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Abstract 
In this paper, the Homotopy Analysis Method (HAM) with two 
auxiliary parameters and Differential Transform Method (DTM) 
are employed to solve the geometric nonlinear vibration of Euler-
Bernoulli beams subjected to axial loads.  A second auxiliary 
parameter is applied to the HAM to improve convergence in non-
linear systems with large deformations.  The results from HAM 
and DTM are compared with another popular numerical method, 
the shooting method, to validate these two analytical methods.  
HAM and DTM show excellent agreement with numerical results 
(the maximum errors in our calculations are about 0.002%), and 
they additionally provide a simple way to conduct a parametric 
analysis with different physical parameters in Euler-Bernoulli 
beams.  To show the benefits of this method, the effect of different 
physical parameters on the amplitude is discussed for a cantilever 
beam with a cyclically varying axial load. 
 
Keywords 
Nonlinear vibration, Euler-Bernoulli beam, Homotopy Analysis 
Method (HAM), Two auxiliary parameters, Differential Transform 
Method (DTM). 
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1 INTRODUCTION 

The governing equations of beam vibration are generally non-linear making it difficult to solve the 
nonlinear problem via analytical methods. Because of this, many researchers use numerical methods 
to solve these equations. In recent years, some approximate analytical solutions have been offered to 
investigate these non-linear equations. Wu and Liu (1999) used differential quadrature to solve the 

S.S. Jafari a 

M.M. Rashidi b, c 

S. Johnsond 
 
a Young Researchers & Elite Club,  
Hamedan Branch, Islamic Azad  
University, Hamedan, Iran. E-mail:  
sjd.jafari@yahoo.com, sjd.jafari@iuh.ac.ir 
b Shanghai Key Lab of Vehicle  
Aerodynamics and Vehicle Thermal 
Management Systems, Tongji University, 
Address: 4800 Cao An Rd., Jiading, 
Shanghai 201804, China. 
c ENN-Tongji Clean Energy Institute of 
advanced studies. 
d University of Michigan-Shanghai Jiao 
Tong University Joint Institute,  
Shanghai Jiao Tong University,  
Shanghai, Peoples Republic of China. 
 
http://dx.doi.org/10.1590/1679-78252437 
 

Received 06.09.2015 
In revised form 05.03.2016 
Accepted 06.03.2016 
Available online 09.03.2016 



S.S. Jafari et al. / Analytical Approximation of Nonlinear Vibration of Euler-Bernoulli Beams     1251 

Latin American Journal of Solids and Structures 13 (2016) 1250-1264 

single-span Bernoulli–Euler beam's buckling equation. He (2006) suggested that the Parameterized-
Perturbation Method (PPM) be used to solve strongly nonlinear equations. Qaisi (1993) determined 
the vibration modes of geometrically nonlinear beams under the various edge conditions by the 
harmonic balance principle. Moeenfard et al. (2011) developed the homotopy perturbation method 
(HPM) to analyze the nonlinear free vibration of Timoshenko beams. They also converted the non-
linear partial differential governing equation to a non-linear ordinary differential equation using 
Galerkin’s projection method. Sfahani et al. (2011) used the energy balance method (EBM) to study 
the dynamic response of inextensible beams (neutral axis length is preserved during vibration). 
Barari et al. (2010) used the Homotopy-Perturbation method to analyze the beam deformation. 
Pillai and Rao (1992) applied several methods to study the large amplitude free vibrations of simply 
supported prismatic beams with fixed ends. The methods that they used in their study consist of 
the elliptic function method, harmonic balance method and methods considering simple harmonic 
oscillations. Kopmaza and Gündogdub (2003) developed the relation between curvature of an Euler-
Bernoulli beam and bending moment. Soldatos and Selvadurai (1985) used a perturbation method 
to survey the static flexure of a Bernoulli-Euler beam resting on a nonlinear Winkler-type founda-
tion. Ahmadi et al. (2014) devoted to the new classes of analytical techniques called the Iteration 
Perturbation Method (IPM)and Hamiltonian Approach (HA) for solving the equation of motion 
governing the nonlinear vibration of Euler-Bernoulli beams. Liu and Gurram (2009) employed He’s 
Variational Iteration Method (VIM) to solve free vibration problems for an Euler–Bernoulli beam 
with various supporting conditions. They compared VIM results with Adomian decomposition 
method results.  They concluded that VIM is accurate and it provides a simple and efficient ap-
proach for solving vibration of uniform Euler–Bernoulli beams. Rashidi et al. (2012) derived the 
equations of the motion for a rectangular isotropic plate. They considered the effect of shear defor-
mation and rotary inertia and used the Homotopy Perturbation Method (HPM) to solve the nonlin-
ear equation. 

