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Abstract 

A novel Normal and Shear Deformation Theory (NSDT) for anal-

ysis of laminated composite and sandwich beams, taking into 

account shear deformation as well as normal deformation, is de-

veloped. The paper investigates flexural behaviors of thick lami-

nated and sandwich beams under plane stress conditions using 

NSDT. A generalized displacement-based refined formulation is  

elucidated with inclusion of various warping functions in terms of 

thickness coordinates to represent shear and normal deformation 

effects. These effects become pronounced in thick laminated beams 

and particularly in sandwich beams with transversely flexible core. 

Present formulation satisfies the shear stress free surface condi-

tions at the top and bottom surfaces of the beam with realistic 

through-the-thickness variation of transverse shear stresses. The 

results obtained are compared with higher order theories available 

in literature.  It is observed that NSDT predicts displacement and 

stresses accurately compared to other higher order theories. 

 

Keywords: Shear deformation, transverse flexibility, laminated 

thick beam, sandwich beam, transverse shear stress. 
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1 INTRODUCTION 

Laminated composite structures are used in many engineering applications such as aerospace, au-

tomotive, and marine engineering. Laminated composites have high strength to weight ratio making 

it ideal for such applications. In early 18th century Euler and Bernoulli presented Elementary Beam 

Theory (EBT), which disregard the effect of shear deformation and consequently under predicts 

deflections and over predicts natural frequencies and buckling load. This results in an inaccurate 

local as well as global response of the structures. Many efforts have been carried out since last few 

decades to accurately assess the response of laminated composites. 
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 Timoshenko (1921) pioneered development of kinematics by allowing linear shear deformation in 

thickness direction of beams together with rotatary inertia. However, due to kinematics of defor-

mation of the theory, the transverse shear strain is constant through-the-thickness, violating shear 

stress free surface conditions. Shear correction factor needs to be employed for appropriate represen-

tation of strain energy of deformation. It depends on material and geometric properties as well as 

loading and boundary conditions. Shear correction factor can be eliminated by using proper higher 

order theories so as to satisfy shear stress free boundaries. Lo et.al. (1977)  proposed the expansion 

of displacement functions in terms of various powers of thickness coordinates. Using this approach, 

Levinson (1981), Bickford (1982) Khdier and Reddy (1997) presented third order theories for 

beams. A new class of theories higher than third order was formulated by Kant and Manjunath 

(1989), Manjunath and Kant (1993). Equivalent single layer, displacement based, strain consistent 

higher-order shear deformation theory for analysis of symmetric and unsymmetric laminated beams 

has been used by Zenkour (1999). 

 To improve the accuracy of the transverse stress prediction, layer-wise higher-order theories 

based on assumed displacements for individual layers, have been developed and used by Shimpi and 

Ghugal (1999), Carerra et.al. (2013), Frostig et.al. (1992), Kapuria et.al. (2004). Layerwise theories 

are layer dependent and the number of degrees of freedom involved is very high and hence these 

theories computationally complicated. 

 Bambole and Desai (2007) have formulated hybrid interface finite element for laminated compo-

site and sandwich beams. Each lamina is modeled using hybrid interface element at at the top and 

bottom lamina interfaces. Desai and Ramtekkar (2002) developed a two dimensional (2D) mixed 

finite element (FE) model through the thickness of a laminate under the plane stress condition of 

elasticity using principle of minimum potential energy. Continuity of transverse stresses and dis-

placement fields has been enforced through the thickness direction. Recently, Kant et.al. (2007) 

proposed semi-analytical method for analysis employing transformation of boundary-value problem 

to a set of initial value problems.  

 The classical theories assume that the cross-section normal to the neutral axis remain plane after 

deformation. It leads to gross error in predicting displacements and stresses in thick beams and 

laminated composites and become significantly pronounced in case of sandwich beams with trans-

versely flexible core; especially in vicinity of singular conditions like supports and concentrated 

loads. 

 It has been observed from the available open literature that many researchers have not incorpo-

rated the normal deformability in their formulations. This hypothesis leads the beam sections to be 

normally unstrained and thereby height of the beams remains unaffected under different support 

conditions and loading conditions as discussed by Vinson (1975). However, it can be deduced from 

study of elasticity that under specific load conditions such as concentrated loads or partially dis-

tributed loads, the normal deformation in the vicinity of the load is quite high for transversely flex-

ible core as shown by Allen (1969). Comparison of deformation of sandwich beam with stiff core 

and transversely flexible core is illustrated in Figure 1. 
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Figure 1: Deformation of sandwich beam (a) stiff core and (b) soft core, under localized loads. 

 

In the present work, a novel, generalized Normal and Shear Deformation Theory (NSDT) is devel-

oped for incorporating shear deformations as well as normal deformations. The present theory is 

based on variational principles and consistent formulations are derived accordingly.The mathemati-

cal formulation and the solution with appropriate boundary conditions are discussed in the next 

section. Further, numerical examples are presented for validation and efficacy of the present theory.

  
2 THEORETICAL FORMULATION 

The theoretical formulation of a shear deformation theory for beam based on certain kinematical 

and physical assumptions is presented. The principle of virtual work is used to obtain the governing 

differential equations and the associated boundary Conditions.  

 The theoretical formulation of the normal and shear deformation theory (NSDT) for laminated 

composite and sandwich beams founded on kinematic and physical mechanism with consistent 

mathematical basis, is presented.  

 The beam under consideration occupies the region given as: 0 ; 2 2;x L b y b and 

2 2h z h . Domain of the beam and typical laminate configuration is shown in Figure 2.  

