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Three‐Dimensional	Determination	of	Superposed	Helical	Wires	
Constraint	Ability	

Abstract	
A	 three‐dimensional	 theoretical	model	 for	 predicting	 the	maximum	 force	
sustained	 by	 a	 flexible	 line	 wound	 around	 a	 rigid	 cylindrical	 body	 is	
developed	based	on	Clebsch‐Kirchhoff	equilibrium	equations,	 considering	
its	bending	rigidity,	no	sliding,	modified	non‐linear	frictional	law	in	terms	
of	stress	and	an	external	pressure	exerted	on	the	line.	Likewise,	this	model	
is	extended	to	solve	the	constraint	problem	of	superposed	counter	wound	
helical	wires.	Results	given	by	4th	order	Runge‐Kutta	numerical	algorithm	
show	that,	except	 for	 the	 line	 thickness,	 the	constraint	ability	grows	with	
an	increase	of	other	geometric	parameters	and	external	pressure.	However,	
it	cannot	be	significantly	enhanced	by	applying	external	pressure	for	large	
initial	forces,	especially	when	there	is	an	initial	binormal	force.	
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1	INTRODUCTION	

Flexible	lines,	such	as	wires,	ropes	or	fibers,	wound	around	cylindrical	body,	are	capable	of	making	up	some	
useful	 devices	 in	 engineering	 applications.	 The	most	 likely	 device	 called	 capstan	 is	 used	 aboard	 ships	 or	 rope	
rescue	systems,	see	Figure	1‐A,	to	control	a	rope	under	significant	tension.	Besides,	another	very	common	device	
is	thermoplastic	wire	hose	which	is	unique	in	its	ability	to	undergo	large	internal	pressure.	The	basic	construction	
configuration	consists	of	an	 inner	core	with	 layers	of	helical	wires,	as	seen	 in	Figure	1‐B.	 In	order	 to	achieve	a	
torque	 stable	 design,	 the	wire	 layers	 are	wound	 in	 pairs	 at	 opposite	 directions.	When	 an	 internal	 pressure	 is	
exerted	 on	 a	 hose,	 apparently,	 the	 helical	wire	will	 be	 subjected	 to	 nearly	 equal	 tension	 stresses	 along	 its	 arc	
length	with	no	slide,	preventing	the	 inner	core	to	expand	radially.	However,	once	the	tension	 force	on	the	wire	
exceeds	the	maximum	value	that	can	be	held	due	to	the	capstan	effect,	the	wires	will	slide.	This	maximum	force	is	
henceforth	 defined	 as	 the	 constraint	 force.	 Similar	 constructions	 can	 also	 be	 found	 in	 flexible	 pipes	which	 are	
widely	used	in	the	offshore	industry	for	oil	and	gas	extraction	from	subsea	reservoirs,	and	many	efforts	have	been	
carried	out	 to	deal	with	the	structural	analysis	of	 the	armor	 layers	of	 flexible	pipes	 1‐4 .	For	all	 these	kinds	of	
structures,	estimating	the	constraint	force	and	then	evaluating	the	constraint	ability	are	important	to	ensure	their	
functional	integrity.	

Classical	capstan	formula,	referred	to	as	Euler’s	equation	of	tension	transmission,	relating	the	loading	force	

loadingF 	to	the	hold	force	 holdingF 	applied	at	two	ends	of	the	rope	is	expressed	as:	 loading holdingF F e ,	where	μ	is	

the	 coefficient	 of	 friction	 and	 θ	 denotes	 the	 contact	 angle	 of	 a	 cable	wrapped	 around	 a	 capstan,	 illustrated	 in	
Figure	1‐C.	This	equation	can	be	used	to	calculate	the	constraint	force	in	capstan	problem	and	it	is	obvious	that	a	
hold‐force	can	resist	a	much	higher	load‐force	due	to	the	friction	which	increases	exponentially	with	the	friction	
coefficient	and	the	contact	angle.	

Junpeng	Liu	a*	
Murilo	Augusto	Vaz	b	

*	a	Institute	for	Ocean	Engineering,	China	
University	of	Petroleum	 Beijing ,	Beijing,	China.	
Email:	liujpcup@gmail.com	
b	Ocean	Engineering	Program,	Federal	
University	of	Rio	de	Janeiro,	Rio	de	Janeiro,	
Brazil.	Email:	murilo@oceanica.ufrj.br	

*Corresponding	author	

http://dx.doi.org/10.1590/1679-78254085 

Received:	June	05,	2017	
In	Revised	Form:	September	08,	2017	
Accepted:	December	08,	2017	
Available	online:	February	05,	2018



Junpeng	Liu	et	al.	
Three‐Dimensional	Determination	of	Superposed	Helical	Wires	Constraint	Ability	

