. The application of this method is used in [26, 61, 149].311

5.1 Basic idea of Iteration Perturbation Method312

Many researchers have devoted their attention to obtaining approximate solution of nonlinear313

equations in the form:314

ü + u + εf(u, u̇) = 0, (5.1)

Subject to the following initial conditions:315

u(0) = A, u̇(0) = 0 (5.2)

We rewrite Eq. (5.1) in the following form:316

ü + u + εu.g(u, u̇) = 0, (5.3)
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Where g(u, u̇) = f/u.317

We construct an iteration formula for the above equation:318

ün+1 + un+1 + εun+1.g(un, u̇n) = 0, (5.4)

Where we denote by un the n th approximate solution. For nonlinear oscillation,Eq. (5.4) is319

of Mathieu type. We will use the perturbation method to find approximately un+1the technique320

is called iteration perturbation method.321

In order to assess the advantages and the accuracy of the iteration perturbation method322

we will consider the following examples.323

Here, we will introduce a nonlinear oscillator with discontinuity in several different forms:324

d
2

u

dt2
+ h(u) + βsgn(u)u = 0, (5.5)

Or325

d
2

u

dt2
+ h(u) + βu ∣u∣ = 0, (5.6)

With initial conditions326

u(0) = A, du(0)
dt

= 0 (5.7)

In this work, we assume that h(u)is in a polynomial form. The reason for this assumption327

is that the discontinuity equations found in the literature belong to this family. Since there328

are no small parameters in Eq. (5.6) the traditional perturbation methods cannot be applied329

directly. In the following example, we assume a linear form h(u).330

5.2 Application of Iteration Perturbation Method331

Example1332

We let h(u) = αu, in Eq. (5.6).333

We can rewrite Eq. (5.6) in the following form;334

u′′ + α.u + βu ∣u∣ = 0 (5.8)

To apply the Iteration Perturbation Method, the solution is expanded and the series of ε335

is introduced as follows:336

u = u0 +
n

∑
i=0

εiui (5.9)

α = ω2 +
n

∑
i=0

εiai (5.10)
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β =
n

∑
i=0

εidi (5.11)

Substituting Eqs. (5.9), (5.10) and (5.11) into Eq. (5.8) and equating the terms with the337

identical powers of ε, a series of linear equations are obtained. Expanding the first two linear338

terms becomes as follows;339

ε0 ∶ ü0 + ω2u0 = 0 , u0(0) = A , u̇0(0) = 0 (5.12)

ε1 ∶ u′′1 + ω2u1 + a1u0 + d1u0 ∣u0∣ = 0 , u1(0) = 0 , u̇1(0) = 0 (5.13)

Substituting the solution into Eq. (5.12), e.g.u0 = A cos(ω t), the deferential equation for340

u1 becomes;341

u′′1 + ω2u1 + a1A cos(ω t) + d1A cos(ω t) ∣A cos(ω t)∣ = 0 ,
u1(0) = 0, u′1(0) = 0

(5.14)

Note that the following Fourier series expansion is valid.342

∣A cos(ωt)∣ cos(ωt)2n−1 =
∞
∑
k=0

c2k+1 cos((2k + 1)ωt)

= c1 cos(ωt) + c3 cos(3ωt) + ...
(5.15)

Where ci can be determined by Fourier series, for example,343

c1 = 2
π ∫

π
0 ∣cos(ωt)∣

2n
cos(ωt)d(ωt)

= 2
π
(∫

π
2

0 cos(ωt)
2n+1

d(ωt) − ∫
π
0 cos(ωt)2n+1d(ωt))

= 2√
π

Γ(n+1)
Γ(n+3/2)

(5.16)

Eq. (5.16) in Eq. (5.14) gives344

u′′1 + ω2u1 + a1A cos(ωt) + d1A
∞
∑
k=0

c2k+1 cos((2k + 1)ωt) = 0 (5.17)

Avoiding the presence of a secular term requires that345

a1 + d1c1A2 = 0 (5.18)

Also, substituting ε = 1,into Eqs. (5.9) and (5.10) gives:346

α = ω2 + a1 (5.19)
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β = d1 (5.20)

From Eqs. (5.18) ,(5.19)and (5.20), the first-order approximation to the angular frequency347

is:348

ω =
√

α + 8εA

3π
(5.21)

Case 1:349

If α = 1,we have350

ωIPM =
√

1 + 8εA

3π
(5.22)

It is the same as that obtained by the Homotopy perturbation method and the Variational351

method [95, 182].352

Case 2:353

If α = 0,we have354

ωIPM =
√

8εA

3π
(5.23)

The obtained frequency in Eq. (5.23) is valid for the whole solution domain 0 < A <∞.355

356

Example 2357

If h(u) = αu3, in Eq. (5.6) .358

Then we have359

d2u

dt2
+ α.u3 + βu ∣u∣ = 0 (5.24)

To apply the Iteration Perturbation Method, the solution is expanded and the series of ε360

is introduced as follows:361

u = u0 +∑ i = 0nεiui (5.25)

0 = ω2 +
n

∑
i=0

εiai (5.26)

1 =
n

∑
i=0

εidi (5.27)

Substituting Eqs. (5.25),(5.26) and (5.27) into Eq. (5.24) and equating the terms with the362

identical powers of ε, a series of linear equations are obtained. Expanding the first two linear363

terms becomes as follows;364
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ε0 ∶ ü0 + ω2u0 = 0 , u0(0) = A , u̇0(0) = 0 (5.28)

ε1 ∶ u′′1 + ω2u1 + a1u0 + d1αu3
0 + βu0 ∣A cos(ωt)∣ = 0, u1(0) = 0 , u̇1(0) = 0 (5.29)

Substituting the solution into Eq. (5.28), e.g.u0 = A cos(ωt), the deferential equation for365

u1 becomes;366

u′′1 + ω2u1 + a1A cos(ωt) + d1αA3 cos3(ωt)
+βA cos(ωt) ∣A cos(ωt)∣ = 0 (5.30)

We have the following identity;367

cos3(ω t) = 3

4
cos(ω t) + 1

4
cos(3ω t) (5.31)

Note that the following Fourier series expansion is valid.368

∣A cos(ωt)∣2n−1 cos(ωt) =
∞
∑
k=0

c2k+1 cos((2k + 1)ωt)

= c1 cos(ωt) + c3 cos(3ωt) + ...
(5.32)

cican be determined by Fourier series, for example :369

c1 = 2
π ∫

π
0 ∣cos(ωt)∣

2n
cos(ωt)d(ωt)

= 2
π
(∫

π
2

0 cos(ωt)
2n+1

d(ωt) − ∫
π
0 cos(ωt)2n+1d(ωt))

= 2√
π

Γ(n+1)
Γ(n+3/2)

(5.33)

By means of Eqs. (5.31),(5.32) and (5.33) we find that370

u′′1 + ω2u1 + (a1 + d1A2 3
4
)A cos(ωt) + d1A3 1

4
cos(3ωt))

+A2
∞
∑
k=0

c2k+1 cos((2k + 1)ωt) = 0
(5.34)

No secular term in u1requires that371

a1 + d1αA2 3

4
+ βA 8

3π
= 0 (5.35)

Also, substituting ε = 1,into Eqs. (5.26) and (5.27) gives:372

0 = ω2 + a1 + ... (5.36)

1 = d1 (5.37)
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From Eqs. (5.35) ,(5.36)and (5.37), the first-order approximation to the angular frequency373

is:374

ωIPM =
√

3αA2

4
+ 8βA

3π
(5.38)

Case 1:375

If α = β,β = ε we have376

ωIPM =
√

3βA2

4
+ 8εA

3π
(5.39)

This agrees well with that obtained by the Homotopy perturbation method and the Vari-377

ational method [95, 182].378

And its period is given by379

TIPM =
2π

ω
= 2π
√

3βA2

4
+ 8εA

3π

(5.40)

Case 2 :380

If ε = 0, its period can be written as;381

TIPM =
4π√
3
β−

1
2A−1 (5.41)

The exact period was obtained by Acton and Squire in 1985 [2].382

Tex = 7.4164β−
1
2A−1 (5.42)

The maximal relative error is less than 2.2% for allβ > 0!383

6 ENERGY BALANCE METHOD (EBM)384

Nonlinear oscillator models have been widely used in many areas of physics and engineering385

and are of significant importance in mechanical and structural dynamics for the comprehensive386

understanding and accurate prediction of motion. This method was proposed by He [90] in387

2002. This method can be seen as a Ritz method and leads to a very rapid convergence of388

the solution, and can be easily extended to other nonlinear oscillations. In short, this method389

yields extended scope of applicability, simplicity, flexibility in application, and avoidance of390

complicated numerical and analytical integration as compared to others among the previous391

approaches, such as, the perturbation methods, and so could widely applicable in engineering392

and science.Energy balance method used heavily in the literature in [17, 19, 22, 25, 55, 56, 58,393

60, 65–67, 116, 120, 141, 150, 178, 209]and the references therein.394
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6.1 Basic idea of Energy Balance Method395

In the present paper, we consider a general nonlinear oscillator in the form [90]:396

ü + f(u(t)) = 0 (6.1)

In which u and t are generalized dimensionless displacement and time variables, respec-397

tively. Its variational principle can be easily obtained:398

J(u) = ∫
t

0
(−1

2
u̇2 + F (u)) dt (6.2)

Where T = 2π
ω

is period of the nonlinear oscillator, F (u) = ∫ f(u)du.399

Its Hamiltonian, therefore, can be written in the form;400

H = 1

2
u̇2 + F (u) + F (A) (6.3)

Or401

R(t) = −1
2
u̇2 + F (u) − F (A) = 0 (6.4)

Oscillatory systems contain two important physical parameters, i.e. ω is the frequency and402

A is the amplitude of the oscillation. So let us consider such initial conditions:403

u(0) = A, u̇(0) = 0 (6.5)

We use the following trial function to determine the angular frequency ω404

u(t) = A cosω t (6.6)

Substituting (6.6) into u term of (6.4), yield:405

R(t) = 1

2
ω2A2 sin2 ω t + F (A cosω t) − F (A) = 0 (6.7)

If, by chance, the exact solution had been chosen as the trial function, then it would be406

possible to make R zero for all values of t by appropriate choice of ω. Since Eq. (6.6) is only407

an approximation to the exact solution, R cannot be made zero everywhere. Collocation at408

ω t = π
4
gives:409

ω =
√

2(F (A)) − F (A cosω t)
A2 sin2 ω t

(6.8)

Its period can be written in the form:410

T = 2π
√

2(F (A))−F (A cosω t)
A2 sin2 ω t

(6.9)
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6.2 Application of Energy Balance Method411

Example 1412

In this section, we will consider the system with linear and nonlinear springs in series.413

In Eq. (4.35), Its Variational principle can be easily obtained:414

J(u) = ∫
t

0
(−1

2
u̇2 (1 + 3

2
ε η u2) + ω2

0(
1

2
u2 + 1

4
εu4))dt (6.10)

Its Hamiltonian, therefore, can be written in the form:415

H = 1
2
u̇2 (1 + 3

2
ε η u2) + ω2

0(12 u
2 + 1

4
εu4)

= 1
2
ω2
0A

2 + 1
4
ω2
0 εA

4 (6.11)

or416

R(t) = 1
2
u̇2 (1 + 3

2
ε η u2) + ω2

0(12 u
2 + 1

4
εu4)

−1
2
ω2
0A

2 − 1
4
ω2
0 εA

4 = 0 (6.12)

Oscillatory systems contain two important physical parameters, i.e. the frequency ω and417

the amplitude of oscillation, A. So let us consider such initial conditions:418

u(0) = A, u̇(0) = 0 (6.13)

Assume that its initial approximate guess can be expressed as:419

u(t) = A cosωt (6.14)

Substituting Eq. (6.14) into Eq. (6.12), yields:420

R(t) = 1

2
(−Aω sinωt)2(1 + 3

2
ε η (A cosωt)2) + ω2

0(
1

2
(A cosωt)2

+1
4
ε (A cosωt)4) − 1

2
ω2
0A

2 − 1

4
ω2
0 εA

4 = 0
(6.15)

Which trigger the following result:421

ω = ω0

√
2

A sinωt

¿
ÁÁÀ −(1

2
(A cosωt)2 + 1

4
ε (A cosωt)4) + 1

2
A2 + 1

4
εA4

(1 + 3
2
ε η (A cosωt)2)

(6.16)

If we collocate at ωt = π
4
, we obtain:422

ωEBM =
ω0

√
(4 + 3A2εη) (4 + 3A2ε)

4 + 3A2εη
, (6.17)

Its period can be written in the form:423
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Figure 6.1 Comparison between approximate solutions and numerical solutions for m = 1, A = 2, ε = 0.5, k1 =
5, k2 = 5
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Figure 6.2 Comparison between approximate solutions and numerical solutions form = 3, A = 5, ε = 1, k1 =
8, k2 = 16

TEBM =
2π (4 + 3A2εη)

ω0

√
(4 + 3A2εη) (4 + 3A2ε)

(6.18)

To further illustrate and verify the accuracy of this approximate analytical approach, com-424

parison of the time history oscillatory displacement responses for the system with linear and425

nonlinear springs in series with numerical solutions are depicted in Figures 6.1 and 6.2. Figures426

6.1 and 6.2 represent the displacements of u(t)for a mass with different initial conditions and427

spring stiffnesses.428

429

Example 2430

From Hamden [79], it is known that the free vibrations of an autonomous conservative431

oscillator with inertia and static type fifth-order non-linearties is expressed by432
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ẍ + λx + ε1x2ẍ + ε1xẋ2 + ε2x4ẍ + 2ε2x3ẋ2 + ε3x3 + ε4x5 = 0, (6.19)