In 1992, Liao (1992) proposed the homotopy analysis method (HAM) to solve nonlinear equa-
tions.  Many researchers used HAM to solve various nonlinear problems. Hoseini et al. (2008) stud-
ied the nonlinear free vibration of a conservative oscillator via HAM. They showed that the HAM 
leads to an accurate analytical solution, which is valid for a wide range of system parameters. Mo-
hammadpour et al. (2012) studied deflection of beams with nonlinear Winkler type foundations 
using HAM. They showed that the HAM improves convergence of nonlinear problems. 

The Differential Transform Method (DTM) was developed by Taylor's series expansion. DTM 
applied to solve linear and nonlinear differential equations.  This method can be used for solution of 
ordinary and partial differential equations. Ayaz (2003) solved the initial value problem for partial 
differential equations (PDE) using a two-dimensional differential transform method. Using this 
method reduces computational time. Ayaz (2004) studied PDE by a three-dimensional differential 
transform method.  Hassan (2002) solved eigenvalue problems by the DTM method. Kuang Chen 
and Shin Chen (2004) applied DTM to solve the free vibrations of a conservative oscillator and also 
compared the results with the Runge-Kutta method. In addition, Shin Chen and Kuang Chen 
(2009) investigated the free vibrations of strongly non-linear oscillators by DTM and proposed this 
method to solve the non-linear problem because of DTMs improved accuracy. 
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In this paper, two new analytical methods are proposed to solve the nonlinear vibration of an 
Euler-Bernoulli beam. First, the governing equation is obtained, and then the Galerkin Method is 
used to obtain the corresponding ordinary differential equation. Then, the HAM with two auxiliary 
parameters and DTM are employed to solve this equation. Finally, the results of HAM and DTM 
are compared with numerical method results and good agreement is achieved. 
 
2 GOVERNING EQUATION 

In order to obtain the governing equation, we consider three assumptions: the plane deformation is 
negligible so it is neglected, transverse shear strains are small so they are neglected, and rotation of 
the cross section is only due to bending. The schematic of Euler-Bernoulli beam subjected to the 
axial loading is shown in Fig. 1.  
 

 ,W x t F

 

Figure 1: A schematic of an Euler-Bernoulli beam subjected to an axial load. 

 
The equation of motion including the effects of mid-plane stretching is introduced as (Rao, 

2007): 
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where L  is the length of beam, bA  is the cross-sectional area, I  is the moment of inertia, E  is the 

young modulus, bm  is the mass per unit length of beam and .F . is magnitude of axial force. For 

simplification, the following non-dimensional variables are used: 
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where 
b

I
R

A
=  is the radius of gyration of the cross-section. Therefore, Eq. (1) can be written as 

follows: 
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Assuming that ( ) ( ) ( ),W X t T t w X= , where ( )w X  is the first Eigen-mode of the beam. By 

applying the Galerkin method, the equation of motion is obtained as follows: 
 

( ) ( ) ( )
..