Latin	American	Journal	of	Solids	and	Structures,	2018,	15 3 ,	e27	 2/14	

	
Figure	1:	Examples	of	devices	based	on	capstan	effect	and	classical	capstan	equation	diagram	

In	spite	of	the	fact	that	the	Euler’s	equation	can	be	readily	employed	to	analyze	the	mechanical	behavior	of	
flexible	lines	in	contact	with	circular	profiled	surfaces	 5‐8 ,	it	shares	many	of	the	following	idealized	hypotheses,	
which	significantly	limit	the	applicability	range	of	the	results:	frictional	coefficient	is	constant	in	the	entire	wire;	
flexible	line	does	not	have	bending	rigidity;	no	deformation	occurs	when	loads	are	applied	on	both	ends.	

To	improve	the	equation’s	practicality,	many	research	studies	have	been	carried	out.	With	a	combination	of	
experiment	and	classical	capstan	equation,	Martin	and	Mittelmann	 9 	pointed	out	that	the	frictional	coefficient	of	
the	wool	fiber	approximately	reduces	up	to	50%,	if	the	initial	tension	is	increased.	Such	interesting	phenomenon	
has	 drawn	 attention	 and	 motivated	 research	 to	 confirm	 and	 explain	 it.	 Most	 interpretations	 are	 based	 on	
empirical	 approaches,	 but	 conclusion	 about	 friction	 drop	 behavior	 has	 been	 gradually	 accepted	 in	many	 areas	
such	as	polymer	and	tribology.	In	order	to	overcome	the	limitations	induced	by	empirical	work,	Howell	 10,	11 	
presented	 a	 non‐linear	 relationship	 between	 frictional	 and	 normal	 forces,	 however,	 the	 fact	 that	 the	 effects	 of	
bending	rigidity	were	neglected	and	the	relation	between	friction	and	capstan’s	radius	was	not	shown	limited	its	
reliability.	 Brown	 and	 Burgoyne	 12 	 put	 forward	 a	modified	 version	 of	 Howell’s	 equation	 in	 terms	 of	 stress,	
which	was	used	to	study	the	friction	and	wear	behavior	of	Kevlar	49.	Stuart	 13 	studied	the	capstan	problem	of	
strings	 considering	 the	 bending	 rigidity.	 Similarly,	 Wei	 and	 Chen	 14 	 conducted	 an	 approximate	 theoretical	
analysis	of	the	tension	increase	for	nonflexible	fibers	and	yarns	passing	around	a	peg.	 Jung	et	al.	 15 	derived	a	
generalized	capstan	equation	with	bending	rigidity	to	explain	the	tension	transmission	of	an	elastic	rod	gripped	
by	two	circular‐edged	plates	in	the	contact	region.	The	same	authors	 16 	improved	the	classical	capstan	equation	
by	adding	the	rod	bending	rigidity	and	a	power‐law	friction.	Parametric	analysis	showed	both	parameters	played	
a	significant	influence	on	the	tension	ratio.	On	the	authority	of	previous	model,	they	 17 	also	addressed	a	more	
comprehensive	study	considering	two	other	factors:	extensibility	and	the	Poisson’s	effect.	Gao	et	al.	 18 	proposed	
a	modified	capstan	equation	including	bending	rigidity	and	power‐law	friction	effects,	and	compared	numerical	
and	experimental	results.	Liu	and	Vaz	 19 	described	the	constraint	ability	of	superposed	woven	fabrics	wound	on	
capstan	by	updating	the	classical	capstan	equation	under	such	considerations:	modified	frictional	law	in	terms	of	
stress	and	external	pressure.	

Most	 of	 previous	 work	 has	 focused	 on	 two‐dimensional	 model	 comprehensively	 concerned	 on	 tension	
transmission	in	capstan	problems,	but	little	attention	has	been	paid	to	the	lateral	constraint	force	which	may	play	
an	 important	 role	 in	 engineering	 design.	 Moreover,	 it	 should	 be	 noted	 that	 external	 pressure	 exerted	 on	 the	
flexible	line	is	common	for	thermoplastic	wire	reinforced	hoses	or	flexible	pipes.	Besides,	it	is	easy	to	imagine	that	
mechanically	 applying	 external	 pressure	 can	 effectively	 improve	 the	 constraint	 ability.	 However,	 attempts	 to	
quantify	 the	 effect	 of	 external	 pressure	 on	 the	 capstan	 problem	 have	 not	 yet	 been	 highlighted.	 Therefore,	 the	
objective	 of	 this	 study	 is	 to	 combine	 the	 effects	 of	wire’s	 bending	 rigidity,	 non‐linear	 friction	 law	 and	 external	
pressure	in	a	three‐dimensional	model	for	capstan	problem	employing	Clebsch‐Kirchhoff	equilibrium	equations	
for	 a	 spatial	 rod	 to	 accurately	 generate	 the	 helical	 wire	 constraint	 force	 as	 a	 function	 of	 its	 arc	 length.	
Furthermore,	 this	 three‐dimensional	 model	 also	 leads	 to	 a	 method	 to	 determine	 the	 constrain	 ability	 of	
superposed	 layers.	 Likewise,	 in	 this	 paper,	 observations	 from	 a	 comprehensive	 case	 study	 indicate	 the	 most	
influential	parameters	in	the	model.	
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2	MATHEMATICAL	MODEL	