With the initial conditions:433

x(0) = A ẋ(0) = 0 (6.20)

Motion is assumed to start from the position of maximum displacement with zero initial434

velocity. λ is an integer which may take values of λ = 1,0 or −1, and ε1, ε2, ε3 and ε4 are435

positive parameters.436

The solution of nonlinear equation with the Energy Balance method is:437

ẍ + λx + ε1x2ẍ + ε1x ẋ2 + ε2x4ẍ + 2ε2x3ẋ2 + ε3x3 + ε4x5 = 0, (6.21)

in which x and t are generalized dimensionless displacement and time variables, respectively.438

Its Variational principle can be easily obtained:439

x(0) = A, ẋ(0) = 0 (6.22)

in which xand tare generalized dimensionless displacement and time variables, respectively.440

Its Variational principle can be easily obtained:441

J(x) = ∫
t

0
(−1

2
ẋ2 (1 + ε1x2 + ε2x4) + λ

2
x2 + ε3

4
x4 + ε4

6
x6)dt (6.23)

Its Hamiltonian, therefore, can be written in the form:442

H = 1

2
ẋ2 (1 + ε1x2 + ε2x4) + λ

2
x2 + ε3

4
x4 + ε4

6
x6 = λ

2
A2 + ε3

4
A4 + ε4

6
A6 (6.24)

Or443

R(t) = 1

2
ẋ2 (1 + ε1x2 + ε2x4) + λ

2
x2 + ε3

4
x4 + ε4

6
x6 − λ

2
A2 − ε3

4
A4 − ε4

6
A6 = 0 (6.25)

Oscillatory systems contain two important physical parameters, i.e. the frequency ωand444

the amplitude x(t) = A cosω t of oscillation, A. So let us consider such initial conditions:445

x(0) = A, ẋ(0) = 0 (6.26)

Assume that its initial approximate guess can be expressed as:446

x(t) = A cosωt (6.27)

Substituting Eq. (6.27) into Eq. (6.25) yields:447
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R(t) = 1

2
(−A sinωt)2(1 + ε1(A cosωt)2 + ε2(A cosωt)4) + λ

2
(A cosωt)2 + ε3

4
(A cosωt)4

+ε4
6
(A cosωt)6 − λ

2
A2 − ε3

4
A4 − ε4

6
A6 = 0

(6.28)

Which trigger the following results448

ω =
√
2

A sinωt

¿
ÁÁÁÀ

λ
2
(A2 − (A cosωt)2) + ε3

4
(A4 − (A cosωt)4) + ε4

6
(A6 − (A cosωt)6)

1 + ε1 (A cosωt)2 + ε2 (A cosωt)4
(6.29)

If we collocate at ωt = π
4
, we obtain:449

ωEBM =
√
3

3

√
12λ + 9ε3A2 + 7ε4A4

4 + 2ε1A2 + ε2A4
(6.30)

Substituting Eq. (6.30) into Eq. (6.27) yields:450

x(t) = A cos
⎛
⎝

√
3

3

√
12λ + 9ε3A2 + 7ε4A4

4 + 2ε1A2 + ε2A4
t
⎞
⎠

(6.31)

The numerical solution with Runge-Kutta method for nonlinear equation is:451

ẋ1 = x2 x1(0) = A (6.32)

And452

ẋ2 = −
1

1 + ε1x2
1 + ε2x4

1

(λx1 + ε1x1x
2
2 + 2ε2x3

1x
2
2 + ε3x3

1 + ε4x5
1) , x2(0) = 0 (6.33)

Motion is assumed to start from the position of maximum displacement with zero initial453

velocity. λ Is an integer which may take values of λ = 1,0or−1, and ε1, ε2, ε3and ε4 are positive454

parameters .The values of parameters ε1, ε2, ε3 and ε4associated for a mode is shown in Table455

6.1.456

Table 6.1 Values of dimensionless parameters εi in Eq. (6.31) for a mode

Mode ε1 ε2 ε3 ε4
1 0.326845 0. 129579 0. 232598 0. 087584

2 1.642033 0.913055 0.313561 0.204297

3 4.051486 1.665232 0.281418 0.149677

It can be seen from Figures 6.3-6.4 EBM results have a good agreement with the numerical457

solution for 3 modes.Figures show the motion of the system is a periodic motion and the458

amplitude of vibration is a function of the initial conditions.459
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Figure 6.3 The Comparison between energy balance method solution and the numerical solution (Runge-Kutta
method), with λ=1, A=1 for mode-1.

460

Example 3461

Consider a straight Euler-Bernoulli beam of lengthL, a cross-sectional area A, the mass462

per unit length of the beam m, a moment of inertia I, and a modulus of elasticity E that463

is subjected to an axial force of magnitude P as shown in Fig.6.6. The equation of motion464

including the effects of mid-plane stretching is given by:465

m
∂2w′

∂t′2
+EI

∂4w′

∂x′2
+ P̄ ∂2w′

∂x′2
− EA

2L

∂2w′

∂x′2
∫

L

0
(∂

2w′

∂x′2
)
2

dx′ = 0 (6.34)

For convenience, the following non-dimensional variables are used:466

x = x′/L,w = w′/ρ ,t = t′(EI/ml4)1/2, P = P̄L2/EI (6.35)

Where ρ = (I/A)1/2 is the radius of gyration of the cross-section. As a result Eq. (6.34)467

can be written as follows:468

∂2w

∂t2
+ ∂4w

∂x4
+ P ∂2w

∂x2
− 1

2

∂2w

∂x2 ∫
L

0
(∂

2w

∂x2
)
2

dx = 0 (6.36)

Assuming w(x, t) = V (t)ϕ (x)whereϕ (x)is the first eigenmode of the beam [189] and ap-469

plying the Galerkin method, the equation of motion is obtained as follows:470

d2V (t)
dt2

+ (α1 + Pα2)V (t) + α3 V
3(t) = 0 (6.37)

The Eq. (6.37) is the differential equation of motion governing the non-linear vibration of471

Euler-Bernoulli beams. The center of the beam is subjected to the following initial conditions:472
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Figure 6.4 The comparison between energy balance method solution and the numerical solution (Runge-Kutta
method), with λ=1, A=1 for mode-2.

V (0) = ∆ ,
dV (0)
dt

= 0 (6.38)

Where ∆ denotes the non-dimensional maximum amplitude of oscillation and α1, α2 and473

α3 are as follows:474

α1 = (∫
1

0
(∂

4ϕ(x)
∂x4

) ϕ(x)dx)/∫
1

0
ϕ2(x)dx (6.39a)

α2 = (∫
1

0
(∂

2ϕ(x)
∂x2

) ϕ(x)dx)/∫
1

0
ϕ2(x)dx (6.39b)

α3 =
⎛
⎝
(−1

2
)∫

1

0

⎛
⎝
∂2ϕ(x)
∂x2 ∫

1

0
(∂

2ϕ(x)
∂x2

)
2

dx
⎞
⎠

ϕ(x)dx
⎞
⎠
/∫

1

0
ϕ2(x)dx (6.39c)

Variational formulation of Eq. (6.37) can be readily obtained as follows:475

J(V ) = ∫
t

0
(−1

2

dV (t)
dt

+ 1

2
(α1 + Pα2)V 2(t) + α3 V

4(t)) dt . (6.40)

Its Hamiltonian, therefore, can be written in the form:476

H = −1
2

dV (t)
dt

+ 1

2
(α1 + Pα2)V 2(t) + α3 V

4(t) (6.41)

And477

Ht=0 =
1

2
∆2(α1 + Pα2) +

1

4
α4∆

4 (6.42)
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Figure 6.5 The comparison between energy balance method solution and numerical solution (Runge-Kutta
method), with λ=1, A=1 for mode-3.  

Figure 6.6 A schematic of an Euler-Bernoulli beam subjected to an axial load.

Ht −Ht=0 =
1

2

dV (t)
dt

+ 1

2
(α1 + Pα2)V 2(t) + α3 V

4(t) − 1

2
∆2(α1 + Pα2) −

1

4
α4∆

4 (6.43)

We will use the trial function to determine the angular frequency ω, i.e.478

V (t) = A cosω t (6.44)

If we substitute Eq. (6.46) into Eq. (6.45), it results the following residual equation479

1
2
(−∆ω sin (ωt))2 + 1

2
(α1 + Pα2) (∆ cos (ω t))2 + 1

2
α3 (∆ cos (ωt))4

−1
2
∆2 (α1 + Pα2) − 1

4
α3∆

4 = 0 (6.45)

If we collocate atω t = π
4
we obtain:480

1

4
∆2 ω2 − 1

4
∆2 (α1 + Pα2) −

3

16
α3∆

4 = 0 (6.46)

The non-linear natural frequency and the deflection of the beam center become as follows:481
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ωNL =
√
4 (α1 + Pα2) + 3α3∆2

2
(6.47)

According to Eq. (6.49) and Eq. (6.46), we can obtain the following approximate solution:482

V (t) =∆cos(
√
4 (α1 + Pα2) + 3α3∆2

2
t) (6.48)

Non-linear to linear frequency ratio is:483

ωNL

ωL
= 1

2

√
4 (α1 + pα2) + 3α3∆2

√
α1 + pα2

(6.49)

Table 6.2 shows the comparison of non-linear to linear frequency ratio (ωNL/ωL)

∆ Present Study Exact Pade approximate Pade approximate Error %
(EBM) solution P{4,2}[12] P{6,4}[12] (ωEBM − ωex) /ωex

0.2 1.044031 1.0438823 1.0438824 1.0438823 0.014211
0.4 1.16619 1.1644832 1.1644868 1.1644832 0.146604
0.6 1.345362 1.3397037 1.3397374 1.3397039 0.422385
0.8 1.56205 1.5505542 1.5506741 1.5505555 0.741395
1 1.802776 1.7844191 1.7846838 1.7844228 1.028712
1.5 2.462214 2.4254023 2.4261814 2.4254185 1.517775
2 3.162278 3.1070933 3.1084562 3.1071263 1.776077
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Figure 6.7 Comparison of analytical solution of W (t)based on timewith the exact solution for simply supported
beam, ∆ = 0.6, α1 = 1, α2 = 0, α3 = 3

To show the accuracy of Energy Balance Method (EBM) , comparisons of the time history484

oscillatory displacement response for Euler-Bernoulli beams with exact solutions are presented485

in Figs. 6.7 and 6.8 .486
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Figure 6.8 Comparison of analytical solution of W (t)based on timewith the exact solution for simply supported
beam, ∆ = 1.5, α1 = 1, α2 = 0, α3 = 3

It can be observed that the results of EBM require smaller computational effort and only a487

first-order approximation leads to accurate solutions. The Influence of α3 on nonlinear to linear488

frequency and α1are presented in figures 6.9 and 6.10. It has illustrated that Energy Balance489

Method is a very simple method and quickly convergent and valid for a wide range of vibration490

amplitudes and initial conditions. The accuracy of the results shows that the Energy Balance491

Method can be potentiality used for the analysis of strongly nonlinear oscillation problems492

accurately.493
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Figure 6.9 Influence ofα3 on nonlinear to linear frequency base on ∆ forα1 = 1, α2 = 0.5, p = 2
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Figure 6.10 Influence ofα3 on nonlinear to linear frequency base on ∆ forα2 = 1, α3 = 3, p = 3

7 PARAMETER –EXPANSION METHOD (PEM)494

Various perturbation methods have been applied frequently to analyze nonlinear vibration495

equations. These methods are characterized by expansions of the dependent variables in power496

series in a small parameter, resulting in a collection of linear deferential equations which can497

be solved successively. He proposed the parameter expanding method for the first time in his498

review article [100].The main property of the method is to use parameter-expansion technique499

to eliminate the secular terms and to achieve the frequency. PEM was successfully applied to500

various engineering problems [8, 42, 69, 97, 103, 118, 134, 147, 161, 190, 195–197, 201].501
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7.1 Basic idea of Parameter–Expansion Method502

In order to use the PEM, we rewrite the general form of Duffing equation in the following503

form[100]:504

ü + εu + 1 .N(u, t) = 0. (7.1)

Where N(u, t) includes the nonlinear term. Expanding the solution u,ε as a coefficient of505

u,and 1 as a coefficient of N(u, t), the series of p can be introduced as follows:506

u = u0 + pu1 + p1 u2 + p2 u3 + ... (7.2)

ε = ω2 + pd1 + p1 d2 + p2 d3 + ... (7.3)

1 = pa1 + p1 a2 + p2 a3 + ... (7.4)

Substituting (7.2)-(7.4) into (7.1)and equating the terms with the identical powers of p, we507

have508

p0 ∶ ü0 + ω2 u0 = 0 , (7.5)

p1 ∶ ü1 + ω2 u1 + d1u0 + a1N(u0, t) = 0 ,

⋮ (7.6)

Considering the initial conditions u0(0) = A and u̇0(0) = 0, the solution of (7.5) is u0 =509

A cos(ω t). Substituting u0 into (7.6), we obtain510

p1 ∶ ü1 + ω2 u1 + d1A cos (ω t) + a1N(A cos (ω t), t) = 0 . (7.7)

For achieving the secular term, we use Fourier expansion series as follows:511

N(A cos (ω t), t) =
∞
∑
n=0

b2k+1 cos((2k + 1)ωt) . (7.8)