 

 
 

Figure 2: Beam in plane stress condition subjected to transverse loading and its geometry. 
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2.2 Selection of Kinematics  

It is a prerequisite to select a kinematics such that it should satisfy stress-free boundary conditions 

at the top and bottom of the beam. It is apparent that higher order terms with thickness coordinate 

needs to be an odd function for pertinent representation of transverse shear stresses through-the-

thickness of the beam; such that,  
 

z z
f f
h h

and 
z z

f f
h h

 
(1) 

 

Selection of even functions in higher order terms leads to shear traction along the top and bottom 

surfaces of the beams, violating the conditions of stress-free boundaries.  

 The generalized displacement field for the present NSDT is given as, 

  

0 x zU = u z w , + 1
0 2

, z

h
x z x f h f x  (2) 

 

W = w 1
0 2

, z

h
x z x f f x  (3) 

 

Rewriting, 

0 xU = u z w , +0,x z x x  (4) 

0,x z x xW = w  (5) 

 

where, U is the inplane displacement components in x direction, and W is the transverse displace-

ment in the z direction. As stated in the foregoing discussion, the function  can be selected as any 

appropriate odd function. Specific warping functions used in the present study are enlisted            

in Table 1. 

 In case of the present NSDT, it is noteworthy that coefficient of x  is a derivative of coeffi-

cients of shear slopes and its inclusion leads to non-trivial solution of traction-free boundaries. 

 
2.3 Warping Functions 

Accuracy of a refined theory depends on the selection of the warping function incorporated in the 

kinematics of the theory. Foremost attempt to include warping function is made by Reissner (1975) 

with a cubic form. Panc (1975) discussed this theory comprehensively in his monogram on theories 

of elastic plates. Ambartusmian (1958) presented a different variant of cubic function to represent 

warping. Levinson (1980) and Murthy (1981) proposed a simplified parabolic warping functions; 

with later developments by Reddy (1984). Arbind et.al. (2014) developed modified couple stress-

based third-order theory for nonlinear analysis of functionally graded beam. Touratier (1991) em-

ployed trigonometric functions; whereas Soldatos (1992) used hyperbolic functions and Karama 

et.al. (2003) used exponential functions to characterize warping of cross-section. 
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 Albeit several attempts are made to incorporate the warping function, these theories do not con-

sider normal deformability in formulations; which is significant especially in sandwich beams with 

transversely flexible cores. This paper presents a novel theory which in its generalized form includes 

warping of cross sections together with normal deformability. 
 

 Model 

Warping Functions 

z h  z h  

NSDT-1 
1

2
cosh sinh z

h
hz  

1

2
cosh cosh z

h
 

NSDT-2 
2 22 4 3z h z  2 28 2h z  

NSDT-3 
2 24 1 4 3z h5z  2 25 4 4z h1  

NSDT-4 
2 24 3z hz 1  2 24 3z h1  

NSDT-5 sinh z h
 

cos z h
 

NSDT-6 
2

2 z h
z e  

2 2
2 2 3 44
z h z h

e e z h  

 

Table 1: List of warping functions used in the present NSDT. 

 

Normal and shear strains are obtained within the framework of linear theory of elasticity using the 

displacement field given by Eq. (5) and (6). These relationships are given as follows:  
 

,x xU ,   ,z zW , 0xy yz , , ,zx z xU W  (6) 
 

Each lamina in the laminate is in a state of plane stress. The constitutive relation for a typical kth 

lamina is thus written simply as,  
 

k k k
ij ij ijC   

or, 
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where stiffness coefficients ijC are, 
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2.4 Governing Equations and Boundary Conditions 

Using the expressions for strains and stresses from equation (6) and (7) in the principle of virtual 

work, variationally consistent governing differential equations and boundary conditions for the 

beam under consideration can be obtained. The principle of virtual work when applied to the beam 

is given as, 

0 0
1

0
k k

n x L x Lk k k
zxz x z x

k

b dx dz q W dx dz
k+1 k+1z =z z =z

x x z z zx
z= z=

σ δ + σ δ + τ δ =  (9) 

 

where, symbol denotes the variational operator. Employing Green's theorem in equation (9) suc-

cessively, we obtain the coupled Euler-Lagrange equations, which are the governing differential 

equations of the beam and the associated boundary conditions of the beam. The governing differen-

tial equations obtained are as follows: 
 

0 11 0, 11 0, 11 , 13 ,

0 11 0, 11 0, 11 , 13 ,

11 0, 11 0, 11 , 66 66 13 ,

13 0, 13 0, 13 66 , 66 , 33

: 0

:

: 0

: 0

xx xxx xx x

xxx xxxx xxx xx

xx xxx xx x

x xx x xx
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w B u D w F B q x

E u F w H A A D

A B D A A Au w

 (10) 

 

The associated boundary conditions obtained are as below: 

At the ends of beam i.e. 0x and x a  
 

11 0, 11 0, 11 , 13 0

11 0, 11 0, 11 , 13 , 0

11 0, 11 0, 11 , 13 0,

11 0, 11 0, 11 , 13

0 or      is prescribed  

0 or     is prescribed

0 or   is prescribed 

0 or       is 

x xx x

xx xxx xx x

x xx x x

x xx x

A B E A

B D F B

B D F B

E F H D

u w u

u w w

u w w

u w

56 56 ,

prescribed 

0 or      is prescribedxA A

 (11) 

Thus, the variationally consistent governing differential equations and boundary conditions are ob-

tained.  

 Solution of the set of partial differential equations can be found by converting PDE to simulta-

neous algebraic equations. The solution should satisfy governing differential equation at every point 

of the domain for specified boundary and initial conditions of the system. Such a solution can either 

in form of closed-form or infinite series. Closed-form solutions (CFS) are expressed in terms of finite 

number of terms.  