Consider	an	 idealized	 three‐dimensional	helical	 configuration	shown	 in	Figure	2.	The	wire	cross‐section	 is	
usually	circular	or	rectangular	 in	this	paper,	the	cross‐section	is	assumed	rectangular	with	thickness	H	and	width	
W ,	being	wound	with	a	helical	angle	α	around	a	rigid	cylinder	whose	radius	is	R.	As	a	consequence	from	friction	
force	between	wire	and	cylinder	contact	surfaces	the	wire	can	remain	fixed.	In	order	to	establish	the	distribution	
of	 the	 maximum	 force	 sustained	 by	 the	 wire,	 consider	 a	 local	 coordinate	 system	 where	 t,	 b,	 n	 respectively	
represent	tangential,	binormal	and	normal	directions.	When	the	wire	is	subjected	to	a	force	generated	by	device	
or	resulting	from	internal	pressure,	a	critical	force	F	must	not	be	exceeded	to	avoid	the	wire	slip.	

	
Figure	2:	Diagram	of	a	single	wire	wound	around	a	rigid	cylinder	 A:	a	pitch	is	defined	as	s0	and	friction	law	is	

introduced;	B:	local	coordinate	system	and	curved	wire	equilibrium. 	

It	is	clear	that,	in	addition	to	tangential	force	Ft	dominating	the	wire	equilibrium	status,	stick	or	slip,	another	
relevant	component	is	binormal	force	Fb	which	is	important	to	determine	whether	the	wire	can	slip.	Note	that	an	
arc	 length	 dependent	 force	 acts	 on	 the	 wire	 causing	 the	 helical	 angle	 to	 vary.	 Given	 this	 variation	 is	 often	
relatively	small,	for	the	purpose	of	a	simplified	analysis	let	the	helical	angle	α	be	constant.	Moreover,	attention	is	
confined	to	systems	assumed	geometric	linearity.	

Geometry	

The	curvature	components	 t n bk ,  k ,  k 	for	a	wire	shown	in	Figure	2	can	be	written	as:	
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where	the	subscripts	t,	n,	b	respectively	denote	tangential,	normal	and	binormal	directions.	
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Force	analysis	

The	equilibrium	equations	for	long	slender	curved	rods	 Love	 20 	and	Reissner	 21 	have	a	wide	range	of	
applications	in	applied	mechanics:	

0,  0
dF dM

f t F m
ds ds

      	 	 2 	

where	f	and	m	respectively	denote	the	distributed	friction	force	and	moment.	
Substitution	 of	 loads	 and	 curvature	 components	 in	 local	 coordinate	 system	 into	 Eq. 2 	 gives	 the	 Clebsch‐

Kirchhoff	equilibrium	equations:	
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Let	E	and	G	respectively	be	the	elastic	and	shear	moduli,	so	the	bending	moment	components	on	the	cylinder	
cross‐section	in	terms	of	corresponding	stiffness	and	curvature	variations	are	given	by:	
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Disregarding	change	in	the	initial	wire	configuration	yields,	 0     t n bk k k thus	Eq. 4 	becomes:	

0t n bM M M   	 	 5 	

Therefore:	

0n b tdM dM dM

ds ds ds
   	 	 6 	

As	the	distributed	friction	force	f	exists,	there	must	be	moment	balance	in	the	wire	cross‐section.	Although	
the	normal	distributed	moment	is	difficult	to	envisage,	the	other	two	components	can	be	expressed	in	the	form:	

.
2t b

H
m f  	 a 	 	

.
2b t

H
m f  	 b 	 7 	

When	Eq. 5 	and	 6 	are	substituted	 into	Eq. 3‐d ,	 the	 tangential	distributed	moment	mt	 is	zero,	 implying	
that	there	is	no	distributed	friction	force	in	binormal	direction,	i.e.	fb 0.	
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Friction	law	

In	 this	 paper,	 a	 non‐linear	 friction	 law	 in	 terms	 of	 stress	 is	 taken	 into	 consideration.	 Suppose	 the	 contact	
pressure	between	wire	 and	 cylinder	 is	σ ,	which	 is	 the	 sum	of	 tension‐dependent	pressure	 component	 nσ 	and	

tension‐independent	 pressure	 or	 external	 pressure 	 p 	as	 shown	 in	 Figure2‐A.	 Let	 a	 and	 b	 correspond	 to	

material	friction	constants	which	are	experimentally	determined,	and	friction	stress	is	characterized	by	 bτ aσ
stick 	or	 bτ aσ slip ,	so	the	distributed	normal	force	 nf 	and	friction	force	 tf 	are	respectively	given	by:	

n nf W  		 a 	 	

( )b
t n pf a W    	 b 	 8 	

where	both	 n 	and	 p 	are	the	absolute	value	of	the	pressure.	