Substituting (7.8) into(7.7) yields;512

p1 ∶ ü1 + ω2 u1 + (d1A + a1 b1 ) cos (ω t) = 0 . (7.9)

For avoiding secular term, we have513

(d1A + a1 b1 ) = 0 . (7.10)

Setting p = 1 in (7.3)and (7.4) ,we have:514

d1 = ε − ω2A = 0 , (7.11)
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a1 = 1. (7.12)

Substituting (7.11) and (7.12) into (7.10), we will achieve the first-order approximation515

frequency (7.1) .Note that, from (7.4) and (7.12) , we can find that ai = 0 for alli = 1,2,3,4, ...516

7.2 Application of Parameter –Expansion Method517

Example 1518

To illustrate the basic solution procedure, we consider the following nonlinear oscillator:519

ü + αu + β u3 = F0 cos ω t , u(0) = A , u̇(0) = 0. (7.13)

We rewrite it in this form520

ü + α .u + 1.(β u3 − F0 cos ω t) = 0. (7.14)

Assume that the solution can be expressed as a power series in an artificial Parameter to p521

u = u0 + pu1 + p2u2 + ... , (7.15)

Where p is a bookkeeping parameter.522

We assume that the coefficients α and 1 on the left side of Eq.(7.14) can be respectively523

expanded into a series in p:524

α = ω2 + pω1 + p2ω2 + ... , (7.16)

1 = a1p + a2p2 + ... . (7.17)

Substituting Eqs.(7.16) and (7.17) into Eq. (7.14) and equating the terms with the identical525

powers p, we have:526

p0 ∶ ü0 + ω2u0 = 0 , u0(0) = A, u̇0(0) = 0, (7.18)

p1 ∶ ü1 + ω2u1 + ω1u0 + a1β u3
0 − a1F0 cosω t = 0 (7.19)

Solving Eq.(7.18) , we have:527

u0 = A cosω t (7.20)

Substituting the result into Eq. (7.19),we have:528

ü1 + ω2u1 + ω1A cosω t + a1β A3 cos3 ω t − a1.F0 cosω t = 0 (7.21)

We have the following identity529
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cos3(ω t) = 3

4
cos(ω t) + 1

4
cos(3ω t) (7.22)

And530

ü1 + ω2u1 + (ω1A +
3

4
a1βA

3 − a1F0) cosω t + A3

4
cos 3ω t = 0 (7.23)

No secular terms in u1 requires531

ω1A +
3

4
a1βA

3 − a1F0 = 0 . (7.24)

If the first-order approximation is sufficient, then we set p = 1and from (7.16)and (7.17) we532

have:533

α = ω2 + ω1, (7.25)

1 = a1 . (7.26)

From Eqs. (7.24) , (7.25), (7.26) we obtain;534

ω2 =
√

α + 3

4
βA2 − F0

A
(7.27)

If we assume α = ω2
n, β = µ, we have:535

ωPEM =
√

ω2
n +

3

4
µA2 − F0

A
(7.28)

The same result was obtained in [162].536

537

Example 2538

Consider the following nonlinear oscillator[46, 132]:539

ü + u3

1 + u2
= 0 , u(0) = A , u̇(0) = 0 (7.29)

We rewrite it in the form540

ü + 0 . u + 1.üu2 + 1.u3 = 0 . (7.30)

Assume that the solution can be expressed as a power series in an artificial parameter p:541

u=u0+pu1 + p2u2 + ... (7.31)

Where p is a bookkeeping parameter. We assume that the coefficients 0 and 1 on the left542

side of Eq. (7.31) can be respectively expanded into a series in p543
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0=ω2+pω1 + p2ω2 + ... (7.32)

1 = a1p + a2p2 + ... (7.33)

1 = b1p + b2p2 + ... (7.34)

Substituting Eqs. (7.32), (7.33)and (7.34) into Eq. (7.30) and equating the terms with the544

identical powers of p, we have545

p0 ∶ ü0 + ω2u0 = 0, u0(0) = A , u̇0(0) = 0, (7.35)

p1 ∶ ü1 + ω2u1 + ω1u0 + a1u0 + a1ü0u
2
0 + b1u3

0 = 0 , u1(0) = 0 , u̇1(0) = 0, (7.36)

The solution of Eq. (7.35) can be easily obtained546

u0 = A cos ω t (7.37)

Substituting the result into Eq. (7.36), we have:547

p1 ∶ ü1 + ω2u1 + (ω1A +
3

4
b1A

3 − 3

4
a1ω

2A3) cos (ω t) + 1

4
A3 (b1 − a1ω2) cos(3ω t) = 0. (7.38)

Using Fourier series expansion, we have548

No secular terms in u1requires549

ω1A +
3

4
b1A

3 − 3

4
a1ω

2A3 = 0. (7.39)

If the first-order approximation is sufficient, then we set p = 1 and from (7.32)and (7.33)550

we have551

0=ω2+ω1 (7.40)

1 = a1. (7.41)

1 = b1. (7.42)

From Eqs. (7.39),(7.40),(7.41) and (7.42), we have:552

ωPEM =
√

3A2

4 + 3A2
(7.43)

Which agrees well with the exact solution The obtained frequency is valid for all 0 < A <∞.553
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Table 7.1 Comparison of approximate and exact frequencies[73].

A ωPEM ωExact
ωPEM−ωExact

ωExact
× 100

0.05 0.04232 0.04326 2.172908
0.1 0.08439 0.08628 2.190542
0.5 0.38737 0.39736 2.514093
1 0.63678 0.65465 2.729703
5 0.96698 0.97435 0.756402
10 0.99092 0.9934 0.249648

Which has an excellent agreement with the exact one for all 0 < A <∞[132].

8 VARIATIONAL APPROACH (VA)554

The study of nonlinear oscillators is an interest for many researchers, because there are many555

practical engineering components consisting of vibrating systems that can be modeled using556

oscillatory systems. Nonlinear analytical techniques for solving nonlinear problems have been557

dominated by different methods of investigation of these problems which appeared in numerous558

domains of physics and engineering. Overview of the literary texts with multiple mentions559

has been given by many wordsmiths utilizing miscellaneous analytical methods for solving560

nonlinear oscillation systems. Various variational methods have made, and will continue to561

make, an impact in key areas for science and technology development. The method was562

proposed by He in 2007[107]. He suggested a new variational method which is very effective563

for nonlinear oscillators. The application of this method widely used in many scientific papers564

[7, 16, 18, 21, 71, 119, 121, 135, 143, 151, 152, 154, 169, 175, 212].565

8.1 Basic idea of Variational Approach566

He suggested a variational approach which is different from the known variational methods in567

open literature [107]. Hereby we give a brief introduction of the method:568

u′′ + f(u) = 0 (8.1)

Its variational principle can be easily established utilizing the semi-inverse method:569

J(u) = ∫
T /4

0
(−1

2
u′2 + F (u))dt (8.2)

Where T is period of the nonlinear oscillator,∂F/∂u = f .Assume that its solution can be570

expressed as571

u(t) = A cos(ωt) (8.3)

Where A and ω are the amplitude and frequency of the oscillator, respectively. Substituting572

Eq.(8.3) into Eq.(8.2) results in:573
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J(A,ω) = ∫
T /4
0 (−1

2
A2ω2 sin2 ωt + F (A cosωt)) dt

= 1
ω ∫

π/2
0 (−1

2
A2ω2 sin2 t + F (A cos t)) dt

= −1
2
A2ω ∫

π/2
0 sin2 tdt + 1

ω ∫
π/2
0 F (A cos t)dt

(8.4)

Applying the Ritz method, we require:574

∂J

∂A
= 0 (8.5)

∂J

∂ω
= 0 (8.6)

But with a careful inspection, for most cases we find that575

∂J

∂ω
= −1

2
A2∫

π/2

0
sin2 tdt − 1

ω2 ∫
π/2

0
F (A cos t)dt < 0 (8.7)

Thus, we modify conditions Eq. (8.5) and Eq. (8.6) into a simpler form:576

∂J

∂ω
= 0 (8.8)

From which the relationship between the amplitude and frequency of the oscillator can be577

obtained.578

8.2 Application of Variational Approach579

Example 1580

We consider the physical model of nonlinear equation in the following figure with F (t) =581

F0 sinω0t, indicated in Fig.8.1.582

 
Figure 8.1 The physical model of nonlinear equation.

The motion equation is:583

θ̈ + 4k

3m
sin θ − 3F0

ml
sinω0t = 0, θ(0) = A , θ̇(0) = 0 (8.9)

This equation is as known as Mathieu equation or the system with dependent coefficients584

to time. In which θ and t are generalized dimensionless displacements and time variables,585

respectively. And consider F = 4
3

k
m

as constant.586
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The approximation sin(θ) = θ − (1/6)θ3 + (1/120)θ5is used.587

Its variational formulation can be readily obtained Eq. (8.9) as follows:588

J(θ) = ∫
t

0
(1
2
θ̈2 + 2

3

k

m
θ2 − 1

18

k

m
θ4 + 1

540

k

m
θ6 − 3F0sin(ω0t)

ml
θ)dt (8.10)

Choosing the trial function θ(t) = A cos (ωt) into Eq.(8.10) we obtain:589

J(A) = ∫
T /4

0
(

1
2
A2ω2sin2(ωt) + 2

3
k
m
A2 cos2(ωt) − 1

18
k
m
A4 cos4(ωt)

+ 1
540

k
m
A6 cos6(ωt) − 3F0sin(ω0t)

ml
A cos(ωt)

)dt (8.11)

The stationary condition with respect to A leads to:590

∂J

∂A
= ∫

T /4

0
(

Aω2sin2(ωt) + 4
3

k
m
A cos2(ωt) − 2

9
k
m
A3 cos4(ωt)

+ 1
90

k
m
A5 cos6(ωt) − 3F0sin(ω0t)

ml
cos(ωt)

) dt = 0 (8.12)

Or591

∂J

∂A
= ∫

π/2

0
(

Aω2sin2t + 4
3

k
m
A cos2 t − 2

9
k
m
A3 cos4 t

+ 1
90

k
m
A5 cos6 t − 3F0sin(ω0t)

ml
cos t

) dt = 0 (8.13)

Solving Eq.(8.13), according to ω, we have:592

ω 2 =
∫

π
2

0 (
4
3

k
m
A cos2 t − 2

9
k
m
A3 cos4 t + 1

90
k
m
A5 cos6 t − 3F0sin(ω0t)

ml
cos t)dt

∫
π
2

0 Asin2t dt
(8.14)

Then we have:593

ω V AM =
1

12

¿
ÁÁÀ1728F0sin (12πω0) − 1728F0ω0 + kAlπ (ω2

0 − 1) (192 +A4 − 24A2)
(mω2

0 −m)lAπ
(8.15)

According to Eqs. (8.3) and (8.15), we can obtain the following approximate solution:594

θ(t) = A cos( 1
12

¿
ÁÁÀ1728F0sin (12πω0) − 1728F0ω0 + kAlπ (ω2

0 − 1) (192 +A4 − 24A2)
(mω2

0 −m)lAπ
t) (8.16)

We compared the numerical solution and variational approach method for different param-595

eters:596

Figure 8.2 represents a comparison of analytical solution of θ(t) based on time with the597

numerical solution and figure 8.3 shows comparison of analytical solution of dθ/dtbased on598

time with the numerical solution.599
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Figure 8.2 Comparison of analytical solution of θ based on time with the numerical solution for
L=0.5 m , m=20 kg , k=800 N/m , F0=1N , ω0=2 rad/sec , A=π/6.

600

Example 2601

In this example, we consider the following nonlinear oscillator [71]:602

( 1

12
l2 + r2 θ2) θ̈ + r2θ θ̇2 + r g θ cos (θ) = 0 (8.17)

With the boundary conditions of:603

θ(0) = A, θ̇(0) = 0 (8.18)

In order to apply the variational approach method to solve the above problem, the approx-604

imation cos θ ≈ 1 − 1
2
θ2 + 1

24
θ4 is used.605

Its variational formulation is:606

J(θ) = ∫
T /4

0
(− 1

24
l2θ̇2 − 1

2
r2θ2 θ̇2 + 1

2
r g θ2 − 1

8
r g θ4 + 1

144
g r θ6) dt (8.19)

Choosing the trial function θ(t) = A cos(ω t) into Eq.(8.19) we obtain607

J(A, ω) = ∫
T /4

0
( −

1
24
l2 (Aω sin (ωt))2 − 1

2
r2 (A cos (ω t))2 (Aω sin (ωt))2

+1
2
r g (A cos (ω t))2 − 1

8
r g (A cos (ω t))4 + 1

144
g r (A cos (ω t))6

) dt

(8.20)

The stationary condition with respect to A reads:608

∂J

∂A
= ∫

T /4

0
( −

1
12

l2ω2Asin2 (ω t) − 2 r2ω2A3 sin2 (ω t) cos2 (ωt)
+ r g Acos2 (ω t) − 1

2
r g A3 cos4 (ω t) + 1

24
r g A5 cos6 (ω t) ) dt = 0 (8.21)
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Figure 8.3 Comparison of analytical solution of θ based on time with the numerical solution for L=0.5 m ,
m=20 kg , k=800 N/m , F0=1N , ω0=2 rad/sec , A=π/6.

