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Abstract 
The dynamic response to moving masses of rectangular plates with 
general classical boundary conditions and resting on variable Winkler 
elastic foundation is investigated in this work. The governing fourth 
order partial differential equation is solved using a technique based on 
separation of variables, the modified method of Struble and the inte-
gral transformations. Numerical results in plotted curves are then 
presented.  The results show that as the value of the rotatory inertia 
correction factor Ro increases, the response amplitudes of the plate 
decrease and that, for fixed value of Ro, the displacements of the plate 
decrease as the foundation modulus Fo increases for the variants of 
the classical boundary conditions considered. The results also show 
that for fixed Ro and Fo, the transverse deflections of the rectangular 
plates under the actions of moving masses are higher than those when 
only the force effects of the moving load are considered. For the rec-
tangular plate, for the same natural frequency, the critical speed for 
moving mass problem is smaller than that of the moving force prob-
lem for all variants of classical boundary conditions, that is, resonance 
is reached earlier in moving mass problem than in moving force prob-
lem. When Fo and Ro increase, the critical speed increases, hence, risk 
is reduced. 
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1 INTRODUCTION 

Structures such as bridges, roadways, decking slabs, girders and belt drive (carrying machine chain) 
are constantly acted upon by moving masses and, hence, the problem of analyzing the dynamic re-
sponse of elastic structures under the action of moving masses continues to motivate a variety of inves-
tigations [1-6]. In most analytical studies in Engineering and Mathematical Physics, structural members 
are commonly modeled as a beam or as a plate.  
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 The effects of moving loads on solid bodies are dual [1]. On one hand is the gravitational effect of the 
moving load while on the other hand is the inertia effect of the mass of the load on the vibrating solid 
bodies. When the inertia effect of the moving load is considered, the governing differential equation of 
motion becomes complex and cumbersome and no longer has constant coefficients. In particular, the 
coefficients become variable and singular. If the inertia effect of the moving load is neglected, the prob-
lem is termed moving force problem and when it is retained, it is termed moving mass problem. 
 Aside the problem arising from the inclusion of the inertia terms in moving mass problems, difficul-
ties often arise from the type of specified end-conditions. There are four classical boundary conditions 
that are commonly of practical interest to an applied Mathematician or an Engineer. These are Pinned 
end conditions (Simply supported end conditions), Fixed / Clamped end conditions, Free end condi-
tions and Sliding end conditions [1, 7]. 
 The analysis of beam and plate on Winkler foundation when the foundation modulus is constant is 
very common in literature. The work of Timoshenko [8] gave impetus to research work in this area of 
study. He used energy methods to obtain solutions in series form for simply supported finite beams on 
elastic foundations subjected to time dependent point loads moving with uniform velocity across the 
beam. Steele [9] also investigated the response of a finite, simply supported Bernoulli-Euler beam to a 
unit force moving at a uniform velocity. He analyzed the effects of this moving force on beams with and 
without an elastic foundation. Using a considerably simpler vector formulation with a Laplace rather 
than Fourier transformation, Steele [10] presented a review of the transient response of the Bernoulli-
Euler beam and the Timoshenko beam on elastic foundation due to moving loads 
 Several researchers have also made tremendous efforts in the study of dynamics of structures under 
moving loads [11, 12, 13, 14, 15, 16, 17, 18]. Recently, Oni and Awodola [19] considered the dynamic 
response under a moving load of an elastically supported non-prismatic Bernoulli-Euler beam on vari-
able elastic foundation. More recently, Oni and Awodola [20] investigated the dynamic behaviour under 
moving concentrated masses of simply supported rectangular plates resting on variable Winkler elastic 
foundation. 
 In most of the investigations in literature on vibration of rectangular plate under moving loads and 
resting on elastic foundations, work has been restricted to cases when the elastic foundations are re-
garded as being constant. The more complicated case, when the elastic foundation varies along the span 
of the structure has been neglected, where this is considered, work has been restricted to the simplest 
form of the problem when the structure is simply supported.  This paper is therefore concerned with 
the problem of assessing the dynamic response to moving concentrated masses of rectangular plates 
with general classical boundary conditions and resting on variable Winkler elastic foundations. 
 