Constraint	force	components	‐	arc	length	relation	

Expressions	for	the	force	components,	found	by	substituting	Eq. 5 ,	 6 ,	 7 	and	 8 	into	Eq. 3 ,	are:	
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To	solve	this	set	of	differential	equations,	initial	conditions	are	assumed	to	be:	

     0 0 0| 0 ,   | 0 ,    | 0t s t n s n b s bF F F F F F     	

More	 generally,	  tF 0 	is	 significantly	 larger	 than	 the	 other	 two.	 Considering	 engineering	 applications,	

several	observations	can	be	made	about	the	constraint	force	components	from	Eq. 9 :	

1. As the value of  2
sinα / R 2 / H    is obviously less than zero, the value of normal force must be negative to ensure that the 

tangential constraint force increases along arc length. In fact, it is easy to understand this state in accordance with the normal 
direction supposed in the local coordinate system. 

2. The interaction among the three constraint force components is complicated, which cannot be ruled directly by analytical expressions, 
except for particular cases. 

3. The helical angle poses an important role on determining the growth of each force component. For instance, in Eq.(9-c), it affects the 

monotonicity of bdF / ds  and the critical point is at α 45  . 

4. Additional information about the initial conditions and helical angle can be obtained from Eq.(9), by making use of ndF / ds 0 : 
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That	is	to	say,	once	the	initial	conditions	about	the	force	components	are	given,	in	the	process	of	engineering	
design,	 the	helical	angle	must	satisfy	the	requirements	shown	in	Eq. 10 .	For	cases	without	 initial	normal	 force	
and	external	pressure,	i.e.	  nF 0 0  	and	 pσ 0  ,	the	minimum	angle	reduces	to:	
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Next,	consider	the	special	case	of	linear	friction	law,	i.e.	b 1.	Taking	the	derivative	of	Eq. 9‐b 	and	combining	
Eq. 9‐a,c ,	a	second	order	differential	equation	in	terms	of	normal	force	Fn	is	obtained:	

 22
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sin2 2 1
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Because	 the	 characteristic	 equation	 of	 Eq. 12 	 must	 have	 two	 real	 roots,	

 22
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. . ,i e x x
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,	then	the	solution	for	normal	force	is	given	by:	

  1 2
1 2

x s x s
nF s C e C e  	

The	constants	 1C 	and	 2C 	can	be	obtained	through	the	following	two	initial	conditions:	
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Expressions	for	the	tangential	and	binormal	forces	can	be	obtained	by	integrating	Fn	from	the	initial	position	
0	 to	 s	 and	 considering	 the	 initial	 conditions,	 then	multiplying	 the	 corresponding	 parameters	 shown	 in	 Eq. 9 .	
Finally,	the	analytical	solutions	are:	
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Where	 3C 	and	 4C 	are	constants	determined	by	initial	conditions:	  t s 0 tF | F 0  	and	  b s 0 bF | F 0  .	

In	 summary,	 when	 the	 constraint	 force	 components	 are	 calculated	 through	 the	 three‐dimensional	 model	
considering	either	 linear	 frictional	 law	or	non‐linear	one,	 the	constraint	ability	defined	as	 tension	 transmission	
efficiency	can	be	categorized	into	two	classifications:	tangential	ratio	and	resultant	force	ratio,	respectively,	which	
can	be	expressed	as:	
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In	addition,	combining	Eq. 3‐f ,	 7‐b 	and	 8‐b ,	the	normal	force	Fn	can	be	written	as:	

( ) .
2

b
n n p

H
F a W    	 	 15 	

Hence,	the	contact	stress	σn	in	terms	of	Fn	is	found	to	be:	
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which	is	key	information	used	in	the	following	analysis.	
In	 addition,	 a	 two‐dimensional	model	 for	 predicting	 the	 constraint	 ability	 of	 a	 traditional	 capstan	 device	

considering	the	bending	rigidity	and	power‐law	friction	effects	can	be	easily	deduced	as	a	particular	case	from	the	
three‐dimensional	model	presented	herein,	based	on	the	following	assumptions:	
1. The wrapping angle is φ , so ds Rdφ  

2. The curvature components respectively become t n b

1
k 0,  k ,  k 0

R
   . 