Or609

∂J

∂A
= ∫

π/2

0
( −

1
12
l2Asin2 t ω2 − 2 r2 ω2A3 sin2 t cos2 t

+ r g Acos2 t − 1
2
r g A3 cos4 t + 1

24
r g A5cos6 t

) dt = 0 (8.22)

Then we have ;610

ω2 = ∫
π/2
0 (r gAcos2 t− 1

2r gA3 cos4 t+ 1
24r gA5cos6 t)dt

∫
π/2
0 ( 1

12 l2Asin2 t+2 r2 A3 sin2 t cos2 t)dt (8.23)

Solving Eq. (8.23), according to ω, we have:611

ω = 1

4

√
r g (192 − 72A2 + 5A4)

6A2r2 + l2
(8.24)

Hence, the approximate solution can be readily obtained:612

θ(t) = A cos
⎛
⎝
1

4

√
r g (192 − 72A2 + 5A4)

6A2r2 + l2
t
⎞
⎠

(8.25)

For comparison of the approximate solution, frequency obtained from solution of nonlinear613

equation with the Variational Approach is:614

ω V A =
√
6

12

√
r g (288 − 108A2 + 7A4)

6A2r2 + l2
(8.26)

The numerical solution (with Runge-Kutta method of order 4) for nonlinear equation is:615
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θ̇ = y θ(0) = A
ẏ = −r2θu2+r g θ cos(θ)

1
12 l2+r2 θ2 y(0) = 0 (8.27)

We compared the numerical solution with the variational approach in Figs 8.4 and 8.5:616

 time

θ
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Figure 8.4 Comparison of (θ)of the VA solution and Runge-Kutta solution
l=2.5, r=0. 5, g=10 , A=1
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Figure 8.5 variation of the frequency respect to amplitude (A) for
l=2.5, r=0. 5, g=10

Figs. 8.4 shows the displacement of the system for l=2.5, r=0. 5, g=10, A=1.617

Fig.8.5 represents the variation of frequency various parameters of amplitude (A).Comparing618

with the numerical results, it has been shown that the results of VA require smaller computa-619

tional effort and only a first-order approximation of the VA leads to high accurate solutions.620
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621

Example 3622

The mathematical pendulum is considered again as an example. The differential equation623

governing for the free oscillation of the mathematical pendulum is given by [138]624

θ̈ −Ω2cos (θ) sin (θ) + g

r
sin (θ) = 0 (8.28)

With the boundary conditions of:625

θ (0) = A, θ̇ (0) = 0 (8.29)

In order to apply the variational approach method to solve the above problem, the approx-626

imation cos θ ≈ 1 − 1
2
θ2 + 1

24
θ4and sin θ ≈ θ − 1

6
θ3 is used.627

Its variational formulation can be readily obtained as follows:628

J(θ) = ∫
T /4

0
(−1

2
θ̇ 2 − 1

2
Ω2 θ 2 + 1

6
Ω2θ4 − 1

48
Ω2θ6 + 1

1152
Ω2θ8 + 1

2

g

r
θ2 − 1

24

g

r
θ4) dt (8.30)

Choosing the trial function θ(t) = A cos(ω t) into Eq.(8.31) we obtain629

J(A, ω) = ∫
T /4

0

⎛
⎜⎜
⎝

−1
2
(Aω sin (ωt))2 − 1

2
Ω2 (A cos (ω t)) 2 + 1

6
Ω2 (A cos (ω t))4

− 1
48
Ω2 (A cos (ω t))6 + 1

1152
Ω2 (A cos (ω t))8 + (1

2
)g
r
(A cos (ω t))2

−( 1
24
)g
r
(A cos (ω t))4

⎞
⎟⎟
⎠
dt

(8.31)

The stationary condition with respect to A reads:630

∂J

∂A
= ∫

T /4

0
( −Aω2sin2 (ωt) −Ω2Acos2 (ωt) + 2

3
Ω2A3cos4 (ωt) − 1

8
Ω2A5cos6 (ωt)

+ 1
144

Ω2A7cos8 (ωt) + g
r
Acos2 (ωt) − 1

6
g
r
A3cos4 (ωt) ) dt = 0

(8.32)

Or631

∂J

∂A
= ∫

π/2

0
( −Aω2sin2 t −Ω2Acos2 t + 2

3
Ω2A3cos4 t − 1

8
Ω2A5cos6t

+ 1
144

Ω2A7cos8 t + g
r
Acos2 t − 1

6
g
r
A3cos4 t

) dt = 0 (8.33)

Then we have;632

ω2 =
∫

π/2
0 ( −Ω

2Acos2 t + 2
3
Ω2A3cos4 t − 1

8
Ω2A5cos6t + 1

144
Ω2A7cos8 t

+g
r
Acos2 t − 1

6
g
r
A3cos4 t

) dt

A ∫
π/2
0 sin2 t dt

(8.34)

Solving Eq. (8.34), according to ω, we have:633
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ω = 1

96

√
−9216Ω2 + 4608Ω2A2 − 720Ω2A4 + 35Ω2A6 + 9216 g

r
− 1152 g

r
A2 (8.35)

Hence, the approximate solution can be readily obtained:634

θ (t) = A cos( 1

96

√
−9216Ω2 + 4608Ω2A2 − 720Ω2A4 + 35Ω2A6 + 9216 g

r
− 1152 g

r
A2 t) (8.36)

To compare the results of VA, frequency obtained from VA is:635

ω V A =
√
6

96

√
−1536Ω2 + 768Ω2A2 − 112Ω2A4 + 5Ω2A6 + 1536 g

r
− 192 g

r
A2 (8.37)

The numerical solution (with Runge-Kutta Method of order 4) for nonlinear equation is:636

θ̇ = yθ(0) = A
ẏ = Ω2cos (θ) sin (θ) − g

r
sin (θ) y(0) = 0 (8.38)

Some comparisons are presented to show the accuracy of the method. Figures 8.6 and 8.7637

show comparison of analytical solution of θ and θ̇ based on time with the numerical solution.638

The variation of amplitude A on the frequency of the system is shown in figure 8.8. It can639

be approved that VA is powerful in finding analytical solutions for a wide class of nonlinear640

problems.641
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Figure 8.6 Comparison of displacement (θ) of the VA solution and Runge-kutta solution for
Ω =1, r= 5, g=10, A=0.5
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Figure 8.7 Comparison of velocity (θ̇) of the VA solution and Runge-kutta solution for
Ω =1, r= 5, g=10, A=0.5
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9 IMPROVED AMPLITUDE-FREQUENCY FORMULATION (IAFF)642

Most of engineering problems, especially some oscillation equations are nonlinear, and in most643

cases, it is difficult to solve such equations, especially analytically. One of the well-known644

methods to solve nonlinear problems is improved amplitude frequency formulation (IAFF). He645

in his previous review paper [100] in traduced the Ancient Chinese method including improved646

amplitude frequency formulation (IAFF). Geng and Cai [74]found the method to be very647

effective in solving strongly nonlinear oscillators. To illustrate the basic idea of the method,648

we consider an algebraic equation, this method applied correctly in many open literatures649

[1, 38, 52, 72, 106, 108, 109, 163–165, 182, 183, 200, 211, 214–216].650

9.1 Basic idea of Improved Amplitude-Frequency Formulation651

We consider a generalized nonlinear oscillator in the form [109]:652

u′′ + f(u) = 0, u(0) = A,u′(0) = 0, (9.1)

We use two following trial functions653

u1(t) = A cos(ω1t), (9.2)

And654

u2(t) = A cos(ω2t), (9.3)

The residuals are655

R1(ωt) = −Aω2
1 cos(ω1t) + f (A cos(ω1t)) , (9.4)

And656

R2(ωt) = −Aω2
2 cos(ω2t) + f (A cos(ω2t)) , (9.5)

The original Frequency-amplitude formulation reads :657

ω2 = ω2
1R2 − ω2

2R1

R2 −R1
, (9.6)

He used the following formulation [100] and Geng and Cai improved the formulation by658

choosing another location point [74].659

ω2 = ω2
1R2(ω2t = 0) − ω2

2R1(ω1t = 0)
R2 −R1

, (9.7)

This is the improved form by Geng and Cai.660

ω2 = ω2
1R2(ω2t = π/3) − ω2

2R1(ω1t = π/3)
R2 −R1

, (9.8)
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The point is:cos(ω1t) = cos(ω2t) = k661

Substituting the obtained ω into u(t) = A cos(ωt) , we can obtain the constant k inω2
662

equation in order to have the frequency without irrelevant parameter.663

To improve its accuracy, we can use the following trial function when they are required.664

u1(t) =
m

∑
i=1

Ai cos (ωit), and u2(t) =
m

∑
i=1

Ai cos(Ωit) (9.9)

or665

u1(t) =

m

∑
i=1

Ai cos(ωit)
m

∑
j=1

Bj cos(ωjt)
, and u2(t) =

m

∑
i=1

Ai cos(Ωit)
m

∑
j=1

Bj cos(Ωjt)
, (9.10)

But in most cases because of the sufficient accuracy, trial functions are as follow and just666

the first term:667

u1(t) = A cos t, and u2(t) = a cos(ωt) + (A − a) cos(ωt), (9.11)

And668

u1(t) = A cos t, and u2(t) =
A(1 + c) cos(ωt)
1 + c cos(2ωt)

, (9.12)

Where a and c are unknown constants. In addition we can set:669

cos t = k in u1, and cos (ωt) = k in u2670

9.2 Application of Improved Amplitude-Frequency Formulation671

In this section, three practical examples are illustrated to show the applicability, accuracy and672

effectiveness of the proposed approach.673

674

Example1675

A two-mass system connected with linear and nonlinear stiffnesses. Consider the two-mass676

system model as shown in Fig. (9.1). The equation of motion is given as [44];677

mẍ + k1(x − y) + k2(x − y)3 = 0
mÿ + k1(y − x) + k2(y − x)3 = 0

(9.13)

With initial conditions678

x(0) =X0, ẋ(0) = 0,
y(0) = Y0, ẏ(0) = 0, (9.14)

Where double dots in Eq. (9.13) denote double differentiation with respect to time t, k1679

and k2 are linear and nonlinear coefficients of the spring stiffness, respectively. Dividing Eq.680

(9.13) by mass m yields681
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Figure 9.1 Two masses connected by linear and nonlinear stiffnesses.

ẍ + k1

m
(x − y) + k2

m
(x − y)3 = 0

ÿ + k1

m
(y − x) + k2

m
(y − x)3 = 0 (9.15)

Introducing intermediate variables u and ν as follows [127]:682

x ∶= u (9.16)

y − x ∶= ν (9.17)

And transforming Eqs. (9.16) and (9.17) yields683

ü − αν − βν3 = 0 (9.18)

ν̈ + ü + αν + βν3 = 0 (9.19)

Where α = k1/m and α = k2/m Eq. (9.18) is rearranged as follows:684

ü = αν − βν3. (9.20)

Substituting Eq. (6.20) into Eq. (9.19) yields685

ν̈ + 2αν + 2βν3 = 0 (9.21)

With initial conditions686

ν(0) = y(0) − x(0) = Y0 −X0 = A, ν̇(0) = 0 (9.22)

We use trial functions, as follows:687

ν1(t) = A cos t, (9.23)

And688

ν2(t) = A cos (2 t), (9.24)

Respectively, the residual equations are:689

R1(t) = Acos(t) (−1 + 2α + 2βA2cos2(t)) , (9.25)
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And690

R2(t) = 2Acos(2 t) (−2 + α + βA2cos2(2 t)) , (9.26)

Considering cos t1 = cos 2 t2 = k, we have:691

ω2 = ω2
1R2 − ω2

2R1

R2 −R1
= 2α + 2βk2A2, (9.27)

We can rewrite ν(t) = A cos(ω t) in the form:692

ν(t) = A cos (
√
2α + 2βk2A2 t) , (9.28)

In view of the approximate solution, we can rewrite the main equation in the form:693

ν̈ + (2α + 2β k2A2)ν = (2β k2A2)ν − 2β ν3 (9.29)

If by any chance ν(t) = A cos (
√
2α + 2βk2A2 t) is the exact solution, then the right side694

of Eq. (9.29) vanishes completely. Considering our approach which is just an approximation695

one, we set:696

∫
T /4

0
(2βk2A2ν − 2βν3) cos ωtdt = 0 , T = 2π/ω (9.30)

Considering the term ν(t) = A cos(
√
2α + 2βk2A2 t)and substituting the term to Eq. (9.30)697

and solving the integral term, we have:698

k = 1

2

√
3 , (9.31)

So, substituting Eq. (9.31) into Eq. (9.27), we have:699

ωIAFF =
1

2

√
8α + 6βA2 (9.32)

Table 9.1 Comparison of nonlinear frequencies in Eq. (9.32) with e exact solution

Constants Results
m k1 k2 X0 Y0 IAFF solutionω Exact solutionωExact Relative error %
1 5 5 5 1 11.4018 11.1921 1.873643
1 1 1 10 -5 18.4255 18.0302 2.192433
1 10 5 20 25 14.4049 14.1514 1.791342
5 10 10 20 30 17.4356 17.0672 2.158526
10 50 -0.01 -20 40 2.1448 2.0795 3.140178

The first-order approximate solutions is of a high accuracy and the percentage error im-700

proves significantly from lower order to higher order analytical approximations for different701

parameters and initial amplitudes. Hence, it is concluded that excellent agreement with the702
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Figure 9.2 Comparison of the analytical approximates with the exact solution [44] for k1 = 5 , k2 = 5, with
x(0) = 5
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Figure 9.3 Comparison of the analytical approximates with the exact solution [44] for k1 = 5 , k2 = 5, with
y(0) = 1

exact so. Tables 9.1 gives the comparison of obtained results with the exact solutions for703

different m, k1, k2 , and initial conditions. The maximum relative error between the IAFF704

results and exact results is 3.140178%.A comparison of the time history oscillatory displace-705

mentresponse for the two masses with exact solutionsare presented in Figs. (9.2) to (9.5).706

707

Example 2708

Consider a two-mass system connected with linear and nonlinear springs and fixed to a709

body at two ends as shown in Fig. (9.6)[43].710

mẍ + k1x + k2(x − y) + k3(x − y)3 = 0
mÿ + k1x + k2(y − x) + k3(y − x)3 = 0

(9.33)

With initial conditions711
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Figure 9.4 Comparison of the analytical approximates with the exact solution [44]fork1 = 5 , k2 = 5, withx(0) =
10
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Figure 9.5 Comparison of the analytical approximates with the exact solution [44] fork1 = 5 , k2 = 5, withy(0) =
−5

x(0) =X0, ẋ(0) = 0,
y(0) = Y0, ẏ(0) = 0, (9.34)

 
Figure 9.6 Two-mass system connected with the fixed bodies.