3 0,T t T t T tb l+ + =  (4) 

 

where 1 2Fb b b= + . The above equation is the governing equation of nonlinear vibration of Euler-

Bernoulli beams. The 1 2,b b  and l  parameters are as follows: 
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The center of the beam are subjected to the following initial conditions: 
 

( ) ( )0 ,      0 0,T A T= =  (6) 
 

where A  denotes the non-dimensional maximum amplitude of oscillation. 
 
3 APPLICATION OF HAM 

Consider the suitable initial approximation, in order to solve Eq. (4). (for more information about 
HAM steps, see Refs. (Abolbashari et al. (2014), Abolbashari et al. (2015), Jafari and 
Freidoonimehr(2015)): 
 

( ) ( )0 Cos ,T t A ta=  (7) 
 

where a  is the secondary auxiliary parameter, which is used to accelerate the convergence of the 
series. The auxiliary linear operator ( )T T  becomes: 
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which the following relation is satisfied 
 

( ) ( )( )1 2Sin Cos 0,T c t c ta a+ =  (9)
 

where 1c  and 2c  are the arbitrary constants. According to the Eq. (4), the nonlinear operator is 

introduced as: 
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The zero-order deformation equation is introduced as: 
 

         0
ˆ ˆ1 ,f T T Tp T t p T t p t T t p        ; ;    (11)

 

where p  is an embedded parameter and T  is an auxiliary nonzero parameter. The auxiliary func-

tions are introduced as: 
 

  1.T t   (12)
 

Due to the boundary conditions 
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By Taylor's theorem, we have 
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Consider that T  is chosen such that the Taylor series expansion of Eq. (14) has converged 

at 1p : 
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The thm  order deformation equations (Eq. (17)) were solved using MATHEMATICA software. 
The result of first order solution of HAM is determined as: 
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It is important to select a proper value of auxiliary parameter to control the speed of conver-
gence of the approximation series by the help of the so-called T  curve. The optimal values of T  

are selected from the valid region in straight line. The T  curve of  0T  obtained by the different 

order of approximation is shown in Fig. 2. The averaged residual error is introduced as Eq. (21):  
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In order to select the optimal value of the auxiliary parameter, the averaged residual error (for 
more details, see Refs.  (Liao (2010), Rashidi and Abbasbandy(2011)) is defined as: 
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where 5x K   and 10K  . For a given order of approximation m , the optimal value of T  is 

given by the minimum of 
m

 , corresponding to nonlinear algebraic equations 
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In order to check the accuracy of the HAM method with two auxiliary parameters, the residual 
errors for 5th order HAM solutions of Eq. (21) is shown in Fig. 3. 
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Figure 2: The T curve of  '' 0T  obtained by different orders of approximation  

of HAM when 2,  1, 1   A  and 1.8.   
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Figure 3: The residual error for Eq. (21) using 5th-order of approximations when  1, 0.5 A  and 0.1  . 

 
4 APPLICATION OF DTM 

Taking the differential transform of Eq. (4), one can obtain (for more details, see Refs. 
(Freidoonimehr (2015), Rashidi et al. (2015), Rashidi and Freidoonimehr (2014)): 
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where  T k  is the differential transforms of  T t  and displayed as: 
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Eq. (26) provides the transformed boundary conditions. By substituting Eq. (26) into Eq. (24) 
and combining with Eq. (25), the recursive method yields the values of  T t : 
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It is important to note that the number of required terms is determined by the convergence of 
the numerical values up to one’s desired accuracy. 
 
5 RESULTS AND DISCUSSIONS 

First of all, comparisons have been done between the results of the current study; the results of 
numerical solution via the shooting method are used to validate the proposed analytical methods 
(HAM & DTM) in Fig. 4.  Excellent agreement can be observed between them. 
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Figure 4: Deflection versus time results comparing HAM, DTM, and  