3. Forces in binormal direction become zero. 
Consequently,	the	relationship	between	the	force	components	are:	
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It	should	be	noted	that	Eq.	 17 	is	similar	to	the	equations	 30 	and	 31 	shown	in	Gao	et	al.	 18 ,	except	the	
sign	of	 nF 	due	to	adopted	directions.	As	experimental	work	performed	in	 18 	has	indicated	the	results	show	good	

agreement	with	formulation.	

The	constraint	ability	of	superposed	helical	wires	

When	two	layers	consisting	of	several	wires	are	wound	in	pairs	with	opposite	angles	and	are	assembled	into	
a	composite	structure	as	shown	in	Fig	1‐B,	each	wire	in	the	internal	layer	contacts	all	wires	in	the	external	layer	
and	the	interaction	of	two	layers	influences	the	constraint	abilities.	Suppose	that	the	near	wires	in	each	layer	are	
so	close	that	the	contact	stress	is	assumed	continuous	along	arc	length.	In	addition,	the	geometric	parameters	and	
frictional	coefficients	of	each	wire	are	assumed	to	be	the	same.	

	
Figure	3:	Diagram	of	one	superposed	helical	wires	

For	 convenience	 in	 presentation,	 it	 is	 common	 practice	 to	 choose	 two	 wires	 which	 are	 substantially	
symmetrical	about	the	center	from	internal	and	external	 layers	for	analysis,	as	shown	in	Figure	3.	Although	the	
contact	 area	 between	 these	 two	wires	 is	 small	 and	 discontinuous,	 given	 the	 geometric	 symmetry,	 the	 contact	
stress	at	point	A	generated	by	the	external	layer	is	equal	to	the	stress	acted	on	the	internal	layer	at	point	B	which	
plays	a	 role	of	 external	pressure.	That	 is	 to	 say,	 if	 the	external	wire	 is	 subjected	 to	 force,	 the	 contact	 stress	σn	
along	with	its	arc	length	must	occur,	which	is	equivalent	to	apply	an	external	pressure	on	the	internal	wire.	
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Accordingly,	using	Eq. 9 	and	 16 ,	the	constraint	ability	of	both	external	and	internal	wires	can	be	obtained	
by	the	following	differential	equations:	
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where	 superscripts	 1	 and	 2	 in	 force	 components	 respectively	 denote	 the	 external	 and	 internal	 layers,	 and	 the	
initial	conditions	are:	

     
     

1 1 1 1 1 1
0 0 0

2 2 2 2 2 2
0 0 0

| 0 ,  | 0 ,  | 0

| 0 ,  | 0 ,  | 0

t s t n s n b s b

t s t n s n b s b

F F F F F F

F F F F F F

  

  

  

  
	

3	RESULTS	AND	DISCUSSIONS	

The	key	to	calculate	the	constraint	ability	of	a	single	helical	wire	wound	on	a	rigid	cylinder	is	to	obtain	the	
maximum	force	that	can	be	withstood	by	the	wire	for	ensuring	no	slip.	The	force	can	be	respectively	decomposed	
into	 three	 components	 along	 tangential,	 binormal	 and	 normal	 directions,	 and	 the	 first	 two	 components	 are	 of	
interest	in	engineering	applications.	The	first	purpose	of	this	section	is	to	calculate	constraint	force	components	
through	 the	 three‐dimensional	 model	 mentioned	 above	 and	 discuss	 how	 those	 results	 differ	 from	 the	 ones	
obtained	 if	 bending	 rigidity	 is	 disregarded.	 The	 interaction	 among	 those	 three	 constraint	 force	 components	 as	
seen	in	Eq. 9 	makes	it	a	little	difficult	to	distinguish	parametric	effects,	to	do	so,	case	studies	corresponding	to	
numerous	parameters	 such	 as	 geometry,	 friction	 and	external	 force	 are	performed.	Moreover,	 it	 is	 shown	 that	
when	 a	 layer	 consisting	 of	 several	 wires	 is	 overlapped	 by	 another	 layer,	 its	 constraint	 ability	 is	 significantly	
increased.	 This	 is	 illustrated	 by	 considering	 two	 important	 sets	 of	 application:	 a	 single	wire	 wound	 around	 a	
cylinder	and	two	layers	composed	of	several	helical	wires.	
1) Single wire wound around rigid cylinder 

Consider	 a	 helical	wire	 and	 a	 cylinder	which	 are	 assembled	 as	 shown	 in	 Figure	 2.	 The	 helical	wire	 has	 a	
rectangular	 cross‐section	 width	W 0.03m	 and	 thickness	 H 0.005m 	 and	 is	 wound	 in	 a	 helical	 angle	 α π/4	
around	a	cylinder	whose	radius	is	R 0.1m.	The	parameters	related	to	friction	law	are	assumed	to	be	a 0.4	and	
b 0.9.	 Suppose	 that	 there	 is	 only	 one	 tangential	 force	 exerted	 on	 the	 wire	 at	 s 0,	 i.e.	 Ft 0 1N,	 and	
Fb 0 Fn 0 0N.	