Where double dots in Eq. (9.33) denote double differentiation with respect to time , k1 and712

k2 are linear and nonlinear coefficients of the spring stiffness and k3 is the nonlinear coefficient713

of the spring stiffness. Dividing Eq. (9.33) by mass m yields714
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ẍ + k1

m
x + k2

m
(x − y) + k3

m
(x − y)3 = 0

ÿ + k1

m
x + k2

m
(y − x) + k3

m
(y − x)3 = 0 (9.35)

Like in Example1, transforming the above equations using intermediate variables in Eqs.715

(9.16) and (9.17) yields;716

ü + αu − βν − ξν3 = 0 (9.36)

ü + ν̈ + αu − αν + βν + ξν3 = 0 (9.37)

Where α = k1/m,β = k2/m and ξ = k3/m. Eq. (9.36) is rearranged as follows:717

ü = −αu + βν + ξν3 (9.38)

Substituting Eq. (9.38) into Eq. (9.37) yields718

ν̈ + (α + 2β)ν + 2ξν3 = 0 (9.39)

With initial conditions719

ν(0) = y(0) − x(0) = Y0 −X0 = A, ν̇(0) = 0 (9.40)

We use trial functions, as follows:720

ν1(t) = A cos t, (9.41)

And721

ν2(t) = A cos (2 t), (9.42)

Respectively, the residual equations are:722

R1(t) = Acos(t) (−1 + α + 2β + 2ξA2cos2(t)) , (9.43)

And723

R2(t) = Acos(2 t) (−4 + α + 2β + 2ξA2cos2(2t)) , (9.44)

Considering cos t1 = cos 2 t2 = k, we have:724

ω2 = ω2
1R2 − ω2

2R1

R2 −R1
= α + 2β + 2ξk2A2, (9.45)

We can rewrite ν(t) = A cos (ωt) in the form:725

ν(t) = A cos(
√
α + 2β + 2ξk2A2 t) , (9.46)
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In view of the approximate solution, we can rewrite the main equation in the form:726

ν̈ + (α + 2β + 2 ξ k2A2) ν = (2 ξ k2A2) ν − 2 ξ ν3 (9.47)

If by any chance Eq. (9.46)is the exact solution, then the right side of Eq. (9.47) vanishes727

completely. Considering our approach which is just an approximation one, we set:728

∫
T /4

0
(2ξk2A2ν − 2ξν3) cos ωtdt = 0 T = 2π/ω (9.48)

Considering the term ν(t) = A cos(
√
2α + 2βk2A2 t)and substituting the term to Eq. (9.48)729

and solving the integral term, we have:730

k = 1

2

√
3 , (9.49)

So, substituting Eq. (9.49) into Eq. (9.45), we have:731

ωIAFF =
1

2

√
4α + 8β + 6ξA2 (9.50)

Table 9.2 Comparison of angular frequencies in Eq. (9.50) with exact solution.

Constants Results
m k1 k2 k3 X0 Y0 IAFF solutionω Exact solution ωExact Relative error
1 1 1 1 5 1 5.1961 5.1078 1.728729
1 1 1 5 5 10 13.8022 13.5121 2.146965
1 25 20 -0.05 -10 10 1.8708 1.8413 1.602129
5 10 20 30 -10 10 60.0833 58.7856 2.207513
10 50 70 90 20 -40 220.4972 215.7113 2.21866

Table 9.2 shows an excellent agreement of the IAFF and exact solutions. From the Figs.732

9.7 to 9.10, motions of the systems are periodic motions and the amplitude of vibrations is733

function of the initial conditions. These expressions are valid for a wide range of vibration734

amplitudes and initial conditions. The proposed methods are quickly convergent and can also735

be readily generalized to two-degree-of-freedom oscillation systems with quadratic nonlinearity736

by combining the transformation technique.737

738

Example 3739

In order to assess the advantages and the accuracy of Improved Amplitude-frequency For-740

mulation for solving nonlinear oscillator, we will consider the following nonlinear oscillator;741

ü + auu̇2 + auü + α1u + α2u
3 + α3u

5 = 0, (9.51)

with the initial conditions of:742

u(0) = A , u̇(0) = 0 , (9.52)
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Figure 9.7 Comparison of the analytical approximates with the exact solution [43] fork1 = 5 , k2 = 5, k3 =
1withx(0) = 5
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Figure 9.8 Comparison of the analytical approximates with the exact solution [43] fork1 = 5 , k2 = 5, k3 =
1withy(0) = 1

We use trial functions, as follows:743

u1(t) = A cos t, (9.53)

And744

u2(t) = A cos (2t), (9.54)

Respectively, the residual equations are:745

R1(t) = A cos(t) (−2aA2 cos2 (t) + aA2 − 1 + α1 + α2A
2 cos 2(t) + α3A

4 cos4(t)) , (9.55)

And746

R2(t) = A cos (2t) (−8aA2 cos2(2t) + 4aA2 − 4 + α1 + α2A
2 cos2(2t) + α3A

4 cos4(2t)) , (9.56)
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Figure 9.9 Comparison of the analytical approximates with the exact solution [43]fork1 = 5 , k2 = 5, k3 =
5withx(0) = 5
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Figure 9.10 Comparison of the analytical approximates with the exact solution [43] fork1 = 1 , k2 = 1, k3 =
5withy(0) = 10

Considering cos t = cos 2 t = k, we have:747

ω2 = ω2
1R2 − ω2

2R1

R2 −R1
= α1 + α2A

2k2 + α3A
4k4

2aA2k2 − aA2 + 1
, (9.57)

We can rewrite u(t) = A cos (ω t)in the form:748

u(t) = A cos
⎛
⎝

√
α1 + α2A2k2 + α3f4k4

2aA2k2 − aA2 + 1
t
⎞
⎠
, (9.58)

In view of the approximate solution, we can rewrite the main equation in the form:749

ü + α1 + α2A
2k2 + α3f

4k4

2aA2k2 − aA2 + 1
u = α1 + α2A

2k2 + α3f
4k4

2aA2k2 − aA2 + 1
u − auu̇2 + uü −α1u −α2u

3 −α3u
5, (9.59)
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If by any chance u(t) = A cos (
√

α1+α2A2k2+α3A4k4

2aA2k2−aA2+1 t) is the exact solution, then the right750

side of Eq.(9.59) vanishes completely. Considering our approach which is just an approximation751

one, we set:752

∫
T

0
[

α1+α2A
2k2+α3f

4k4

2aA2k2−aA2+1 u

−au u̇2 + u ü − α1u − α2u
3 − α3u

5
] cos(ω t)dt = 0 , T = 2π

ω
, (9.60)

Considering the term u(t) = A cos(ω t)and substituting the term to Eq. (9.61) and solving753

the integral term, we have:754

k4 = 1
16

1
A4α2

3(aA2+2)2 ( 5A
4α3a + 8α1a + 4A2α2a − 4α2

+ ( 5A8α2
3a

2 + 32A4α3a
2α1 + 16A6α3a

2α2 − 64A4α3aα2 + 64α2
1a

2 + 64α1a
2A2α2 − 64α1aα2

+ 16A4α2
2a

2 − 32A2α2
2a + 16α2

2 − 20A6α2
3a + 48A2α3α2 + 40A4α2

3 − 96A2α3α1a )
1
2 )2 ,
(9.61)

So, substituting Eq. (9.61) into Eq. (9.57), we have:755

ω = 1

2

√
5A4α3 + 6A2α2 + 8α1

aA2 + 2
, (9.62)

We can obtain the following approximate solution:756

u(t) = A cos (1
2

√
5A4α3 + 6A2α2 + 8α1

aA2 + 2
t), (9.63)

Figs. 9.11 and 9.12 represent a comparison of the analytical solution of u(t)based on time757

with the numerical solution. The time history diagram of u(t)starts without an observable758

deviation with A = 0.5 and A = 2. The behavior of the system is a periodic motion and the759

amplitude of vibration is a function of the initial conditions. The best accuracy can be seen at760

extreme points. Although deviations of solutions are expected to increase as time progresses,761

the analytical solutions have adequate accuracy for the period shown762
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Figure 9.11 Comparison of displacement u(t)of the IAFF solution with the RKM solutionA = 0.5 , a =
0.5 , α1 = 1 , α2 = 1 , α3 = 1
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Figure 9.12 Comparison of u(t) of the IAFF solution with the RKM solution
A = 2 , a = 0.8 , α1 = 0.5 , α2 = 0.6 , α3 = 0.2

10 MAX-MIN APPROACH (MMA)763

In this section, we consider a novel method called Max-Min Approach (MMA). Maximal and764

minimal solution thresholds of a nonlinear problem can be easily found, and an approximate765

solution of the nonlinear equation can be easily deduced using He Chengtian’s interpolation,766

which has millennia history. Some examples are illustrated to show the efficiency and accuracy767

of the proposed method for high nonlinear vibration problems. This methodology has been uti-768

lized to achieve approximate solutions for nonlinear free vibration of conservative thick circular769

sector slabs. In Max-Min Approach (MMA), contrary to the conventional methods, only one770

iteration leads to high accuracy of solutions. Max-Min Approach (MMA) operates very well in771

the whole range of the parameters involved. Excellent agreement of the approximate frequen-772

cies and periodic solutions with the exact ones could be established. Some patterns are given to773

illustrate the effectiveness and convenience of the methodology. It has been indicated that the774

numerical results have same conclusion; while MMA is much easier, more convenient and more775
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efficient than other approaches. The MMA is a novel method which alleviates drawbacks of the776

traditional numerical techniques. The method first was proposed by He [110].The application777

of this method widely used in many scientific papers [13, 20, 23, 70, 73, 171, 188, 207].778

10.1 Basic idea of Max-Min Approach779

We consider a generalized nonlinear oscillator in the form780

ü + uf(u) = 0, u(0) = A, u̇(0) = 0, (10.1)

Where f(u) is a non-negative function of u. According to the idea of the max–min method,781

we choose a trial-function in the form782

u(t) = A cos (ω t), (10.2)

Where ω the unknown frequency to be further is determined.783

Observe that the square of frequency, ω2, is never less than that in the solution784

u1(t) = A cos (
√
fmin t), (10.3)

of the following linear oscillator785

ü + ufmin = 0, u(0) = A, u̇(0) = 0, (10.4)

Where fmin is the minimum value of the functionf(u).786

In addition, ω2 never exceeds the square of frequency of the solution787

u1(t) = A cos (
√
fmax t), (10.5)

of the following oscillator788

ü + ufmax = 0, u(0) = A, u̇(0) = 0, (10.6)

Where fmax is the maximum value of the function f(u).789

Hence, it follows that790

fmin

1
< ω2 < fmax

1
. (10.7)

According to He Chentian interpolation [110, 112], we obtain791

ω2 = mfmin + nfmax

m + n
, (10.8)

Or792

ω2 = fmin + k fmax

1 + k
, (10.9)
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Where m and n are weighting factors, k = n/m. So the solution of Eq. (10.1) can be expressed793

as794

u(t) = A cos

√
fmin + k fmax

1 + k
t, (10.10)

The value of k can be approximately determined by various approximate methods [105,795

110, 112]. Among others, hereby we use the residual method [110]. Substituting (10.10) into796

(10.1) results in the following residual:797

R(t;k) = −ω2A cos(ω t) + (A cos(ω t)) ⋅ f (A cos(ω t)) (10.11)

Where ω =
√

fmin+k fmax

1+k798

If, by chance, Eq. (10.10) is the exact solution, then R(t;k) is vanishing completely. Since799

our approach is only an approximation to the exact solution, we set800

∫
T

0
R(t;k) cos

√
fmin + k fmax

1 + k
t dt = 0, (10.12)

where T = 2π/ω. Solving the above equation, we can easily obtain801

k = fmax − fmin

1 −
√

A
π ∫

π
0 cos2 x.f (A cos x)dx

. (10.13)

Substituting the above equation into Eq. (10.10), we obtain the approximate solution of802

Eq. (10.1).803

10.2 Application of Max-Min Approach804

In this section, three examples are illustrated and solved to show the applicability, accuracy805

and effectiveness of Max-Min Approach.806

807

Example 1808

We can re-write Eq. (9.21) from the previous section in the following form;809

ν̈ + (2α + 2βν2)ν = 0. (10.14)

We choose a trial-function in the form810

ν = A cos (ωt) (10.15)

Where ω the frequency to be is determined the maximum and minimum values of 2α+2βν2811

will be 2α + 2βA2 and 2α respectively, so we can write:812

2α

1
< ω2 = 2α + 2βν2 < 2α + 2βA2

1
(10.16)
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According to He Chengtian’s inequality , we have813

ω2 = m.2α + n.(2α + 2βA2)
m + n

= 2α + 2k βA2 (10.17)

Where m and nare weighting factors, k = n/m + n. Therefore the frequency can be approx-814

imated as:815

ω =
√
2α + 2k βA2 (10.18)

Its approximate solution reads816

ν = A cos
√
2α + 2k βA2 t (10.19)

In view of the approximate solution, Eq.(10.19) we re-write Eq.(10.14) in the form817

ν̈ + (2α + 2k βA2)ν = (2α + 2k βA2)ν − 2βν3 (10.20)

If by any chance Eq.(10.19) is the exact solution, then the right side of Eq.(10.20) vanishes818

completely. Considering our approach which is just an approximation one, we set:819

∫
T /4

0
(2k βA2ν − 2βν3) cos ωtdt = 0 (10.21)

Where T = 2π/ω. Solving the above equation, we can easily obtain820

k = 3

4
(10.22)

Finally the frequency is obtained as821

ω = 1

2

√
8α + 6βA2 (10.23)

According to Eqs. (10.15) and (10.23) , we can obtain the following approximate solution:822

ν(t) = A cos(1
2

√
8α + 6βA2 t) (10.24)

The first-order analytical approximation for u(t)is823

u(t) =∬ (αν + βν3)dt dt = − 1

9ω2
A cos(ωt) (9α + 6βA2 +Aβ cos2(ωt)) . (10.25)

Therefore, the first-order analytical approximate displacements x(t) and y(t) are824

x(t) = u(t)
x(t) = u(t) +A cos (ωt) (10.26)
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Table 10.1 Comparison of frequency corresponding to various parameters of the system.