a numerical method at 0.0001, 1 A  and 0.01  . 
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Fig. 5 displays the result of HAM solution with and without considering the second auxiliary 
parameter. As mentioned previously, the second auxiliary parameter is used to increase the conver-
gence performance of the HAM. Thus, the HAM with two auxiliary parameters provides solutions 
that have good agreement with the numerical solution. In addition, it is obvious that by increasing 
the value of  , which represents the value of non-linearity of the Eq. 4, the HAM with one auxilia-
ry parameter diverge faster. Thus for large values of the non-linear parameter, the HAM with two 
auxiliary parameter must be applied to ensure the series convergence. Tables 1-3 present the com-
parison between the HAM results with one and two auxiliary parameters with the numerical meth-
od results for the various values of the amplitude,  ,   and time. As it is obvious form these ta-

bles, good agreement can be seen between the results of the HAM with two auxiliary parameters 
and the numerical method results.  
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Figure 5: Amplitude oscillation comparison of HAM and numerical solution for the one  

and two auxiliary parameters at 1,  1 A  a) 1   and b) 2  . 

 

 A=0.1 A=1 

t(s) Numerical HAM I HAM II Numerical HAM I HAM II 

0 0.1 0.1 0.1 1 1 1 

1 0.0758123053 0.0758123290 0.0758123286 0.5685690107 0.5685689981 0.5685689775 

2 0.0150531766 0.0150538194 0.0150531827 -0.2698650107 -0.2698651913 -0.2698653491 

3 -0.0529409197 -0.0529280477 -0.0529409341 -0.9325348519 -0.9325366270 -0.9325366021 

4 -0.0954464431 -0.0954993211 -0.0954465014 -0.8144739389 -0.8145389037 -0.8144742206 

5 -0.0918065561 -0.0921086256 -0.0918066163 -0.0495672950 -0.0494860857 -0.0495654188 

6 -0.0438010779 -0.0452883159 -0.0438010357 0.7466652141 0.7462369047 0.7466614051 

7 0.0252801484 0.0192031534 0.0252802685 0.9673342245 0.9678434110 0.9673458074 

8 0.0822077164 0.0708355335 0.0822078377 0.3654183660 0.3658140840 0.3654169333 

Table 1: Comparison between HAM I & HAM II with numerical method for  
various amplitude ( )A and time at 0.5   and 0.5  . 
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 0.1   1   

t(s) Numerical HAM I HAM II Numerical HAM I HAM II 

0 0.1 0.1 0.1 1 1 1 

1 0.7186891367 0.7186891073  0.7186891335  0.40916881872 0.4091518362  0.4091672994  

2 0.0535511899  0.0535782139  0.0535511963  -0.5645435043 -0.5655204125  -0.5645564307  

3 -0.6384940390  -0.6372673322  -0.6384939736 -0.9788739015 -0.9795816619  -0.9788746001  

4 -0.9937463714  -0.9965024750  -0.9937463911 -0.2459090069 -0.2431123411  -0.2459589233  

5 -0.7906133618  -0.7915504288  -0.7906133964 0.7066586628  0.6990286507  0.7066308351  

6 -0.1600941627  -0.1554930423  -0.1600942406 0.9175055751  0.9269407103  0.9175718354  

7 0.5510944923  0.4920791463  0.5510944937  0.0786457186  0.0524578451  0.0786884118  

8 0.9750893151  1.0122147510  0.97508940017 -0.8286355281 -0.7764330162  -0.8286467371  

Table 2: Comparison between HAM I & HAM II with numerical method  
for various   and time at 1A  and 0.5  . 

 

0.1  1 

t(s) Numerical HAM I HAM II Numerical HAM I HAM II 

0 0.1 0.1 0.1 1 1 1 

1 0.7342918452 0.7342912558 0.7342918201 0.3744464684 0.3744424296 0.3744464636 

2 0.1830444159 0.1824732174 0.1830319625 -0.6801752854 -0.6807760172 -0.6801750785 

3 -0.4042240428 -0.3834091289 -0.4042415967 -0.9263208907 -0.9281230482 -0.9263222111 

4 -0.8902880363 -0.9402908042 -0.8903411584 -0.0279417717 -0.0205402843 -0.0279408781 

5 -0.9574603761 -0.9960507470 -0.9575074874 0.9018985316 0.8831000485 0.9018923741 

6 -0.5386693482 -0.3560895267 -0.5386867113 0.7219217679 0.74510167918 0.7219283281 

7 0.04154669596 -0.6011096589 0.0416248723 -0.3214271794 -0.3801147965 -0.3214297723 

8 0.6141523989 1.5550866375 0.6140954363 -0.9981268334 -0.9332048104 -0.9981113550 

Table 3: Comparison between HAM I & HAM II with numerical method  
for various   and time at 1A  and 0.5  . 