 Following Navier’s solution procedure, CFS’s to the displacement variables and loading term 

satisfying boundary conditions can be expressed in following forms, 
 

0 0
1

, , cos
m m

m

u u x , 0 0
1

, , , , sin
m m m

m

w q w q x  (12) 

 

where m L  and ,
m m0 0 m mu ,w ,  are coefficients, which can be evaluated after substituting 

in the set of four governing differential equations and solving the resulting simultaneous equations. 

Converting PDE’s to simultaneous algebraic equations, by substituting CFS’s, we get, K u q
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The elements of stiffness matrix are given as follows, 
 

2 4 2 2
11 11 22 11 33 66 11 44 33 66

3 2 3
12 11 13 11 14 13 23 11

2
24 13 34 66 13

; ; ;

; ; ;

; and ij ji

K A K D K A H K A A

K B K E K A K F

K B K A D K K

 (13) 

 
3 ILLUSTRATIVE EXAMPLES 

A computer program incorporating the present methodology has been developed in FORTRAN 90 

for analysis of homogeneous, layered beams simply supported on both ends. In order to prove the 

efficacy of the present theory, various numerical examples have been performed. Results have been 

compared with elasticity solution wherever available in literature.  

 Illustrative examples covering simply supported, symmetric and unsymmetric cross-ply laminat-

ed, sandwich beams subjected to transverse loading have been considered for highlighting the sali-

ent features of the present theory. Material properties for the examples are tabulated in Table 2. 

 

Example Set Source Elastic Properties 

1 MAT-1 − E = 1.0,  ν = 0.3 

2,3,5 MAT-2 Pagano (1969) E1 = 172.4 GPa, E2 = 6.89 GPa, E3 = E2  

G12 = G13 = 3.45 GPa, G23 = 1.378 GPa  

ν12 =  ν13 = ν23 = 0.25 

4 MAT-3 Kapuria et.al. (2007) E1 = 131.0 GPa, E2 = 10.3 GPa, E3 = E2  

G12 = G13 = 7.17 GPa, G23 = 2.87 GPa  

ν12 =  ν13 =0.25,  ν23 = 0.33 

6 MAT-4 Pagano (1969) Face sheet 

MAT-2 

Core Material 

E1 = E2 = 0.276 GPa, E3 = 3.45 GPa 

G12 = 0.1104 GPa, G23 = G13 = 0.414 GPa,  

ν12 =  ν13 = ν23 = 0.25 

7 MAT-5 Noor and Burton (1994) 

Kapuria et.al.(2004) 

Face sheet 

E1 = 131.1 GPa, E2 = 6.9 GPa, E3 = E2  

G12 = 3.588 GPa, G13 = 2.3322 GPa,  

G23 = 3.088 GPa, ν12 =  ν13 = 0.32,  ν23 = 0.49 

Core Material 

E1 = 0.2208 MPa, E2 =0.2001 MPa  

E3 = 0.2760 MPa, G12 = 16.56 MPa 

G23 =455.4 MPa, G13 = 545.1 MPa  

ν12 =0.99,  ν13 = ν23 = 0.00003 

Table 2:  Material properties. 

( (

(

) )

)
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Normal in-plane stress has no reference to the surface boundary conditions; therefore, it can be di-

rectly obtained from constitutive relations. However, with the use of constitutive relations for de-

termination of transverse stresses,  the stress boundary conditions on the top and the bottom sur-

faces of laminated beams  are satisfied and interlaminar continuity is not satisfied. This drawback 

can be overcome by imposing equilibrium equations of elastic continua to evaluate transverse shear 

and transverse normal stresses. In tensorial notations, it is given as, ( )
, 0k
ij j  for i,  j  x,  y.  

 Results reported in the present work are expressed in normalized form for consistent comparison 

as follows, 
 

, 2
2

0

L
hx x

b

q
, ,

2
0

L
Zz z

b

q
, 0,

0

Zzx zx
b

q
,

2
0,

0

Z
bE

u u
q h

,

3
2

,
4 2

0

100
L
z

bh E
w w

q L
 (14) 

 

Beam bending is a case of plane stress analysis and is more pertinent when the beam is narrow; 

whereas cylindrical bending is a plane strain problem, which is a direct reduction of three dimen-

sional solutions to a two-dimensional solution (Pagano (1969)).  

 Solution to plane strain analysis is sought by considering one of the plane of plate as infinite. 

Some researchers have compared beam bending results with cylindrical bending of long plate, may 

be due to paucity of appropriate examples. However, it is opinion of the authors that, since the 

theoretical foundation of plane stress and plane strain is different, it is imprecise to compare these 

results; albeit the results of two classes are close.  

 In order to prove effectiveness of the present theory, numerical investigations have been ca-

rried out for following examples with different materials and configurations. 

 
Example 1. Homogeneous isotropic beam with material set MAT-1 (Table 3). 

Example 2. Homogeneous orthotropic beam with material set MAT-2 (Table 4). 

Example 3. Unsymmetric cross-ply laminated beam (0o/90 o) with material set MAT-2 (Table 5). 

Example 4. Unsymmetric cross-ply laminated beam (0o/90 o /0o/90 o) with MAT-3 (Table 6). 

Example 5. Three-layered symmetric cross ply laminated beam (0o/90o /0o) with MAT-2 (Table 7). 

Example 6. Three-layered symmetric sandwich beam (0o/core/0o) with MAT-4. (Table 8). 

Example 7. Three-layered sandwich beam with graphite epoxy faces and soft core with MAT-5 and 

thickness as (0.1h/0.8h/0.1h) (Table 9).  