Constant parameters Approximate Solution Exact solution Relative error %
m k1 k2 X0 Y0 ωMMA ω Exact[44]

ωMMA−ωEx

ωEx

1 0.5 0.5 1 5 3.605551 3.539243 1.873506
1 1 1 5 1 5.09902 5.005246 1.873506
5 2 0.5 5 10 4.421538 4.333499 2.031592
10 5 5 10 20 8.717798 8.533586 2.158667
20 40 50 20 10 19.46792 19.05429 2.17082
50 100 50 -10 20 36.79674 36.00234 2.206522

From table.10.1, the relative error of the MMA is 2.2065% for the first-order analytical825

approximations, for different values of m,k1, k2,X0 and Y0. The first-order approximate so-826

lution gives an excellent agreement with the exact one.To further illustrate and verify the827

accuracy of this approximate analytical approach, a comparison of the time history oscillatory828

displacement and velocity responses for the two masses with exact solutions is depicted in Fig.829

10-1 and 10.2. Figs. 10.3 and 10.4 represent the effects of amplitude on the phase plan of the830

system. It is apparent that the first-order analytical approximations show excellent agreement831

with the exact solution using the Jacobi elliptic function.832

833

Example 2834

A two-mass system connected with linear and nonlinear stiffnesses fixed to the body was835

solved by IAFF is considered again in this section. We can re-write Eq. (9.39) in the following836

form;837

ν̈ + ((α + 2β) + 2ξν2) ν = 0 (10.27)

We choose a trial-function in the form838

ν = A cos (ωt) (10.28)

Where ω the frequency to be is determined the maximum and minimum values of α+ 2β +839

2ξν2 will be α + 2β + 2ξA2 and α + 2β respectively, so we can write:840

α + 2β
1
< ω2 = α + 2β + 2ξν2 < α + 2β + 2ξA2

1
(10.29)

According to He Chengtian’s inequality , we have841

ω2 = m.(α + 2β) + n.(α + 2β + 2ξA2)
m + n

= α + 2β + 2ξkA2 (10.30)

Where m and n are weighting factors, k = n/m + n. Therefore the frequency can be842

approximated as:843

ω =
√
α + 2β + 2ξkA2 (10.31)
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Figure 10.1 Comparison of analytical solution of displacement x(t)and y(t)based on time twith the exact
solution[44] for m = 10, k1 = 5, k2 = 5 , X0 = 10, Y0 = 20
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Figure 10.2 Comparison of analytical solution of dx/dt and dy/dt based on time t with the exact solution [44]
for m = 10, k1 = 5, k2 = 5X0 = 10, Y0 = 20

Its approximate solution reads844

ν = A cos
√
α + 2β + 2ξkA2 t (10.32)

In view of the approximate solution, Eq. (10.31) we re-write Eq. (10.27)in the form;845

ν̈ + (α + 2β + 2ξkA2)ν = (2ξkA2) ν − 2ξν3 (10.33)

If by any chance Eq. (10.32) is the exact solution, then the right side of Eq.(10.33) vanishes846

completely. Considering our approach which is just an approximation one, we set:847

∫
T /4

0
(2ξkA2ν − 2ξν3 ) cos ωtdt = 0 (10.34)

Latin American Journal of Solids and Structures 1(2012) 1 – 93



68 Mahmoud Bayat et al / Recent developments of some asymptotic methods and their applications for nonlinear vibration

equations in engineering problems:A review

 x(t)

dx
/d

t

-4 -2 0 2 4 6

-40

-30

-20

-10

0

10

20

30

40

50 MMA
Exact

A=5

A=10

A=9

A=8

A=7

A=6

Figure 10.3 Comparison of analytical solution of dx/dt based on x(t) with the exact solution [44] for m =
10, k1 = 5, k2 = 5
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Figure 10.4 Comparison of analytical solution of dy/dt based on y(t) with the exact solution [44] for m =
10, k1 = 5, k2 = 5

Where T = 2π/ω. Solving the above equation, we can easily obtain848

k = 3

4
(10.35)

Finally the frequency is obtained as849

ω = 1

2

√
4α + 8β + 6ξA2 (10.36)

According to Eqs. (10.36) and (10.28) , we can obtain the following approximate solution:850

ν(t) = A cos(1
2

√
4α + 8β + 6ξA2 t) (10.37)
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The first-order analytical approximation for u(t)is851

u(t) = −cos(
√
αt)(−X0 α2+10X0 αω2−9X0 ω4+ξA3α−7ξA3ω2−9Aβω2+Aαβ)

α2−10αω2+9ω4

−27A(cos(ωt)((ξA2+ 4
3β)(ω

2− 1
9α))+cos(3ωt)( 1

27ξA
2(ω2−α)))

4α2−40αω2+36ω4

(10.38)

Therefore, the first-order analytical approximate displacements x(t) and y(t) are852

x(t) = u(t)
x(t) = u(t) +A cos (ω t) (10.39)

Table 10.2 Comparison of frequency corresponding to various parameters of system

Constant parameters Approximate Solution Exact Solution Relative error %
m k1 k2 k3 X0 Y0 ωMMA ω Exact[43]

ωMMA−ωEx

ωEx

1 0.5 0.5 0.5 1 5 3.674235 3.611743 1.730234
1 1 1 2 5 1 7.141428 7.004694 1.952045
5 2 0.5 5 5 10 6.17252 6.042804 2.146618
10 5 5 10 10 20 12.30853 12.04665 2.173874
20 40 50 50 20 10 19.54482 19.13632 2.134672
50 100 50 100 -10 20 52.00000 50.87391 2.213492

Table 10.2 gives the comparison of obtained results with exact ones are tabulated in Table853

10.2 for different value ofm,k1, k2, k3 and initial conditions. Comparisons of results for different854

parameters via numerical and MMA are presented in Figures 10.5 to 10.8. From figures 10.5855

and 10.6, it is obvious that the motion of the system is periodic. Figures 10.7 and 10.8 represent856

comparison of analytical solution of dx/dt and dy/dt based on time with the numerical solution857

for different parameters of the system.858

859

Example 3860

We consider geometrically non-linear Tapered beams.In dimensionless form, Goorman is861

given the governing differential equation corresponding to fundamental vibration mode of a862

tapered beam [78]:863

(d
2u

dt2
) + ε1 (u2 (d

2u

dt2
) + u(du

dt
)
2

) + u + ε2u3 = 0 (10.40)

Where u is displacement and ε1 and ε2 are arbitrary constants. Subject to the following864

initial conditions:865

u(0) = A,
du(0)
dt

= 0 (10.41)

We can re-write Eq. (10.40) in the following form866

(d
2u

dt2
) +
⎛
⎝
1 + ε1 (dudt )

2 + ε2u2

1 + ε1u2

⎞
⎠
u = 0 (10.42)
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Figure 10.5 Comparison of analytical solution of displacement x(t)and y(t)based on time t with the exact
solution [43]for m = 1, k1 = 1, k2 = 1 , k3 = 2, X0 = 5, Y0 = 1
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Figure 10.6 Comparison of analytical solution of dx/dt and dy/dt based on time t with the exact solution
[43]for m = 1, k1 = 1, k2 = 1 , k3 = 2, X0 = 5, Y0 = 1

We choose a trial-function in the form867

u = A cos (ωt) (10.43)

Where ω the frequency to be is determined.868

By using the trial-function, the maximum and minimum values of ω2 will be:869

ωmin = 1+ε1A2ω2

1
,

ωmax = 1+ε2A2

1+ε1A2 .
(10.44)

So we can write:870
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Figure 10.7 Comparison of analytical solution of dx/dt based on x(t) with the exact solution [43]for m =
1, k1 = 1, k2 = 1 , k3 = 2, X0 = 5, Y0 = 1

 y(t)

dy
/d

t

-10 -5 0 5 10

-20

-15

-10

-5

0

5

10

15

20

25 MMA
Exact

Figure 10.8 Comparison of analytical solution of dy/dt based on y(t) with the exact solution [43]for m =
1, k1 = 1, k2 = 1 , k3 = 2, X0 = 5, Y0 = 1

1 + ε1A2ω2

1
< ω2 < 1 + ε2A2

1 + ε1A2
(10.45)

According to the Chengtian’s inequality , we have871

ω2 =
m. (1 + ε1A2ω2 + ε2A2) + n. (1 + ε1A2ω2)

m + n
= 1 + ε1A2ω2 + k ε2A

2 (10.46)

Where m and n are weighting factors, k = n/m + n. Therefore the frequency can be872

approximated as:873

ω =
√

1 + k ε2A2

1 − ε1A2
(10.47)
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Its approximate solution reads874

u = A cos

√
1 + k ε2A2

1 − ε1A2
t (10.48)

In view of the approximate solution, Eq. (10.42), we re-write Eq.(10.42) in the form875

d2u
dt2
+ (1+k ε2A

2

1−ε1A2 )u = (d
2u
dt2
) + ε1 (u2 (d

2u
dt2
) + u (du

dt
)2) + u + ε2u3 +Ψ

(10.49)

Ψ = (1 + k ε2A
2

1 − ε1A2
)u − ε1u2 (d

2u

dt2
) − ε1u(

du

dt
)
2

− u − ε2u3 (10.50)

Substituting the trial function into Eq. (10.50), and using Fourier expansion series, it is876

obvious that:877

Ψ = (1+k ε2A
2

1−ε1A2 ) (A cos ωt) − (2ω2ε1A
2cos2(ωt) − ε1A2ω2 − 1 − ε2A2cos2(ωt))Acos(ωt)

= ∑∞n=0 b2n+1 cos [(2n + 1)ωt] = b1 cos(ωt) + b3 cos(3ωt) + ... ≈ b1 cos(ωt)
(10.51)

For avoiding secular term we set b1= 0878

∫
T /4

0
((1 + k ε2A

2

1 − ε1A2
) − (2ω2ε1A

2cos2(ωt) − ε1A2ω2 − 1 − ε2A2cos2(ωt))) Acos(ωt)dt = 0

(10.52)

Where T = 2π/ω. Solving the above equation, we can easily obtain879

k = −
(ε1ω2 − ε21A2ω2 + 3ε1 − 2ε2 + 2ε2A2ε1)

3ε2
(10.53)

Substituting Eq. (10.53) into Eq. (10.47), yields880

ω =
√
(3 + ε1A2) (2ε2A2 + 3)

(3 + ε1A2)
(10.54)

According to Eqs. (10.54) and (10.43), we can obtain the following approximate solution:881

u(t) = A cos
⎛
⎝

√
(3 + ε1A2) (2ε2A2 + 3)

(3 + ε1A2)
t
⎞
⎠

(10.55)

The exact frequency ωe for a dynamic system governed by Eq. (10.40) can be derived, as882

shown in Eq. (10.56), as follows:883

ωExact = 2π/4
√
2A ∫

π/2

0

√
1 + ε1A2cos2 t sin t√

A2 (1 − cos2 t) (ε2A2cos2 t + ε2A2 + 2)
dt (10.56)
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To demonstrate the accuracy of the MMA, the procedures explained in previous sections884

are applied to obtain natural frequency and corresponding displacement of tapered beams. A885

comparison of obtained results from the Max-Min Approach and the exact one is tabulated in886

table 10.3 for different parameters A,ε1 and ε2.887

Table 10.3 Comparison of frequency corresponding to various parameters of system

Constant parameters Approximate solution Exact solution Relative error %

A ε1 ε2 ωMMA ω Exact ∣ωMMA−ωEx

ωEx
∣

2 0.1 0.5 1.43486 1.44100 0.42665
2 0.5 1 1.48323 1.44506 2.64192
2 5 10 1.8996 1.85323 2.50516
2 10 50 3.06138 3.0103 1.69512
10 0.1 0.5 2.81479 2.73523 2.90861
10 0.5 1 1.95708 1.92710 1.55604
10 5 10 1.99552 1.98950 0. 1842
10 10 50 3.15801 3.15265 0.17001