2 GOVERNING EQUATION 

The problem of the dynamic response to moving concentrated masses of rectangular plate with general 
classical boundary condition and resting on Winkler foundation with stiffness variation is considered. 
Consider a rectangular plate carrying an arbitrary number (say N) of concentrated masses Mi moving 
with constant velocities ci, i = 1, 2, 3,…,N along a straight line parallel to the x-axis issuing from point y 
= s on the y-axis. The equation governing the dynamic transverse displacement W(x,y,t) of the rectan-
gular plate when it is resting on a variable Winkler foundation and traversed by several moving con-
centrated masses is the fourth order partial differential equation given by [20] 
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 (1) 

 
where D is the bending rigidity of the plate, m is mass per unit area of the plate, x is the position co-
ordinate in x – direction, y is position co-ordinate in y – direction, t is the time,  is the rotatory inertia 

correction factor,  is the two-dimensional Laplacian operator, F0 is the foundation modulus and 
(.) is the Dirac-Delta function. 
 At this juncture, the boundary condition is arbitrary and the initial condition, without any loss of 
generality, is taken as 
 

 (2) 

 
3 ANALYTICAL APPROXIMATE SOLUTION 

Evidently, an exact closed form solution of the above fourth order partial differential equation (1) does 
not exist. Consequently, an approximate solution is sought. Thus, the technique based on separation of 
variable described in [11] is employed. This versatile technique requires that the solution of equation 
(1) takes the form 
 

 (3) 

 
where φn are the known eigen functions of the plate with the same boundary conditions and have the 
form of [20] 
 

 (4) 
 
where 
 

 (5) 

 
 Ωn, n = 1, 2, 3, … , are the natural frequencies of the dynamical system and Tn(t) are amplitude func-
tions which have to be calculated. 
 In order to solve the equation (1), it is rewritten as 
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 (6) 

 
 Rewriting the right hand side of equation (6) in the form of a series, we have 
 

 (7) 

 
 When equation (3) is used in equation (7) we have  
 

 (8) 

 
where 
 

 (9) 

 
 Integrating equation (8) on area A of the plate, we have  
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 (10) 

 
 Considering the orthogonality of φn(x,y), we have that 
 

 (11) 

 

 where  

 Using (11) and taking into account (3) and (4), equation (6) can be written as 
 

 (12) 

 
 Equation (12) implies that  
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 (13) 

 
 Equation (13) is a set of coupled second order ordinary differential equations. 
 Expressing the Dirac-Delta function in the Fourier cosine series as 
 

 (14) 

  
and 
 

 (15) 

  
equation (13) then becomes 
 

 (16) 

 
where 
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, 

 

 

 

 

 

 

 

 
 Equation (16) is the transformed equation governing the problem of the rectangular plate on a vari-
able Winkler elastic foundation. This differential equation holds for all variants of the classical bounda-
ry conditions.  
 In what follows, φn(x,y) are assumed to be the products of the beam functions ψni(x) and ψnj(y) 
[20]. That is 
 

 (17) 
 
 These beam functions can be defined respectively, as 
 

Latin American Journal of Solids and Structures 10(2013) 301 – 322 

 



308   T. O. Awodola et al. / Dynamic response to moving masses of rectangular plates with general boundary conditions and resting on variable winkler foundation 

 

 (18) 

and 
 

 (19) 

 
where Ani, Anj, Bni, Bnj, Cni and Cnj are constants determined by the boundary conditions. Ωni and Ωnj 
are called the mode frequencies. 
 In order to solve equation (16) we shall consider only one mass M traveling with uniform velocity c 
along the line y = s. The solution for any arbitrary number of moving masses can be obtained by super-
position of the individual solution since the governing differential equation is linear. Thus for the single 
mass M1 equation (16) reduces to 
 

 (20) 

 
 where 
 

 (21) 

 
 Equation (20) is the fundamental equation of our problem when the rectangular plate has arbitrary 
end support conditions. In what follows, we shall discuss two special cases of the equation (20) namely; 
the moving force and the moving mass problems. 
 