 

The beam is subjected to transverse load, ( )q x  on surface 2z h  acting in the z direction as de-

fined in equation (13). For single sinusoidal load, 0m qq and 1m . Whereas, for uniformly dis-

tributed load this coefficient is given as, 04 for 1,3,5,...

0 for 2,4,6,...m

q m m

m
q  

( (

(

) )

)
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 The illustrated examples are initially analyzed for single sinusoidal load for validation and later 

all these examples are reanalyzed considering uniform load. The results of converged Fourier series 

are tabulated. 

 

 
 

 

Figure 3: Typical sinusoidal and uniform loading on a layered beam. 

 

4 DISCUSSIONS 

Exact elasticity solutions for the laminated beams are not available in literature to the best of au-

thors’ knowledge. Pagano (1969) has provided solution for long plates under cylindrical bending. As 

mentioned previously, even though the results of cylindrical bending and beam bending are close, 

these are altogether different problems. Therefore, semi-analytical solutions given by Kant 

et.al.(2007) are used for comparison with available examples. Their methodology involves transfor-

mation of boundary-value problem to a set of initial value problems and requires higher computa-

tional cost. 
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S Theory 

Sinusoidal Load  Uniform Load 

TOP
x  

BOT
x  

max
xz  w   TOP

x  
BOT
x  

max
xz  w  

4 

NSDT-1 −0.6232 0.6232 0.4745 14.1088  −0.7646 0.7646 0.6902 17.8367 

NSDT-2 −0.6700 0.6700 0.4743 14.1089  −0.8251 0.8251 0.7166 17.8366 

NSDT-3 −0.6719 0.6719 0.4743 14.1089  −0.8276 0.8276 0.7166 17.8366 

NSDT-4 −0.6241 0.6241 0.4766 14.1089  −0.7658 0.7658 0.6898 17.8366 

NSDT-5 −0.6334 0.6334 0.4911 14.0910  −0.7775 0.7775 0.6690 17.8145 

NSDT-6 −0.6409 0.6409 0.4700 14.0383  −0.7869 0.7869 0.6691 17.7482 

Kant et.al. (2007) −0.6192 0.6223 0.4750 14.1076  −0.7625 0.7653 0.7036 17.8356 

Elasticity† −0.6192 0.6223 0.4750 14.2641  −0.7625 0.7625 0.7500 17.8516 

10 

NSDT-1 −0.6095 0.6095 0.4772 12.6074  −0.7512 0.7512 0.7225 15.9806 

NSDT-2 −0.6628 0.6628 0.4770 12.6076  −0.8175 0.8175 0.7245 15.9809 

NSDT-3 −0.6686 0.6686 0.4770 12.6976  −0.8146 0.8146 0.7259 15.9809 

NSDT-4 −0.6105 0.6105 0.4770 12.6076  −0.7525 0.7525 0.7366 15.9809 

NSDT-5 −0.6208 0.6208 0.4748 12.5902  −0.7652 0.7652 0.7222 15.9589 

NSDT-6 −0.6289 0.6289 0.4726 12.5389  −0.7754 0.7754 0.7800 15.8938 

Kant et.al. (2007) −0.6100 0.6100 0.4771 12.6086  −0.7525 0.7521 0.7244 15.9823 

Elasticity† −0.6100 0.6099 0.4771 12.6178  −0.7520 0.7520 0.7500 15.9813 
 

 

†Elasticity formulations  
 

Table 3:  Normalized transverse displacementw , inplane normal stress x  and transverse 

shear stress max
xz  in an isotropic beam under plane stress condition. (Example-1). 

 
Normalized displacement and stresses of thick isotropic beam and orthotropic beam are illustrated 

in Tables 3 and 4 respectively. Results are shown for aspect ratio 4 and 10. The results are in good 

agreement with elasticity solution for isotropic beam. The results are compared with semi-analytical 

solutions.  

  Tables 5 and 6 illustrate normalized displacements and stresses of beams with lamination 

schemes as (0
o
/90

 o
) and (0

 o
 /90

 o
)
 
2  respectively (refer Figure 4). For antisymmetric cross-ply 

laminates, both heterogeneity and anisotropy ratio influences deflections and stresses. This influence 

of heterogeneity and anisotropy ratio decrease with increase in number of layers. Also, deflections 

decrease and stresses increase with the number of layers for a fixed anisotropy ratio due to bending-

extension coupling. The percentage errors reduce significantly for moderately thick beam. For sym-

metric laminates bending-extension coupling stiffnesses are zero due to laminate symmetry. Table 7 

demonstrates normalized results for three-layered symmetric cross-ply beam. It can be noted from 

figure 5 that the normalized values of displacements and stresses are in good agreement with the 
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results given by Mixed-FEM of Desai and Ramtekkar (2002)  and Semi-analytical solutions of Kant 

et.al. (2007). A large discrepancy in results can be observed with use of higher order shear defor-

mation theory (HOST) of Manjunath and Kant (1993).  

 The present theory incorporates normal deformation effect in the displacement field and this 

makes it ideally suitable for beams with low through-the-thickness stiffness like sandwich beams 

with soft core.  In order to study the efficacy of the present theory in this context, the results of 

two geometrically identical beams under uniform loading and different materials are compared in 

Table 10. In case of example 6 with MAT-4, Young’s modulus of core in transverse direction E3 is 

3.45 GPa; whereas, in case of example 7 with MAT-5, it is 0.2760 MPa. It can be observed that, 

percentage error for parameters in beam with soft core is significantly reduced. This validates effec-

tiveness of the present theory for beams with normal deformability. Through the thickness variation 

of normalized transverse shear stress and transverse normal stress is shown in Figure 6.  