Figs. 10.9 and 10.10 represent the high accuracy of the MMA with the exact one for888

ε1 = 0.1 ε2 = 0.5 and ε1 = 0.5 ε2 = 0.1 . The effect of small parameters ε2 and ε1 on the889

frequency corresponding to various parameters of amplitude (A) has been studied in Figs. 10.11890

and 10.12.It is evident that MMA shows excellent agreement with the numerical solution using891

the exact solution and quickly convergent and valid for a wide range of vibration amplitudes892

and initial conditions.893
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Figure 10.9 Comparison of analytical solutions of u(t)based on twith the exact solution for ε1 = 0.1 ε2 =
0.5A = 2
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Figure 10.10 Comparison of analytical solutions of du/dt based on time with the exact solution for ε1 =
0.5 , ε2 = 0.1 ,A = 2,
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Figure 10.11 Comparison of frequency corresponding to various parameters of amplitude (A) and ε1 = 1
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11 HAMILTONIAN APPROACH (HA)894

Investigate of nonlinear problems which are arisen in many areas of physics and engineering,895

especially some oscillation equations are nonlinear, and in most cases it is difficult to solve such896

equations, especially analytically. Previously, He had introduced the Energy Balance method897

based on collocation and the Hamiltonian. This approach is very simple but strongly depends898

upon the chosen location point. Recently, He [111]has proposed the Hamiltonian approach to899

overcome the shortcomings of the energy balance method. This approach is a kind of energy900

method with a vast application in conservative oscillatory systems. Application of this method901

can be found in many literatures [124, 140, 198, 199, 203–205].902

11.1 Basic idea of Hamiltonian Approach903

In order to clarify this approach, consider the following general oscillator;904

ü + f(u, u̇, ü) = 0 (11.1)

With initial conditions:905

u(0) = A, , u̇(0) = 0. (11.2)

Oscillatory systems contain two important physical parameters, i.e. the frequency ω and906

the amplitude of oscillation A. It is easy to establish a variational principle for Eq. (11.1),907

which reads;908

J(u) = ∫
T /4

0
{−1

2
u̇2 + F (u)}dt (11.3)

Where T is period of the nonlinear oscillator,∂F/∂u = f .909

In the Eq (11.3), 1
2
u̇2 is kinetic energy and F (u) potential energy, so the Eq (11.3) is the910

least Lagrangian action, from which we can immediately obtain its Hamiltonian, which reads911

;912

H(u) = 1

2
u̇2 + F (u) = constant (11.4)

From Eq. (11.4), we have;913

∂H

∂A
= 0 (11.5)

Introducing a new function, H̄(u) , defined as;914

H̄(u) =
T /4

∫
0

∫ {
1

2
u̇2 + F (u)} dt = 1

4
TH (11.6)

Eq. (11.5) is, then, equivalent to the following one;915
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∂

∂A
(∂H̄
∂T
) = 0 (11.7)

or916

∂

∂A
( ∂H̄

∂ (1/ω)
) = 0 (11.8)

From Eq.(11.8) we can obtain approximate frequency–amplitude relationship of a nonlinear917

oscillator.918

11.2 Application of Hamiltonian Approach919

We have considered three examples in this section to show the application of the proposed920

method.921

922

Example 1923

To illustrate the basic procedure of the present method, we consider an u1/3 force nonlinear924

oscillator:925

ü + au + bu3 + cu1/3 = 0, u (0) = A, u̇ (0) = 0 (11.9)

The Hamiltonian of Eq. (11.9) is constructed as:926

H = 1

2
u̇2 + 1

2
au2 + 1

4
bu4 + 3

4
cu4/3 (11.10)

Integrating Eq.(11.10) with respect to t from 0 to T / 4, we have;927

H̄ = ∫
T /4

0
(1
2
u̇2 + 1

2
au2 + 1

4
bu4 + 3

4
cu4/3) dt (11.11)

Assume that the solution can be expressed as:928

u(t) = A cos(ω t) (11.12)

Substituting Eq.(11.12) into Eq. (11.11), we obtain:929

H̄ = ∫
T /4
0 (1

2
A2ω2sin2 (ωt) + 1

2
aA2cos2 (ωt) + 1

4
bA4cos4 (ωt) + 3

4
cA4/3cos4/3 (ωt)) dt

= ∫
π/2
0 (1

2
A2ω sin2t + 1

2ω
aA2cos2t + 1

4ω
bA4cos4t + 3

4ω
cA4/3cos4/3t) dt

= 1
8
ωA2π + 1

8
aA2 π

ω
+ 3

64
bA4 π

ω
+ 0.12267 cA4/3 π3/2

ω
(11.13)

Setting:930

∂

∂A
( ∂H̄

∂ (1/ω)
) = −1

4
ω2Aπ + 1

4
aAπ + 3

64
bA4π + 0.16356 cA1/3π3/2 (11.14)
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Solving the above equation, an approximate frequency as a function of amplitude equals;931

ωHA =
√

a + 3

4
A2b + 0.654236 c

√
π

A2/3 (11.15)

Hence, the approximate solution can be readily obtained;932

u(t) = A cos
⎛
⎝

√
a + 3

4
A2b + 0.654236 c

√
π

A2/3 t
⎞
⎠

(11.16)

The same result was obtained by He [107].933

934

Example 2935

Considering the governing equation of motion for the Duffing-harmonic oscillator:936

ü + u3

1 + u2
= 0, u (0) = A, u̇ (0) = 0 (11.17)

The Hamiltonian of Eq. (11.17) is constructed as:937

H = 1

2
u̇2 + 1

2
u2 − 1

2
log (1 + u2) (11.18)

Integrating Eq.(11.18) with respect to t from 0 to T / 4, we have;938

H̄ = ∫
T /4

0
(1
2
u̇2 + 1

2
u2 − 1

2
log (1 + u2)) dt (11.19)

Assume that the solution can be expressed as:939

u(t) = A cos(ω t) (11.20)

Substituting Eq.(11.20) into Eq. (11.19), we obtain:940

H̄ = ∫
T /4
0 (1

2
A2ω2sin2 (ωt) + 1

2
A2cos2 (ωt) − 1

2
log (1 +A2 cos2 (ωt))) dt

= ∫
π/2
0 (1

2
A2ωsin2t + 1

2ω
A2cos2t − 1

2ω
log (1 +A2 cos2 t)) dt

(11.21)

Setting:941

∂

∂A
( ∂H̄

∂ (1/ω)
) = 0 (11.22)

Solving the above equation, an approximate frequency as a function of amplitude equals;942

ωHA =

¿
ÁÁÁÀ∫

π/2
0 { cos2 t

1+A2 cos2 t
}dt

∫
π/2
0 sin2 t dt

(11.23)
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The exact frequency is given by[132]:943

ωEx =
2π

4 ∫
A
0

du√
[log(A2+1)−log(u2+1)]

(11.24)

Table 11.1 Comparison of frequency Hamiltonian approach and exact solution

A ωex ωHA Relative error (%)
0.01 0.00847 0.00865 2.12515
0.1 0.08439 0.08624 2.192203
1 0.63678 0.64359 1.06944
10 0.99092 0.99095 0.00303
100 0.9999 0.9999 0.0001

From Table 11.1, the maximum relative error is 2.192203%.

944

Example 3945

The Hamiltonian of Eq. (10.40) is constructed as;946

H = 1

2
(du
dt
)
2

+ 1

2
ε1 (

du

dt
)
2

u2 + 1

2
u2 + 1

4
ε2 u

4 (11.25)

Integrating Eq. (11.25) with respect to t from 0 to T / 4, we have;947

H̄ = ∫
T /4

0
(1
2
(du
dt
)
2

+ 1

2
ε1 (

du

dt
)
2

u2 + 1

2
u2 + 1

4
ε2 u

4) dt (11.26)

Assume that the solution can be expressed as;948

u(t) = A cos(ω t) (11.27)

Substituting Eq. (11.27) into Eq. (11.26), we obtain;949

H̄ = ∫
T /4
0 (1

2
A2 ω2 sin2 (ωt) + 1

2
ε1 A4 ω2 sin2 (ωt) cos2 (ω t) + 1

2
A2 cos2 (ω t) + 1

4
ε2A

4 cos4 (ω t)) dt
= ∫

π/2
0 (1

2
A2 ω sin2t + 1

2
ε1 A4 ω sin2t cos2 t + 1

2ω
A2 cos2 t + 1

4ω
ε2A

4 cos4 t) dt
= 1

8
ωA2π + 1

32
ωA4ε1π

1
8ω

A2π + 3
64ω

A4ε2π
(11.28)

Setting:950

∂

∂A
( ∂H̄

∂ (1/ω)
) = −1

4
Aπω2 − 1

8
ε1A

3 π ω2 + 1

4
Aπ + 3

16
ε2A

3 π (11.29)

Solving the above equation, an approximate frequency as a function of amplitude equals;951

ωHA =
√
2

2

√
(ε1A2 + 2) (3 ε2A2 + 4)

(ε1A2 + 2)
(11.30)
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Hence, the approximate solution can be readily obtained;952

u(t) = A cos
⎛
⎝

√
2

2

√
(2 + ε1A2) (4 + 3 ε2A2)

(2 + ε1A2)
t
⎞
⎠

(11.31)

Table 11.2 Comparison of frequency corresponding to various parameters of system

Constant parameters Approximate solution Exact solution Relative error %

A ε1 ε2 ωHA ω Exact ∣ωEX−ωHA

ωEx
∣

0.1 0.1 0.1 1.0001 1.0005 0.0374
0.1 1 0.2 0.9983 0.9983 0.0002
0.5 0.5 1 1.0572 1.0573 0.0084
0.5 1 0.5 0.9860 0.9870 0.1018
1 1 1 1.0801 1.0904 0.9382
1 0.5 0.2 0.9592 0.9623 0.3262
2 0.4 0.2 0.9428 0.9593 1.7212
2 1 0.8 1.0646 1.0917 2.4853
2 1 0.2 0.7303 0.7504 2.6846

The maximum relative error of Hamiltonian approach 2.6846 % for different values of
A, ε1, ε2 in comparison with the exact one.

12 HOMOTOPY ANALYSIS METHOD (HAM)953

Homotopy analysis is a general analytic method for solving the non-linear differential equations.954

The HAM transforms a non-linear problem into an infinite number of linear problems with955

embedding an auxiliary parameter (q) that typically ranges from zero to one. As q increases956

from 0 to 1, the solution varies from the initial guess to the exact solution. By suitable choice of957

the auxiliary parameter (q), we can obtain reasonable solutions for large modulus. This method958

is a strong and easy-to-use analytic tool for investigating nonlinear problems, which does not959

need small parameters. In 1992, Liao employed the basic ideas of homotopy in topology to960

propose a general analytic method for nonlinear problems, namely homotopy analysis method961

(HAM) [128]. This method has been successfully applied to solve many types of nonlinear962

problems by others [4, 6, 40, 41, 49, 51, 53, 114, 126, 129–131, 155–159, 172, 193, 194, 213].963

The basic idea of HAM is introduced and then its application in nonlinear vibration is studied.964

12.1 Basic idea of Homotopy Analysis Method965

To illustrate the basic ideas of the HAM, consider the following non-linear differential equation:966

N [u(t)] = 0, (12.1)

Where N is a nonlinear operator, t denotes the independent variable and u(t) is an unknown967

variable. The homotopy function is constructed as follows:968
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H̄(ϕ; q, h̵,H(t)) = (1 − q)L [ϕ(t; q) − u0(t)] − qh̵H(t)N [ϕ(t; q)] (12.2)

where ϕ , h̵ and H(t) are a function of t and q , the non-zero auxiliary parameter, is a non-zero969

auxiliary function, respectively. The parameter L denotes an auxiliary linear operator. As q970

increases from 0 to 1, the ϕ(t; q) varies from the initial approximation to the exact solution. In971

the other words, ϕ(t; 0) = u0(t)is the solution of the H̄(ϕ, q, h̵,H(t))∣
q=0 = 0 and ϕ(t; 1) = u0(t)972

is the solution of the H̄(ϕ, q, h̵,H(t))∣
q=1 = 0. Enforcing H̄(ϕ, q, h̵,H(t)) = 0 , the zero-order973

deformation is constructed as:974

(1 − q)L [ϕ(t, q) − u0(t)] = qh̵H(t)N [ϕ(t, q)] , (12.3)

with the following initial conditions:975

ϕ(0; q) = a ,
dϕ(0, q)

dt
= 0 . (12.4)

The functions ϕ(t, q) and ω(q)can be expanded as power series of q using Taylor’s theorem976

as;977

ϕ(t, q) = ϕ(t,0) +
∞
∑
m=1

1

m!

∂mϕ(t; q)
∂qm

∣q=0 qm = u0(τ) +
∞
∑
m=1

um(t)qm (12.5)

ω(q) = ω0 +
∞
∑
m=1

1

m!