Substituting	the	above	parameters	into	Eq. 9 	and	using	4th	order	Runge‐Kutta	numerical	method,	results	of	
constraint	 force	components	carried	out	with	 two	external	pressure	cases,	σp 0Pa	and	σp 10Pa	are	shown	by	
solid	lines	in	Figure	4.	

In	 the	 previous	 model	 without	 considering	 wire	 bending	 rigidity,	 constraint	 forces	 in	 both	 normal	 and	
binormal	directions	 are	neglected	due	 to	 their	 relatively	 small	 values.	The	 expressions	of	 tangential	 constraint	
force	for	linear	and	non‐linear	friction	law	 b 1 or	 b 1 	are	 22 :	
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Combining	the	given	parameters	and	Eq. 19 ,	the	dot	lines	in	Figure	4	show	the	tangential	constraint	force	
which	 is	 larger	 than	 the	 one	 given	 by	 the	model	 considering	 bending	 rigidity.	Meanwhile,	 neither	 normal	 nor	
binormal	forces	are	shown	in	Figure	4	as	they	are	assumed	to	be	zero	in	this	model.	

The	 largest	 difference	 between	 those	 two	 models	 is	 that	 the	 three‐dimensional	 model	 has	 the	 ability	 to	
provide	the	normal	and	binormal	constraint	forces,	although	their	values	are	very	small,	they	are	indeed	capable	
of	 affecting	 the	 tangential	 force	 and	are	useful	 for	 engineering	 applications	 in	which	 some	accidental	 forces	 in	
normal	or	binormal	directions	are	inevitable.	

	
Figure	4:	Comparison	of	constraint	force	components	generated	by	two	different	models	 W 0.03m,	H 0.005m,	

α π/4,	a 0.4,	b 0.9,Ft	 0 	 1N,	and	Fb 0 Fn 0 0N 	

A	smaller	tangential	force	given	by	three‐dimensional	model	may	result	because	part	of	friction	force	is	used	
to	balance	 the	normal	 and	binormal	 forces.	The	diagram	 in	Figure	4‐B	 shows	 that	 the	normal	 constraint	 force	
instantaneously	increases	from	0	to	a	certain	value	at	s 0,	taken	from	the	numerical	method	where	the	gradient	
growth	 ndF / ds 	is	not	zero	at	 the	 first	 length	step,	and	then	grows	gradually	 in	absolute	value.	For	the	models	

considering	 or	 not	 the	 bending	 rigidity,	 the	 external	 pressure	 exerted	 on	 a	wire	 is	 equivalent	 to	 increase	 the	
friction	force.	Consequently,	the	constraint	ability	must	increase	and	changes	 in	the	position	far	from	the	initial	
point	s 0	becomes	more	obvious.	

	
Figure	5:	Effect	of	initial	force	value	on	the	constraint	ability	of	helical	wire	at	s 4s0	 W 0.03m,	H 0.005m,	α π/4,	

a 0.4,	b 0.9,Ft	 0 	 1N,	and	Fb 0 Fn 0 0N 	
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Now	consider	several	cases	which	illustrate	the	role	of	some	parameters	affecting	the	constraint	ability.	To	
characterize	the	effects	of	initial	tangential	force,	results	of	constraint	ability	on	the	length	of	4	pitches	 4s0 	are	
shown	in	Figure	5‐A,	while	varying	the	radius	of	cylinder	from	0.05m	to	0.125m.	Clearly,	the	length	of	4	pitches	is	
proportional	 to	 the	 radius.	Although	 the	constraint	ability	 for	each	case	 increases	with	 the	growing	 radius,	 the	
case	of	smallest	initial	force	Ft 0 0.1N	has	the	fastest	growth	rate.	It	is	well	known	that,	compared	to	the	largest	
initial	 force	Ft 0 100N,	 the	 friction	 force	 is	 relatively	 small	 and	cannot	easily	dominate	 the	constraint	ability.	
Figure	5‐B	indicates	that	external	pressure	σp	ranging	from	0	to	100Pa	almost	does	not	influence	the	constraint	
ability	at	s 4s0	for	a	case	of	relatively	large	initial	tangential	force	Ft 0 ,	however,	for	same	external	pressure,	the	
smaller	the	initial	force,	the	greater	the	constraint	ability.	In	summary,	situation	of	smaller	Ft 0 	is	more	sensitive	
on	radius	and	external	pressure.	