 

S Theory 

Sinusoidal Load  Uniform Load 

TOP
x  

BOT
x  

max
xz  w   TOP

x  
BOT
x  

max
xz  w  

4 

NSDT-1 −0.9159 0.9159 0.4174 1.9392  −1.0599 1.0599 0.6132 2.4329 

NSDT-2 −0.9102 0.9102 0.4167 1.9381  −1.0544 1.0544 0.6138 2.4227 

NSDT-3 −0.9099 0.9099 0.4167 1.9380  −1.0510 1.0510 0.6138 2.4227 

NSDT-4 −0.9174 0.9174 0.4167 1.9381  −1.0585 1.0585 0.6138 2.4226 

NSDT-5 −0.9333 0.9333 0.4095 1.9222  −1.0803 1.0803 0.6257 2.4056 

NSDT-6 −0.9473 0.9473 0.4024 1.9011  −1.0981 1.0981 0.6168 2.3817 

HOST −0.8713 0.8713 0.4155 1.9602  − − − − 

Mixed-FEM −0.8979 0.8455 0.4360 2.0842  − − − − 

Kant et.al.(2007) −0.9028 0.8469 0.4328 1.9509  −1.0461 1.0237 0.6168 2.4300 

10 

NSDT-1 −0.6574 0.6574 0.4678 0.7326  −0.7995 0.7995 0.7011 0.9212 

NSDT-2 −0.6578 0.6578 0.4667 0.7325  −0.8000 0.8000 0.7029 0.9212 

NSDT-3 −0.6578 0.6578 0.4678 0.7325  −0.8007 0.8007 0.7029 0.9212 

NSDT-4 −0.6577 0.6577 0.4677 0.7325  −0.8003 0.8003 0.7081 0.9212 

NSDT-5 −0.6608 0.6608 0.4664 0.7318  −0.8031 0.8031 0.6896 0.9204 

NSDT-6 −0.6637 0.6637 0.4651 0.7303  −0.8061 0.8061 0.7054 0.9186 

HOST −0.6741 0.6741 0.4395 0.7479  − − − − 

Mixed-FEM − − − 0.7338  − − − − 

Kant et.al. (2007) −0.6570 0. 6551 0.4683 0.7333  −0.8018 0.7995 0.6914 0.9221 
 

Table 4: Effect of loading and aspect ratio S on normalized transverse displacementw , inplane normal 

stress x  and transverse shear stress max
xz

in an orthotropic beam with MAT-2. (Example-2). 
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S Theory 

Sinusoidal Load  Uniform Load 

TOP
x  

BOT
x  

max
xz  w   TOP

x  
BOT
x  

max
xz  w  

4 

NSDT-1 0.1930 −2.1063 0.7451 4.4279  0.2372 −2.5135 1.1766 5.5565 

NSDT-2 0.1931 −2.1007 0.7453 4.4237  0.2371 −2.5016 1.1745 5.5660 

NSDT-3 0.1930 −2.1000 0.7453 4.4237  0.2374 −2.5013 1.1645 5.5600 

NSDT-4 0.1930 −2.1076 0.7453 4.4237  0.2371 −2.5084 1.1758 5.5600 

NSDT-5 0.1924 −2.1208 0.7479 4.3735  0.2365 −2.5270 1.2161 5.4999 

NSDT-6 0.1917 −2.1312 0.7508 4.3162  0.2369 −2.5420 1.2242 5.4308 

HOST 0.2355 −1.6825 0.7055 4.2903  − − − − 

Mixed-FEM 0.2390 −1.8711 0.6875 4.7636  − − − − 

Kant et.al.(2007) 0.2399 −1.8762 0.6798 4.7080  0.2905 2.2924 0.9622 5.9005 

10 

NSDT-1 0.1899 −1.8022 0.7381 2.9145  0.2341 −2.2097 1.1273 3.6866 

NSDT-2 0.1899 −1.8023 0.7381 2.9139  0.2341 −2.2091 1.1177 3.6859 

NSDT-3 0.1899 −1.8023 0.7379 2.9139  0.2341 −2.2100 1.1177 3.6859 

NSDT-4 0.1899 −1.8024 0.7379 2.9139  0.2341 −2.2102 1.1177 3.6860 

NSDT-5 0.1898 −1.8049 0.7384 2.9069  0.2340 −2.2119 1.1200 3.6773 

NSDT-6 0.1896 −1.8069 0.7387 2.8988  0.2339 −2.2146 1.1224 3.6673 

HOST 0.1973 −1.7300 0.7284 2.8965  − − − − 

Mixed-FEM 0.1977 −1.7599 0.7567 1.9540  − − − − 

Kant et.al. (2007) 0.1983 −1.7653 0.7255 2.9611  0.2432 −2.1733 1.0738 3.7442 

 

Table 5: Effect of loading and aspect ratio on normalized transverse displacementw , inplane 

normal stress x  and transverse shear stress max
xz in a (0

o
/90

o
) beam with MAT-2. (Example-3) 
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AR Theory 

Uniform Load 

2, 2x L h  2, 2x L h  0,0xz  2, 0w L  

5 

NSDT-1 0.1267 (−19.93) −1.4336 (−3.54) 0.7668 (0.01) 3.2359 (−14.72) 

NSDT-2 0.1268 (−19.87) −1.4308 (−3.73) 0.7668 (0.01) 3.2364 (−14.70) 

NSDT-3 0.1268 (−19.87) −1.4306 (−3.74) 0.7668 (0.01) 3.2364 (−14.70) 