3.1 Case I: rectangular plate traversed by a moving force 
 
By setting Γ = 0 in equation (20), an approximate model of the differential equation describing the 
response of a rectangular plate resting on a variable Winkler elastic foundation and traversed by a 
moving force would be obtained. 
 Thus, setting Γ = 0 in equation (20), we have 
  

 (22) 
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 Evidently, an exact analytical solution to this equation is not possible. Consequently, the approxi-
mate analytical solution technique, which is a modification of the asymptotic method of Struble dis-
cussed in [20] shall be used. 
 To solve equation (22), first, we neglect the rotatory inertial term and rearrange the equation to 
take the form 
 

 (23) 

where 
 

 (24) 

 
 Consider a parameter λ < 1 for any arbitrary ratio Γ * defined as 
 

 (25) 

 
so that 
 

 (26) 
 
 Substituting equation (26) into the homogenous part of equation (23) yields 
 

 (27) 

 
 When λ is set to zero in equation (27), a situation corresponding to the case in which the effect of 
the foundation is regarded as negligible is obtained. In such a case the solution is of the form 
 

 (28) 
 
where Cf, αn and β are constants. 
 Since λ < 1 for any arbitrary mass ratio Γ *, Struble’s technique requires that the asymptotic solution 
of the homogenous part of equation (23) be of the form 
 

 (29) 
 
where An(t) and Φn(t) are slowly varying functions of time or equivalently 
 

 (30) 
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where  implies “ is of ”  
 Thus, equation (27) can be replaced with 
 

 (31) 

 
where 
 

 (32) 

 
represents the modified frequency due to the effect of the foundation. It is observed that when λ = 0, 
we recover the frequency of the moving force problem when the effect of the foundation is neglected. 
 Using equation (3.31), equation (22) can be written as 
 

 (33) 

 
 The homogenous part of equation (33) is rearranged to take the form 
 

 (34) 

 

where  

 Now consider the parameter ε0 < 1 for any arbitrary mass ratio  defined as 
 

 (35) 

 
 It can be shown that 
 

 (36) 
 
 Following the same argument, equation (34) can be replaced with 
 

 (37) 
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where 
 

 (38) 

 
 is the modified frequency corresponding to the frequency of the free system due to the presence of 
the rotatory inertia. It is observed that when ε0 = 0, we recover the frequency of the moving force prob-
lem when the rotatory inertia effect is neglected. 
 In order to solve the non-homogenous equation (33), the differential operator which acts on Tn(t) is 
replaced by the equivalent free system operator defined by the modified frequency γsf. Thus 
 

 (39) 

 
where 
 

 (40) 

 
 Therefore, the moving force problem is reduced to the non-homogeneous ordinary differential 
equation given as 
 

 (41) 

 

 where  

 
 When equation (41) is solved in conjunction with the initial conditions, one obtains expression for 
Tn(t). Thus in view of equation (3), one obtains 
 

 (42) 

 
 Equation (42) represents the transverse displacement response to a moving force of a rectangular 
plate resting on variable Winkler elastic foundation and having arbitrary edge supports. 
 
3.2 Case II: rectangular plate traversed by a moving mass 
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 If the mass of the moving load is commensurable with that of the structure, the inertia effect of the 
moving mass is not negligible. Thus Γ ≠ 0 and one is required to solve the entire equation (20) when no 
term of the coupled differential equation is neglected. This is termed the moving mass problem. 
 Thus, equation (20) can be rewritten in the form 
 

 (43) 

 

where    

we rearrange equation (43) to take the form 
 

 (44) 

 
where ε has been written as a function of the mass ratio µo, 
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 Considering the homogeneous part of the equation (44) and going through the same arguments and 
analysis as in the previous case, the modified frequency corresponding to the frequency of the free sys-
tem due to the presence of the moving mass is 
 

 (45) 

 
retaining terms to o(µo) only. 
 Thus, to solve the non-homogeneous equation (44), the differential operator which acts on Tn(t) 
and Tq(t) is replaced by the equivalent free system operator defined by the modified frequency βsf. 
Therefore, taking into account equations (18) and (19), we have 
 