	
Figure	6:	Effect	of	frictional	parameter	and	helical	angle	on	the	constraint	ability	of	helical	wire	 W 0.03m,	H 0.005m,	

a 0.4,Ft	 0 	 1N,	Fb 0 Fn 0 0N,	A:α π/4,	B:b 0.9 	

The	third	strong	factor	affecting	the	constraint	ability	is	coefficient	parameter	b,	which	is	readily	related	to	
the	 contact	 situation	 between	 wire	 and	 cylinder.	 The	 constraint	 ability	 increases	 with	 a	 rise	 of	 frictional	
parameter	b.	It	has	the	largest	value	when	linear	frictional	law	is	considered	in	the	model.	

Not	less	important	than	the	influence	of	frictional	parameter	is	the	effect	of	helical	angle.	The	variation	of	the	
constraint	ability	Tt	with	arc	length	s	for	different	values	of	α	is	shown	in	Figure	6‐B.	At	the	same	arc	length,	the	
larger	the	helical	angle	is,	the	higher	is	the	constraint	ability.	This	conclusion	can	also	be	derived	from	Eq. 9‐a 	
where	all	gradient	growth	of	force	components	maintain	monotonically	increasing	relationship	with	helical	angle.	
That	is	why,	shown	in	Figure	6‐B,	the	constraint	ability	at	α π/3	increases	faster	than	the	other	three	smaller	α.	

Shown	 in	 Figure	 7,	 H	 and	 W,	 are	 geometric	 parameters	 of	 helical	 wire	 which	 affect	 the	 tangential	 and	
binormal	 constraint	 force.	 It	 is	 seen	 that	 a	 thinner	wire	 can	 provide	 a	 larger	 tangential	 constraint	 force	 Ft.	 In	
contrary,	higher	binormal	constraint	force	Fb	needs	a	thicker	wire.	When	the	thickness	rises	from	H 0.005m	to	
H 0.010m	and	0.015m,	 the	 tangential	 constraint	 force	at	 s 4s0	will	be	 reduced	6.2%	and	12.1%	respectively,	
while	 the	 binormal	 constraint	 force	 will	 increase	 89.6%	 and	 169.5%.	 In	 a	 word,	 influence	 of	 thickness	 on	 Fb	
appears	to	be	greater	than	on	Ft.	

Unlike	 the	 influence	 of	 thickness	 on	 Ft	 and	 Fb,	 increasing	 the	 width	 of	 helical	 wire	 can	 improve	 both	
constraint	 forces.	The	 changes	 in	 constraint	 force	will	 be	more	obvious	 if	 an	external	pressure	 is	 applied	on	 a	
wider	wire.	
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Figure	7:	Effect	of	thickness	and	width	of	helical	wire	on	constant	force	components	 R 0.1m,α π/4,	a 0.4,b 0.9,	Ft	

0 	 1N,Fb 0 Fn 0 0N,	A:	W 0.03m;	B:	H 0.005m 	

	
Figure	8:	Effect	of	different	kinds	of	initial	force	components	on	the	constraint	force	 W 0.03m,	H 0.005m,	R 0.1m,	

α π/4,	a 0.4,	b 0.9 	

In	 this	 three‐dimensional	model,	 the	 type	of	 initial	 force	cannot	only	 include	 the	nonzero	 initial	 tangential	
force	Ft 0 ,	but	 also	 contain	 the	other	 two	non‐zero	 force	 components	 as	well.	Results	 of	 tangential	 constraint	
force	in	case	of	three	kinds	of	initial	force	are	shown	in	Fig	8‐A.	Compared	with	the	case	of	only	Ft 0 ,	either	initial	
normal	force	or	binormal	force	is	applied,	the	constraint	tangential	force	Ft	can	be	significantly	reduced.	The	blue	
lines	 correspond	 to	 the	 results	 of	 applying	 tangential	 and	 binormal	 forces	 together,	 making	 it	 clear	 that	 the	
tangential	 constraint	 force	 nearly	 does	 not	 increase	 along	 wire	 arc	 length	 unless	 when	 applying	 an	 external	
pressure.	On	base	of	 this	condition,	 if	another	 initial	normal	 force	 is	added,	 the	 tangential	 constraint	 force	will	
markedly	 increase,	 as	 shown	by	 the	orange	 lines	 in	Fig	8‐A.	Fig	8‐B	shows	 the	 resultant	 constraint	 force	being	
essentially	 coincident	with	 the	 tangential	 one,	 which	 again	 indicates	 that	 the	 binormal	 and	 normal	 constraint	
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forces	are	relatively	small.	This	conclusion	can	also	be	indicated	by	the	angle	variation	between	force	components	
and	resultant,	shown	in	Figure	8‐C.	As	the	arc	length	rises,	the	angle	between	binormal	force	and	resultant	force	
tends	to	90	degree,	while	the	angle	between	tangential	force	and	resultant	force	is	close	to	0	degree.	
2) Two layers consisting of several wires wound around a rigid cylinder 