NSDT-4 0.1268 (−19.87) −1.4343 (−3.49) 0.7668 (0.01) 3.2364 (−14.70) 

NSDT-5 0.1277 (−19.28) −1.4421 (−2.97) 0.7672 (0.06) 3.2403 (−14.60) 

NSDT-6 0.1287 (−18.68) −1.4495 (−2.47) 0.7679 (0.15) 3.2409 (−14.59) 

FSDT  − (−26.50) − (−12.8) − (14.6) − (−15.40) 

TOT  0.1270 (−19.74) −1.4345 (−3.48) 0.7920 (3.29) 3.2514 (−14.31) 

ZIGT − (− 9.8) − (1.0) − (−6.80) − (−1.50) 

2D 0.1582 -- −1.4862 -- 0.7667 -- 3.7943 -- 

10 

NSDT-1 0.1189 (−6.26) −1.3304 (−1.03) 0.8259 (0.21) 2.2913 (−6.33) 

NSDT-2 0.1189 (−6.24) −1.3314 (−0.95) 0.8259 (0.21) 2.2915 (−6.32) 

NSDT-3 0.1189 (−6.24) −1.3315 (−0.94) 0.8259 (0.21) 2.2915 (−6.32) 

NSDT-4 0.1189 (−6.24) −1.3306 (−1.01) 0.8259 (0.21) 2.2915 (−6.32) 

NSDT-5 0.1191 (−6.05) −1.3329 (−0.84) 0.8258 (0.20) 2.2930 (−6.26) 

NSDT-6 0.1194 (−5.86) −1.3350 (−0.69) 0.8259 (0.21) 2.2936 (−6.23) 

FSDT  
− (−8.40) − (−3.60) − ((6.6) − (−6.60) 

TOT  
0.1188 (−6.27) −1.3307 (−1.00) 0.8384 (1.72) 2.2976 (−6.07) 

ZIGT − (−3.2) − (0.20) − (−3.0) − (−0.80) 

2D 0.1268 -- −1.3442 -- 0.8242 -- 2.4461 -- 

 

Table 6: Effect of loading and aspect ratio on normalized transverse displacementw , inplane normal stress x  

and transverse shear stress max
xz in a (0

o
/90

o/0
o
/90

o
) beam with MAT-3. (Example-4). 

 

 

 

( ( ( () ) ) )
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(% Errors are quoted in parentheses).  
 

Table 7: Effect of loading and aspect ratio on normalized transverse displacementw , inplane normal 

stress x  and transverse shear stress max
xz in a (0

o
/90

o
/0

o
) beam with MAT-2. (Example-5) 

AR Theory 

Sinusoidal Load 

2, 2x L h  

 

2, 2x L h

 

0,0xz  2, 0w L  

4 

NSDT-1 1.0669 (−5.62) −1.0669 (−9.29) 0.3890 (−1.37) 2.6764 (−7.39) 

NSDT-2 1.0698 (−5.36) −1.0698 (−9.05) 0.3884 (−1.52) 2.6789 (−7.31) 

NSDT-3 1.0698 (−5.36) −1.0698 (−9.05) 0.3884 (−1.52) 2.6789 (-7.31) 

NSDT-4 1.0698 (−5.36) −1.0698 (−9.05) 0.3884 (−1.52) 2.6789 (−7.31) 

NSDT-5 1.1012 (−2.58) −1.1012 (−6.38) 0.3825 (−3.02) 2.7029 (−6.48) 

NSDT-6 1.1314 (0.09) −1.1314 (−3.81) 0.3804 (−3.55) 2.7205 (−5.87) 

HOST 0.8713 (−22.92) −0.8713 (−25.92) 0.4155 (5.35) 1.9602 (−32.18) 

Mixed-FEM 1.1281 (4.72) −1.1838 (0.65) 0.4000 (1.42) 2.8400 (−1.73) 

Kant et.al. (2007) 1.1304  −1.1762  0.3944  2.8901  

10 

NSDT-1 0.7017 (−4.74) −0.7017 (−4.67) 0.4335 (2.26) 0.8724 (−6.52) 

NSDT-2 0.7023 (−4.66) −0.7023 (−4.59) 0.4334 (2.24) 0.8731 (−6.44) 

NSDT-3 0.7023 (−4.66) −0.7023 (−4.59) 0.4334 (2.24) 0.8730 (−6.45) 

NSDT-4 0.7023 (−4.66) −0.7023 (−4.59) 0.4334 (2.24) 0.8731 (−6.44) 

NSDT-5 0.7084 (−3.83) −0.7084 (−3.76) 0.4322 (1.96) 0.8808 (−5.62) 

NSDT-6 0.7145 (−3.01) −0.7145 (−2.94) 0.4309 (1.65) 0.8879 (−4.86) 

HOST 0.6741 (−8.48) −0.6741 (−8.42) 0.4395 (3.68) 0.7479 (−19.86) 

Mixed-FEM 0.7345 (−0.29) −0.7341 (−0.22) 0.4251 (0.28) 0.9336 (0.04) 

Kant et.al. (2007) 0.7366  −0.7361  0.4239  0.9332  

( ( ( () ) ) )
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(% Errors are quoted in parentheses).  