 (46) 

 
where 
 

 (47) 

 
 It is noticed that equation (46) is analogous to equation (41) with βsf and G0 replacing γsf and K0 
respectively. Therefore, when equation (46) is solved in conjunction with the initial conditions, one 
obtains expression for Tn(t) and in view of equation (3), one obtains 
 

 (48) 

 
 Equation (48) is the transverse displacement response to a moving mass of a rectangular plate rest-
ing on variable Winkler elastic foundation and having arbitrary edge supports. The constants Ani, Api, 
Anj, Apj, Bni, Bpi, Bnj, Bpj, Cni, Cpi, Cnj and Cpj are to be determined from the choice of the end support 
condition. 
 
4 ANALYSIS OF THE SOLUTION 
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Next, the phenomenon of resonance is examined. Equation (42) clearly shows that the rectangular 
plate on a variable Winkler elastic foundation and traversed by a moving force reaches a state of reso-
nance whenever 
 

 (49) 

 
while equation (48) shows that the same plate under the action of a moving mass experiences reso-
nance effect whenever 
 

  (50) 

 
where 
 

 (51) 

 
 Equations (50) and (51) imply that 
 

 (52) 

 
 Consequently from equations (49) and (52), for the same natural frequency, the critical speed (and 
the natural frequency) for the system of a rectangular plate traversed by a moving mass is smaller than 
that of the same system traversed by a moving force, for all variants of classical boundary conditions. 
Thus, for the same natural frequency of the plate, the resonance is reached earlier when we consider 
the moving mass system than when we consider the moving force system. 
 
5 ILLUSTRATIVE EXAMPLES 

In this section, we shall illustrate the foregoing analysis by two practical examples. Particularly we shall 
consider classical boundary conditions such as clamped end conditions and simple-clamped end condi-
tions. 
 
5.1  Rectangular plate clamped at all edges 

For a rectangular plate clamped at all its edges, the boundary conditions are given by 
 

,      (53) 
 

,     (54) 

 
 Thus for the normal modes 
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,  (55) 
 

,   (56) 

 
 For simplicity, our initial conditions are of the form 
 

 (57) 

 
 Using the boundary conditions and the initial conditions it can be shown that 
 

 (58) 

 

   (59) 

 
and from (58), one obtains 
 

 (60) 
 
which is termed the frequency equation for the dynamical problem, such that [2] 
 

 (61) 
 
 Using (58), (59) and (61) in equations (42) and (48) one obtains the displacement response respec-
tively to a moving force and a moving mass of a rectangular plate resting on a variable Winkler elastic 
foundation and clamped at all its edges. 
 
5.2  Rectangular plate simply supported at edges x = 0, x = Lx and clamped at edges y = 0, y = Ly 

For a rectangular plate clamped at edges y = 0, y = LY with simple supports at edges x = 0, x = LX, the 
boundary conditions at such opposite edges are 
 

,    (62) 
 

,    (63) 

 
and for the normal modes 
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,   (64) 
 

,   (65) 

 
 Using the boundary conditions, the following values of the constants and the frequency equation are 
obtained for the clamped edges. 
 

 (66) 

 
,  (67) 

 
 The frequency equation of the clamped edges is given by the following determinant equation 
 

 (68) 

 
which when simplified yields 
 

 (69) 
 
 For the simple edges, it is readily shown that 
 

Ani = 0, Bni = 0, Cni = 0, and Ωni = niπ (70) 
 
Similarly, 
 

Api = 0, Bpi = 0, Cpi = 0, and Ωpi = piπ  (71) 
 
 Using (66), (67), (69) and (70) in equations (42) and (48) one obtains the displacement response 
respectively to a moving force and a moving mass of a simple-clamped rectangular plate resting on a 
variable Winkler elastic foundation. 
 