∂mω(q)
∂qm

∣q=0 qm = ω0 +
∞
∑
m=1

ωmqm (12.6)

Where um(t) and ωm are called the m-order deformation derivations.978

Differentiating zero-order deformation equation with respect to q and the setting q =979

0 ,yields the first order deformation equation(m = 1 )which gives the first-order approxima-980

tion of the u(t)as follows:981

L [u1(t)] = h̵H(t)N [u0(t), ω0] ∣q=0 , (12.7)

with the following initial conditions:982

u1(0) = 0 , u̇1(0) = 0 (12.8)

The higher order approximations of the solution can be obtained by calculating the m-983

order (m>1) deformation equation. The m-order deformation equation can be calculated by984

differentiating Eqs. (12.5) and (12.6) m times with respect to q as follows:985

L [um(t) − um−1] = h̵H(t)Rm(u⃗m−1, ω⃗m−1), (12.9)

Where the u⃗m−1, ω⃗m−1and Rm(u⃗m−1, ω⃗m−1)are defined as follows:986

Rm(u⃗m−1, ω⃗m−1) =
1

(m − 1)!
∂m−1N [ϕ(t, q)] , ω(q)

∂qm−1
∣
q=0

, (12.10)
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u⃗m−1 = {u⃗0, u⃗1, u⃗2, ..., u⃗m−1} (12.11)

ω⃗m−1 = {ω0, ω1, ω2, ..., ωm−1} (12.12)

Subject to the following initial conditions:987

um(0) = u̇m(0) = 0. (12.13)

12.2 Application of Homotopy Analysis Method988

Example 1989

Consider the following Duffing equation ;990

ü + αu + βu3 = 0 u(0) = A , u̇(0) = 0 (12.14)

Under the transformation τ = ωt and W (τ) = u(t) Eq. (12.14) becomes as follows:991

ω2Ẅ + αW + βW 3 = 0 (12.15)

The zero-order deformation equation can be written as below:992

(1 − q)L [ϕ(τ ; q) −W0(τ)] = qhh̵(τ)N[ϕ(τ ; q)] (12.16)

In which;993

N[ϕ(τ ; q)] = ω2∂
2ϕ(τ ; q)
∂τ2

+ αϕ(τ ; q) + βϕ(τ ; q)3 = 0 (12.17)

We chose the following auxiliary linear operator as:994

L[ϕ(τ ; q)] = ω2
0 [

∂2ϕ(τ ; q)
∂τ2

+ ϕ(τ ; q)] (12.18)

We employ Taylor expansion series for ϕ(t; q) and ω(q)as995

ϕ(τ ; q) = ϕ(τ ; 0) +
∞
∑
m=1

1

m!

∂mϕ(t; q)
∂qm

∣q=0 qm =W0(τ) +
∞
∑
m=1

Wm(τ)qm (12.19)

ω(q) = ω0 +
∞
∑
m=1

1

m!

∂mω(q)
∂qm

∣q=0 qm = ω0 +
∞
∑
m=1

ωmqm (12.20)

In order to satisfy the initial conditions, the initial guess of W (τ) is chosen as follows:996

ω0(τ) =Wmax cos(τ) (12.21)

In our case, to obtain the first-order approximation, the function of W1(τ) can be expressed997

as998
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L[W1(t)] = hh̵(t)N[ϕ(t; q)] ∣q=0 (12.22)

W1(0) = 0 ,
dW1(0)

dt
= 0 (12.23)

Assuming h̵1 = −1 , h(t) = 1and after substituting Eq. (12.21) in Eq. (12.22), one would999

get:1000

ω2
0(Ẅ1 +W1) =Wmax cos(τ)(ω2

0 − α −
3

4
βW 2

max) −
βW 3

max

4
cos(3τ) (12.24)

W1(0) = 0 , Ẇ1(0) = 0 (12.25)

Eliminating the secular term, we have:1001

ω0 =
√

α + 3

4
βW 2

max (12.26)

The same result was obtained in the first example of section 2.1002

Solving Eqs. (12.24) and (12.25), the W1(τ) is obtained as follows:1003

W1(τ) = −
1

32ω2
0

βW 3
max(cos(τ) − cos(3τ)) (12.27)

Thus the first-order approximation of the W (τ)yields to:1004

W (τ) =W0(τ) +W1(τ) (12.28)

In which:1005

τ = ω t , ω = ω0 (12.29)

13 CONCLUSIONS1006

It has reviewed new asymptotic methodologies throughout numerous examples. The analytical1007

solutions yield a thoughtful and insightful understanding of the effect of system parameters1008

and initial conditions. Also, Analytical solutions give a reference frame for the verification and1009

validation of other numerical approaches.1010

Variational Iteration Method (VIM),Homotopy Perturbation Method (HPM), Energy Bal-1011

ance Method (EBM),Parameter-Expansion Method (PEM) ,Variational Approach (VA),Improved1012

Amplitude Frequency Formulation (IAFF),Max-Min Approach (MMA),Hamiltonian Approach1013

(HA) and Homotopy Analysis Method (HAM) are suitable not only for weak nonlinear prob-1014

lems, but also for strong nonlinear problems as it is indicated in this review. The most sig-1015

nificant feature of those methods is their excellent accuracy for the whole range of oscillation1016
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amplitude values. Also, it can be used to solve other conservative truly nonlinear oscillators1017

with complex nonlinearities. The solutions are quickly convergent and its components can be1018

simply calculated. Also, compared to other analytical methods, it can be observed that the1019

results of those methods require smaller computational effort and only the one iteration leads1020

to accurate solutions. The successful implementations of the mentioned methods for the large1021

amplitude nonlinear oscillation problem were considered in this review. All reviewed methods1022

can be applied to various kinds of weak and strong nonlinear problems, and the examples1023

studied in this review can be utilized as paradigms for oscillator problems. Through nonlinear1024

oscillators, all the reviewed methods yield high accurate approximate periods which indicated1025

above.1026
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[161] J. Ramos. An artificial parameter-linstedt-poincaré method for oscillators with smooth odd nonlinearities. Chaos,1364

Solitons & Fractals, 41(1):380–393, 2009.1365

[162] S.S. Rao. Mechanical Vibrations (3rd edition) ed. Addison Wesley, 1995.1366

[163] Z.F. Ren and W.K. Gui. He’s frequency formulation for nonlinear oscillators using a golden mean location. Com-1367

puters & Mathematics with Applications, 61(8):1987–1990, 2011.1368

[164] Z.F. Ren, G.Q. Liu, Y.X. Kang, H.Y. Fan, H.M. Li, X.D. Ren, and W.K. Gui. Application of he’s amplitude-1369

frequency formulation to nonlinear oscillators with discontinuities. Physica Scripta, 80:45003, 2009.1370

[165] D. Younesian H. Askari Z. Saadatnia and M. KalamiYazdi. Frequency analysis of strongly nonlinear generalized1371

duffing oscillators using he’s frequency-amplitude formulation and he’s energy balance method. Computers &1372

Mathematics with Applications, 59(9):3222–3228, 2010.1373

[166] A. Sadighi and D. Ganji. Solution of the generalized nonlinear boussinesq equation using homotopy perturbation and1374

variational iteration methods. International Journal of Nonlinear Sciences and Numerical Simulation, 8(3):2158–1375

2162, 2008.1376

[167] A. Sadighi and D. D. Ganji. Exact solutions of nonlinear diffusion equations by variational iteration method.1377

Computers & Mathematics with Applications, 54(7-8):1112–1121, 2007.1378

[168] M. Shaban, D. D. Ganji, and M. M. Alipour. Nonlinear fluctuation, frequency and stability analyses in free vibration1379

of circular sector oscillation systems. Current Applied Physics, 10(5):1267–1285, 2010.1380

[169] M. Shahidi, M. Bayat, I. Pakar, and G. Abdollahzadeh. On the solution of free non-linear vibration of beams. Int.1381

J. Phys. Sci, 6(7):1628–1634, 2011.1382

[170] F. Shakeri and M. Dehghan. Numerical solution of a biological population model using he’s variational iteration1383

method. Computers & Mathematics with Applications, 54(7-8):1197–1209, 2007.1384

[171] Y.Y. Shen and L.F. Mo. The max-min approach to a relativistic equation. Computers & Mathematics with1385

Applications, 58(11-12):2131–2133, 2009.1386

[172] L. Shijun. Homotopy analysis method: A new analytic method for nonlinear problems. Applied Mathematics and1387

Mechanics, 19.1388

[173] D. H. Shou. Variational approach to the nonlinear oscillator of a mass attached to a stretched wire. Physica Scripta,1389

77:45006, 2008.1390

[174] D. H. Shou. The homotopy perturbation method for nonlinear oscillators. Computers & Mathematics with Appli-1391

cations, 58(11-12):2456–2459, 2009.1392

[175] D.H. Shou. Variational approach for nonlinear oscillators with discontinuities. Computers & Mathematics with1393

Applications, 58(11-12):2416–2419, 2009.1394

Latin American Journal of Solids and Structures 1(2012) 1 – 93



92 Mahmoud Bayat et al / Recent developments of some asymptotic methods and their applications for nonlinear vibration

equations in engineering problems:A review

[176] A. M. Siddiqui, T. Haroon, S. Bhatti, and A. R. Ansari. A comparison of the adomian and homotopy perturbation1395

methods in solving the problem of squeezing flow between two circular plates. Mathematical Modelling And Analysis,1396

15(4):491–504, 2010.1397

[177] D. Slota and A. Zielonka. A new application of he’s variational iteration method for the solution of the one-phase1398

stefan problem. Computers & Mathematics with Applications, 58(11-12):2489–2494, 2009.1399

[178] S. Soleimani, A. Ebrahimnejad, M. Esmaeilpour, D. D. Ganji, and A. M. Azizkhani. Energy balance method to sub-1400

harmonic resonances of nonlinear oscillations with parametric excitation. Far East Journal of Applied Mathematics,1401

36(2):203–212, 2009.1402

[179] F. Soltanian, S. M. Karbassi, and M. M. Hosseini. Application of he’s variational iteration method for solution of1403

differential-algebraic equations. Chaos, Solitons & Fractals, 41(1):436–445, 2009.1404

[180] S.S.Rao. Mechanical vibrations. 1986.1405

[181] W. Sun, B. Wu, and C. Lim. Approximate analytical solutions for oscillation of a mass attached to a stretched1406

elastic wire. Journal of Sound and Vibration, 300(3-5):1042–1047, 2007.1407

[182] Z. L. Tao. The frequency-amplitude relationship for some nonlinear oscillators with discontinuity by he’s variational1408

method. Physica Scripta, (78):15004, 2004.1409

[183] Z.L. Tao. Frequency-amplitude relationship of nonlinear oscillators by he’s parameter-expanding method. Chaos,1410

Solitons & Fractals, 41(2):642–645, 2009.1411

[184] M. Tatari and M. Dehghan. On the convergence of he’s variational iteration method. Journal of Computational1412

and Applied Mathematics, 207(1):121–128, 2007.1413

[185] S. Telli and O. Kopmaz. Free vibrations of a mass grounded by linear and nonlinear springs in series. Journal of1414

Sound and Vibration, 289(4-5):689–710, 2006.1415

[186] W. Thomson. Theory of vibration with applications. Taylor & Francis.1416

[187] W. T. Thomson. Vibration theory and applications. Prentice-Hall, 1965.1417

[188] F. Tian and F. Austin. Application of he’s max-min approach to a generalized nonlinear oscillator. World Applied1418

Sciences Journal, 6(7):1005–1007, 2009.1419

[189] F. Tse, I. E, Morse, and RT Hinkte. Mechanical Vibrations. Theory and Applications. 1978.1420

[190] S. Q. Wang and J. H. He. Nonlinear oscillator with discontinuity by parameter-expansion method. Chaos, Solitons1421

& Fractals, 35(4):688–691, 2008.1422

[191] A. M. Wazwaz. The variational iteration method: a powerful scheme for handling linear and nonlinear diffusion1423

equations. Computers & Mathematics with Applications, 54(7-8):933–939, 2007.1424

[192] A. M. Wazwaz. The variational iteration method: A reliable analytic tool for solving linear and nonlinear wave1425

equations. Computers & Mathematics with Applications, 54(7-8):926–932, 2007.1426

[193] J. Wen and Z. Cao. Nonlinear oscillations with parametric excitation solved by homotopy analysis method. Acta1427

Mechanica Sinica, 24(3):325–329, 2008.1428

[194] R. Wu, J. Wang, J. Du, Y. Hu, and H. Hu. Solutions of nonlinear thickness-shear vibrations of an infinite isotropic1429

plate with the homotopy analysis method. Numerical Algorithms, pages 1–14, 2011.1430

[195] L. Xu. Application of he’s parameter-expansion method to an oscillation of a mass attached to a stretched elastic1431

wire. Physics Letters A, 368(3-4):259–262, 2007.1432

[196] L. Xu. Determination of limit cycle by he’s parameter-expanding method for strongly nonlinear oscillators. Journal1433

of Sound and Vibration, 302(1-2):178–184, 2007.1434

[197] L. Xu. He’s parameter-expanding methods for strongly nonlinear oscillators. Journal of Computational and Applied1435

Mathematics, 207(1):148–154, 2007.1436

[198] L. Xu. Application of hamiltonian approach to an oscillation of a mass attached to a stretched elastic wire.1437

Mathematical and Computational Applications, 15(5):901–906, 2010.1438

[199] M.K. Yazdi, Y. Khan, M. Madani, H. Askari, Z. Saadatnia, and A. Yildirim. Analytical solutions for autonomous con-1439

servative nonlinear oscillator. International Journal of Nonlinear Sciences and Numerical Simulation, 11(11):975–1440

980, 2010.1441

Latin American Journal of Solids and Structures 1(2012) 1 – 93



Mahmoud Bayat et al / Recent developments of some asymptotic methods and their applications for nonlinear vibration

equations in engineering problems:A review 93

[200] A. YIldIrIm. Determination of the frequency-amplitude relation for a duffing-harmonic oscillator by the energy1442

balance method. Computers & Mathematics with Applications, 54(7-8):1184–1187, 2007.1443

[201] A. Yildirim. Determination of periodic solutions for nonlinear oscillators with fractional powers by he’s modified1444
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