 

Table 8: Effect of loading and aspect ratio on normalized transverse displacementw , inplane normal 

stress x  and transverse shear stress max
xz in a sandwich (0

o
/core/0

o
) beam with MAT-4. (Example-6) 

 

 

 

 

 

 

 

 

 

 

AR Theory 

Sinusoidal Load 

2, 2x L h  2, 2x L h  0,0xz  2, 0w L  

4 

NSDT-1 2.1311 (−10.60) −2.1311 (−9.20) 0.3426 (0.88) 10.0121 (−0.48) 

NSDT-2 2.1283 (−10.72) −2.1283 (−9.32) 0.3426 (0.88) 10.0177 (−0.42) 

NSDT-3 2.1280 (−10.73) −2.1280 (−9.33) 0.3426 (0.88) 10.0177 (−0.42) 

NSDT-4 2.1340 (−10.48) −2.1340 (−9.08) 0.3426 (0.88) 10.0177 (−0.42) 

NSDT-5 2.1626 (−9.28) −2.1626 (−7.86) 0.3422 (0.77) 10.0454 (−0.15) 

NSDT-6 2.1821 (−8.47) −2.1821 (−7.03) 0.3419 (0.68) 10.0016 (−0.58) 

Kant et.al. (2007) 2.3839  −2.3470  0.3396  10.0600  

10 

NSDT-1 1.3875 (−3.09) −1.3875 (−3.07) 0.3510 (0.17) 2.4747 (−7.27) 

NSDT-2 1.3895 (−2.95) −1.3895 (−2.93) 0.3510 (0.17) 2.4759 (−7.23) 

NSDT-3 1.3897 (−2.93) −1.3897 (−2.91) 0.3510 (0.17) 2.4759 (−7.23) 

NSDT-4 1.3880 (−3.05) −1.3880 (−3.03) 0.3510 (0.17) 2.4759 (−7.23) 

NSDT-5 1.3939 (−2.64) −1.3939 (−2.62) 0.3508 (0.11) 2.4830 (−6.96) 

NSDT-6 1.3969 (−2.43) −1.3969 (−2.41) 0.3506 (0.06) 2.4780 (−7.15) 

Kant et.al. (2007) 1.4317  −1.4314  0.3504  2.6688  

( ( ( () ) ) )
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AR Theory 

Uniform Load 

2, 2x L h  2, 2x L h  0,0xz  2, 0w L  

5 

NSDT-1 1.8945 (−3.78) −1.8945 (−3.82) 0.50909 (−1.03) 7.5238 (−4.49) 

NSDT-2 1.8893 (−4.04) −1.8893 (−4.09) 0.50900 (−1.05) 7.5196 (−4.55) 

NSDT-3 1.8896 (−4.03) −1.8896 (−4.07) 0.50901 (−1.05) 7.5196 (−4.55) 

NSDT-4 1.9852 (0.83) −1.8952 (−3.79) 0.50899 (−1.05) 7.5696 (−3.91) 

NSDT-5 1.9015 (−3.42) −1.9015 (−3.47) 0.50563 (−1.70) 7.4556 (−5.36) 

NSDT-6 1.9042 (−3.29) −1.9042 (−3.33) 0.50700 (−1.44) 7.3561 (−6.62 

FSDT − (−21.9) − (−22.0) − (7.2) − (−33.1) 

ZIGT − (0.1) − (0.1) − (−1.0) − (−0.1) 

2D 1.9689  −1.9698  0.51439  7.8778  

10 

NSDT-1 1.6280 (−1.03) −1.6280 (−1.04) 0.53120 (−0.49) 3.1543 (−2.90) 

NSDT-2 1.6308 (−0.86) −1.6308 (−0.87) 0.53115 (−0.50) 3.1534 (−2.93) 

NSDT-3 1.6309 (−0.85) −1.6309 (−0.86) 0.53115 (−0.50) 3.1534 (−2.93) 

NSDT-4 1.6263 (−1.13) −1.6263 (−1.14) 0.53115 (−0.50) 3.1534 (−2.93) 

NSDT-5 1.6282 (−1.02) −1.6282 (−1.03) 0.53063 (−0.60) 3.1390 (−3.37) 

NSDT-6 1.6295 (−0.94) −1.6295 (−0.95) 0.53013 (−0.69) 3.1160 (−4.08) 

FSDT − (−6.6) − (−6.6) − (−3.3) − (−20.5) 

ZIGT − (0.0) − (0.0) − (−0.5) − (−0.1) 

2D 1.6449  −1.6451  0.53383  3.2486  

 

(% Errors are quoted in parentheses).  
 

Table 9: Normalized transverse displacementw , inplane normal stress x  and transverse shear stress max
xz  

in a sandwich beam with graphite epoxy faces and soft core under uniform load with MAT-5. (Example-7). 
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(Values of parameters used for comparison are quoted in parentheses) 

 

Table 10: Effect of ‘softness’ of sandwich core by comparing percentage errors of normalized 

displacement and stresses in sandwich beams in Example 6 and 7 under uniform load. 

 

 

 

 
 

 

S Theory 

Example 6 (MAT-4)  Example 7 (MAT-5) 

Top
x  Bot

x  
max

xz
 w   Top

x  Bot
x  

0, 0xz

 
w  

10 

NSDT-1 −2.75 −2.92 0.74 −7.23  −1.03 −1.04 −0.49 −2.90 

NSDT-2 −2.61 −2.78 0.74 −7.19  −0.86 −0.87 −0.50 −2.93 

NSDT-3 −2.60 −2.76 0.74 −7.19  −0.85 −0.86 −0.50 −2.93 

NSDT-4 −2.73 −2.90 0.74 −7.19  −1.13 −1.14 −0.50 −2.93 

NSDT-5 −2.41 −2.58 0.66 −6.92  −1.02 −1.03 −0.60 −3.37 

NSDT-6 −2.20 −2.37 0.60 −7.10  −0.94 −0.95 −0.69 −4.08 

FSDT − − − −  −6.6 −6.6 −3.3 −20.5 

ZIGT  − − − −  0.0 0.0 −0.5 −0.1 

2D  − − − −  (1.6449) (−1.6451) (0.53383) (3.2486) 