 
A parametric study was conducted on a cantilever beam with cyclically varying axial load. The 

nonlinear vibration analysis of deflection  T t  is shown in Figs. 6-7 for a wide range of amplitudes 

(A)  and time ( )t  and different values of the constant physical parameters via two auxiliary param-

eter of HAM solution. The difference between these two figures is in their physical constant   

and  , where in Fig.6   , 0.15  , 0.15   and 0.5   in Fig. 7. 
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Figure 6: 3D plot of deflection ( )T t  for a wide range of amplitude  A  and time( )t , where    and 0.15  . 

 

 

Figure 7: 3D plot of deflection ( )T t  for a wide range of amplitude  A   

and time( )t , where 0.15   and 0.5  .  

 
Influence of   on  T t  behavior is demonstrated in Fig. 8, where A  and   are equal to 1. Al-

so, the effect of   on the behavior of  T t  is shown in Fig. 9, where A  and   are equal to 1. It is 

worth mentioning that the two auxiliary parameters of HAM solution are used in Figs. 8-9. 
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Figure 8: HAM solution to show the effect of   on ( )T t  behavior at 1A  and 1  . 
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Figure 9: HAM solution to show the effect of   on ( )T t  behavior at 1A  and 1  . 

 
The DTM response depends on the order of solutions.  The DTM response at 0.0001A , 
0.5   and 0.5   is shown in Fig. 10 for different orders of solutions. According to Fig. 10 there 

is good agreement with numerical results at the 20th order of solution. The solutions based on 
DTM and numerical method for 1t  are compared in Table. 4. In this table, the values of the   
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and   are equal to 0.5. It can be observed that the maximum errors of HAM and DTM solutions 

with numerical results are less than 0.002%. 
 

t

T 
(t)

0 4 8
-0.0001

0

0.0001

numerical
n=5
n=10
n=20

 

Figure 10: The ( )T t  behavior at 0.0001A , 0.5   and 0.5  ,  

based on DTM for different order of solutions. 

 

A Numerical DTM HAM Error (DTM) Error (HAM) 

0.0001 0.0000760376 0.0000760245 0.0000760245 0.000173043 0.000173043 

0.01 0.0076022228  0.0076022336 0.0076022336 -1.4201E-6  -1.42009E-6  

0.1 0.0758123053  0.0758123286 0.0758123306 -3.0736E-7  -3.34017E-7  

0.3 0.2223960659 0.2223960863 0.2223961065 -9.186E-8  -1.82744E-7  

Table 4: Comparison between DTM & HAM with numerical method for various amplitude  

(A)  at  1t s , 0.5   and 0.5  . 

 
6 CONCLUSIONS 

In this paper, nonlinear vibration of an Euler-Bernoulli beam subjected to a cyclically varying axial 
load is investigated by analytical methods. The governing equation of nonlinear vibration of the 
beam is in the form of a partial differential equation. The Galerkin method is employed to reduce 
the governing equation to ordinary differential equation. The homotopy analysis method (HAM) 
with two auxiliary parameters and differential transform method (DTM) are used to express the 
response of the axially loaded beam. In this problem, the second auxiliary parameter is used to ac-
celerate the convergence of the Taylor series expansion, and it was shown that this parameter im-
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proves the analysis of highly nonlinear systems. Excellent agreement was found in comparing the 
HAM, DTM and numerical solution results. 
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