Suppose	both	external	and	internal	wires	have	the	same	geometric	 W 0.03m	and	H 0.005m 	and	frictional	
parameters	 a 0.4	and	b 0.9 .	Only	 tangential	 initial	 force	 is	applied	on	 the	 initial	position	s 0	and	the	other	
two	components	are	zero.	Solutions	about	constraint	 force	component	can	also	be	given	by	means	of	4th	order	
Runge‐Kutta	 numerical	method	 for	 two	 cases:	 σp 0Pa	 and	 σp 100Pa,	 shown	 in	 Figure	 9.	 Both	 tangential	 and	
binormal	constraint	 forces	 in	 internal	 layer	are	much	 larger	 than	the	one	 in	external	 layer	due	 to	 the	“external	
pressure”	generated	by	the	external	layer.	

	
Figure	9:	Constraint	force	components	of	supposed	helical	wire	 W 0.03m,	H 0.005m,	R 0.1m,	α π/4,	a 0.4,	b 0.9,	

Ft	 0 	 1N,	Fb 0 Fn 0 0N 	

4	CONCLUSIONS	

On	basis	of	Clebsch‐Kirchhoff	equilibrium	equations,	a	new	three‐dimensional	model	accurately	taking	into	
account	 the	 bending	 rigidity,	 non‐linear	 frictional	 law	 and	 external	 pressure	 has	 been	 proposed	 for	 capstan	
problem,	suitable	for	a	wide	range	of	engineering	applications.	Compared	to	existing	models,	it	not	only	provides	
the	 tangential	 force	 characterizing	 the	 constraint	 ability	 of	 a	 helical	 wire	 wound	 around	 a	 rigid	 cylinder,	 but	
normal	and	binormal	constraint	forces	can	also	be	observed.	Meanwhile,	as	regard	to	the	external	pressure,	this	
model	 can	be	 improved	 to	 evaluate	 the	 constraint	 ability	 of	 overlapped	helical	wires	 in	 a	 composite	 structure.	
According	to	the	formulation	of	this	three‐dimensional	model,	many	parameters	which	are	relevant	to	geometry,	
friction	law	and	initial	force	conditions	can	be	important	to	determine	the	constraint	ability.	To	distinguish	these	
parametrical	 effects,	 numerous	 case	 studies	 are	 carried	 out.	 Results	 show	 that	 thicker	 wires	 can	 offer	 larger	
binormal	constraint	forces,	but	the	tangential	forces	are	reduced,	i.e.	the	system	constraint	ability	is	compromised.	
Wider	wire	is	beneficial	to	improve	both	tangential	and	binormal	constraint	forces.	In	addition,	although	applying	
external	 pressure	 indeed	 enables	 the	 helical	 wire	 to	 increase	 the	 constraint	 ability,	 its	 effectiveness	 critically	
depends	on	the	initial	force	conditions.	Especially,	the	case	of	only	smaller	initial	tangential	force	is	substantially	
influenced.	Likewise,	the	constraint	ability	grows	with	increasing	cylinder	radius,	frictional	coefficients,	as	well	as	
the	wire	 helical	 angle	which,	 of	 course,	 should	 be	 located	 at	 a	 suitable	 range	 for	 the	 functional	 integrity.	 It	 is	
evident	that	both	cross‐section	wire	size	and	helical	angle	are	of	importance	for	achieving	accurate	results.	Thus,	
the	deformation	of	wire	along	the	arc	length	including	cross‐section	and	helical	angle	must	be	further	considered.	
It	 should	 be	 noted	 that	 even	 though	 only	 wires	 with	 rectangular	 cross	 sections	 have	 been	 considered	 in	 this	
model,	 however,	 the	 constraint	 ability	 of	 circular	 cross	 sections	 can	 be	 also	 easily	 obtained	 by	 equivalently	
transferring	 its	geometric	parameters.	For	example,	assume	the	diameter	of	a	circular	cross	section	 is	d,	so	the	
constraint	ability	of	a	yarn	can	be	calculated	by	just	replacing	the	parameters	in	the	model	as	follows:	H d	and	
W ad	 0 a πd/2 .	 Finally,	 despite	 the	 fact	 that	 this	 new	 three‐dimensional	 model	 is	 able	 to	 predict	 the	
constraint	ability	of	the	structure	based	on	capstan	effects	and	that	two‐dimensional	formula,	similar	to	a	model	
presented	 and	 assessed	 by	 experiment	 in	 Gao	 et	 al.	 18 ,	 may	 be	 derived	 from	 this	 3D	 model,	 it	 still	 needs	
experimental	assessment	and	verification.	
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