Kant et.al.(2007) (1.7260) (1.7290) (0.5240) (3.33)  − − − − 

20 

NSDT−1 −0.83 −0.85 1.37 −3.46  −0.27 −0.27 −0.23 −1.16 

NSDT-2 −0.64 −0.66 1.37 −3.44  0.08 0.08 −0.24 −1.17 

NSDT-3 −0.60 −0.62 1.37 −3.44  0.08 0.08 −0.24 −1.17 

NSDT-4 −0.82 −0.84 1.37 −3.44  −0.30 −0.30 −0.24 −1.17 

NSDT-5 −0.70 −0.72 1.33 −3.32  −0.22 −0.22 −0.29 −1.33 

NSDT-6 −0.63 −0.65 1.31 −3.42  −0.15 −0.15 −0.33 −1.61 

FSDT − − − −  −1.7 −1.7 −1.5 −8.1 

ZIGT  − − − −  0.0 0.0 −0.2 −0.1 

2D  − − − −  (1.5639) (1.5639) (0.54351) (2.0770) 

Kant et.al.(2007) (1.5833) (−1.5836) (0.5534) (1.7935)  − − − − 

( )
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Variation of transverse displacement does not remain constant through the thickness of deep beams 

even for isotropic beam. Also, the displacement towards the surface of loading is higher compared to 

bottom face. This effect is attributed to the phenomenon of contact mechanics in the beam and is 

completely discarded in shear deformation theories without incorporation of normal deformability. 

This effect is accounted in the present theory. However, it is found that the deformation is symmet-

ric about the neutral axis, since thickness-coordinate terms in expression for w are even functions.  

 In-plane normal stress is evaluated directly from the constitutive relations and strain-

displacement relations. Although the maximum values of the in-plane normal stresses are under-

predicted compared to semi-analytical solution, it has been noted that the deviation manifests only 

at the surfaces of the beams; the values concur to semi-analytical results just away from the surface. 

It can be observed that the results are in good agreement with semi-analytical solutions compared 

to HOST and are close to rigorous theories like mixed-FEM.  

 Transverse shear stress in beam can be evaluated using constitutive relations (CR) or by using 

equilibrium equations (EE). Transverse shear stress will be discontinuous at the inter-laminar sur-

face with use of CRs. However, EEs can be effectively used to overcome this drawback resulting in 

a continuous stress variation through the thickness.  The values of shear stress reported in present 

paper are evaluated using EEs. The present theory predicts the values that are in good agreement 

with semi-analytical solutions. It can be observed from Table 6, that for unsymmetric cross-ply 

laminates with aspect ratio 5, the percentage error is 0.01% for NSDT-1 to 4; whereas for NSDT-5 

it is 0.06% and for NSDT-6 it is 0.15%. For same case, third order theory (TOT) gives over-

prediction of 3.29% and zigzag theory (ZIGT) under-predict the value by 6.8%. 

This is consistently found for symmetric cross-ply as well as sandwich beam. Accuracy of shear 

stress increases for beams with transversely flexible layers. This effect is depicted in Table 10 and it 

can be observed that percentage error for NSDT-1 to 4 is 0.74% with MAT-4; and reduces to nearly 

−0.50% for MAT-5. Accuracy of results further increases with increase in aspect ratio of beams. 
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NSDT-6 

Kant et.al. 

Desai and Ramtekkar (2002) 

Shimpi and Ghugal (1999) 

  

  

(a) 

 

(b) 

 

  

(c) (d) 

Figure 4:  Variation of normalized (a) inplane stress 
x
at (0, z), (b) transverse stress

xz
, 

(c) inplane displacement 0, /u z h  through the thickness and (d) transverse displacement 

2/,0w L  in a (0
0
/90

0
) beam subjected to SSL. 
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(a) (b) 

Figure 5: Variation of normalized (a) inplane stress x at (0, z) and (b) transverse stress xz  

through the thickness ((0
0
/90

0
/0

0
) beam subjected to sinusoidal load for aspect ratio 4. 

 

 

  

(a) (b) 

Figure 6: Variation of normalized (a)  transverse shear stress xz  and (b) transverse normal stress z  
at (0, z) through the thickness of (00

/core/0
0
) beam subjected to sinusoidal load for aspect ratio 4. 
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5 CONCLUSIONS 

In the present paper, a novel, generalized Normal and Shear Deformation Theory (NSDT) is devel-

oped for incorporating shear deformations as well as normal deformations consistent with different 

warping functions. The present theory is based on the concept of improvement in the kinematics of 

beam with inclusion of normal deformability. It is a displacement based refined shear and normal 

deformation theory, where the shear deformation and transverse flexibility in the beam are properly 

accounted. The governing differential equations and the associated boundary conditions are varia-

tionally consistent. The flexural behaviors of thick laminated and sandwich beams under plane 

stress conditions are studies using NSDT and the results obtained are compared with those of 

other theories. The important observations several features of the present theory are given below: 
 

1. The results obtained by the present theory are accurate as seen from the comparison with 

available results and are in general, superior to those of other refined shear deformation theo-

ries.  
 

2. NSDT predicts displacements and stresses accurately than other higher order theories for 

beams with transversely flexible layers. 
 

3. The present theory predicts in-plane stresses with good accuracy for very thick beam.   
 

4. Transverse shear stresses obtained either by constitutive relations or by integrating equilibrium 

equations satisfy shear stress free conditions on the top and bottom surfaces of the beam.  
 

5. Through-the-thickness distribution of transverse stresses is predicted accurately by NSDT. 
 

6. The theory obviates the need of shear correction factor. 
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