6 NUMERICAL CALCULATIONS AND DISCUSSION OF RESULTS 

In order to carry out the calculations of practical interests in dynamics of structures and Engineering 
design for the illustrative examples, a rectangular plate of length LY = 0.914m and breadth LX = 
0.457m is considered. It is assumed that the mass travels at the constant velocity 0.8123m/s. Further-
more, values for E, S and Γ are chosen to be 3.109x109kg/m2, 0.4m and 0.2 respectively. For various 
values of the foundation moduli F0 and the rotatory inertia correction factor R0, the deflections of the 
plate for all the illustrative examples are calculated and plotted against time t. 
 Figures 6.1 and 6.2 display the effect of foundation modulus (F0) on the transverse deflection of the 
clamped rectangular plate in both cases of moving force and moving mass respectively. The graphs 
show that the response amplitude decreases as the value of the foundation modulus increases. 
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Figure 6.1   Displacement of moving force for clamped rectangular plate on variable Winkler foundation for various values of foundation 
modulus Fo. 

 
Figure 6.2   Displacement of moving mass for clamped rectangular plate on variable Winkler foundation for various values of foundation 

modulus Fo. 
 

The effect of rotatory inertia correction factor (R0) on the transverse deflection in both cases of 
moving force and moving mass displayed in figures 6.3 and 6.4 respectively show that an increase in 
the value of the rotatory inertia correction factor decreases the deflection of the simple-clamped rec-
tangular plate resting on variable Winkler elastic foundation. 
 Figure 6.5 compares the displacement curves of the moving force and moving mass for a simple-
clamped rectangular plate for fixed F0 and R0, the response amplitude of a moving mass is greater than 
that of a moving force problem. This result holds for other choices of classical boundary conditions. 
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Figure 6.3   Displacement profile of moving force for simple-clamped rectangular plate on variable Winkler foundation for various values 
of rotatory inertia correction factor Ro. 

 
 

 
 

Figure 6.4   Displacement profile of moving mass for simple-clamped rectangular plate on variable Winkler foundation for various values 
of rotatory inertia correction factor Ro. 
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Figure 6.5   Comparison of the deflections of moving force and moving mass cases for simple-clamped rectangular plate on variable 
Winkler foundation with Fo=1000 and Ro=4 

 
7 CONCLUSION 

The dynamic response to moving masses of rectangular plates with general boundary conditions and 
resting on Winkler elastic foundation with stiffness variation is considered in this work. The fourth 
order partial differential equation governing the system is a non-homogenous equation with variable 
and singular coefficients. The method based on Separation of variables is used to transform the govern-
ing equation to a set of coupled second order ordinary differential equations. The modified Struble’s 
technique and the method of integral transformations are employed to obtain the closed form solution 
of the transformed equation for both cases of moving force and moving mass problems. 
 From the analyses of the solutions, the resonance conditions are obtained for the problem for all 
variants of classical boundary conditions. The numerical analyses are carried out for both moving force 
and moving mass problems for two illustrative examples of classical boundary conditions; (i) clamped 
ends condition and (ii) simple-clamped ends condition.  The analyses show that the moving force solu-
tion is not an upper bound for the accurate solution of the moving mass problem and that as the rotato-
ry inertia correction factor increases, the response amplitudes of the plates decrease for both cases of 
moving force and moving mass problem. The displacements of the rectangular plates resting on varia-
ble Winkler elastic foundations decrease as the foundation modulus increases when the rotatory inertia 
correction factor is fixed. 
 Furthermore, the response amplitude for the moving mass problem is greater than that of the mov-
ing force problem for fixed values of rotatory inertia correction factor and foundation modulus, this 
implies that resonance is reached earlier in moving mass problem than in moving force problem of the 
rectangular plate resting on Winkler elastic foundation with stiffness variation. It is therefore unsafe to 
rely on the moving force solutions. 
 For the rectangular plate with general classical boundary conditions and resting on Winkler elastic 
foundation with stiffness variation, for the same natural frequency, the critical speed for moving mass 
problem is smaller than that of the moving force problem for all variants of classical boundary condi-
tions, and as rotatory inertia correction factor and the foundation modulus increase, the critical speeds 
increase indicating a safer dynamical system. 

Finally, the results in this work agree with what obtain in literature [21, 22]. Hence the method em-
ployed in this work is accurate and the solutions are convergent. 
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