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Abstract 
In the present study, dynamic pull-in instability of electrostatical-
ly-actuated micro-beams is investigated through proposing the 
nonlinear frequency amplitude relationship. An approximate ana-
lytical expression of the fundamental natural frequency is present-
ed by modern asymptotic approach namely Iteration Perturbation 
Method (IPM). Influences of vibrational amplitude as well as 
different parameters on dynamic pull-in voltage are investigated. 
It is demonstrated that two terms in series expansions is sufficient 
to produce an acceptable solution of the mentioned micro-
structure. The simulations from numerical methods verify the 
validity of the analytical procedure. 
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1 INTRODUCTION 

The application of the micro-scale devices is continuously growing and the microelectromechanical 
systems (MEMS) have become the interesting area of research in recent years. The application of 
actuated MEMS includes accelerometers, micro-pumps, micro-resonators and manipulators 
(Grandinetti et al., 2012). In recent years, several researches have been developed on the nonline-
ar behavior of MEMS/NEMS devices (Sedighi, 2014; Rahaeifard et al., 2013; Tadi Beni et al., 
2012; Abdi et al., 2011; Sedighi et al., 2014; Tadi Beni and Abadyan, 2013; Soroush et al., 2010; 
Sedighi and Shirazi, 2013; Ansari et al., 2012). In the dynamic analysis of micro-systems, electro-
static forces cause the relationship between the input excitation and the output response to be 
nonlinear which is performed by applying voltage between the micro-beam and the substrate. The 
micro-beam deflection increases by increasing the actuation voltage. At a specific voltage namely 
pull-in voltage instability happens and the micro-structure drops to the substrate. 

Rahaeifard et al. (2013) investigated the dynamic behavior of micro-cantilevers under suddenly 
applied DC voltage based on the modified couple stress theory using numerical and analytical 
approaches. Stability of a functionally graded (FG) micro-beam, based on modified couple stress 
theory (MCST), subjected to nonlinear electrostatic pressure and thermal changes have been 
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studied by Zamanzadeh et al. (2013). Sedighi and Shirazi (2013) presented a new asymptotic pro-
cedure to predict the nonlinear vibrational behavior of micro-beams pre-deformed by an electric 
field. The impact of vibrational amplitude on the dynamic pull-in instability and fundamental 
frequency of actuated microbeams has been investigated by Sedighi (2014) via introducing the 
second order frequency–amplitude relationship. The nonlinear governing equation of microbeam 
predeformed by an electric force including the fringing field effect, based on the strain gradient 
elasticity theory was considered and the predicted results of the strain gradient elasticity theory 
was compared with the outcomes arise from the classical and modified couple stress theory. Sedi-
ghi et al., (2014) investigated the dynamic pull-in instability of vibrating micro-beams undergoing 
large deflection under electrosatically actuation based on the modified couple stress theory. The 
modeling and analysis of an optically-actuated, bistable MEMS switches have been studied by 
Kumar and Rhoads (2012). They investigated the influence of various system and excitation pa-
rameters, including the applied axial load and optical actuation profile, on the system’s transient 
response. Sabater and Rhoads (2012) analyzed the control mechanisms of self-excited oscillators, 
founded upon electromagnetically-actuated microbeams. Their study specifically focused on the 
characterization of nonlinear behaviors arising in isolated mutually-coupled oscillators. Ramezani 
(2012) used Hamilton's principle to derive the nonlinear governing equations of motion and 
boundary conditions of micro scale Timoshenko beam model based on a general form of strain 
gradient elasticity theory. He demonstrated that both strain gradient and geometric non-linearity 
effects increase the beam natural frequency. Abdi et al. (2011) employed the modified couple 
stress theory to model the size effect on the pull-in instability of electrostatic nanocantilevers in 
the presence of dispersion (Casimir/van der Waals) forces. Ansari et al. (2012) investigated the 
nonlinear free vibration behavior of microbeams made of functionally graded materials (FGMs) 
based on the strain gradient elasticity theory and von Karman geometric nonlinearity. Rhoads et 
al. (2013) presented the highly non-linear dynamic behavior of a new class of parametrically ex-
cited, electromagnetically actuated microcantilevers. They studied the frequency response behav-
ior and bifurcation analysis of the micro scale system using perturbation method. Chouvion et al. 
(2012) reviewed several approaches for calculating semi-infinite support loss in micro-electro-
mechanical system resonators undergoing in-plane vibration. Rajabi and Ramezani (2012) pre-
sented a micro scale nonlinear beam model based on strain gradient elasticity. They indicated 
that in a micro-beam having a thickness to length parameter ratio close to unity, the strain gra-
dient effect on increasing the natural frequency is predominant and by increasing the beam thick-
ness, this effect decreases and geometric nonlinearity plays the main role on increasing the natural 
frequency. The effects of the open crack on the static and dynamic pull-in voltages of an electro-
statically actuated fixed-fixed and cantilever micro-beam has investigated by Motallebi et al. 
(2012). Thermoelastic damping (TED) in a micro-beam resonator with a pair of piezoelectric lay-
ers bonded on its upper and lower surfaces have been studied by Vahdat et al. (2012). They 
demonstrated that thickness of the piezoelectric layers and application of DC voltage can affect 
the TED ratio and the critical thickness value of the resonator. Daneshmand and Amabili (2012) 
described a mechanics model of an anisotropic microtubule to predict the coupled frequencies of 
microtubule-cytoplasm system including the effect of the surrounding cytoplasm. They developed 
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the displacement representation of the first-order shear deformation shell theory for orthotropic 
materials for modeling the microtubule. 

Recently, new asymptotic methods have been increasingly developed in order to solve nonline-
ar differential equations (Shi-Jun Liao, 2004; Sedighi and Shirazi, 2012; Sedighi et al., 2012a, 
2012b). There have been several approaches employed to solve the governing nonlinear differen-
tial equations to study the nonlinear vibrations such as Energy Balance Method (Ghadimi et al., 
2012), Variational Iteration Method (He, 2007; Sedighi et al., 2012), and Hamiltonian Approach 
(HA) (He, 2010; Sedighi and Shirazi, 2013), Amplitude–frequency formulation (He, 2008), Max-
Min approach (He, 2008), Homotopy Analysis Method (HAM) (Liao, 2003 and 2004), Parameter 
Expansion Method (Wang and He, 2008; He, 2002), Homotopy Perturbation Method (HPM) 
(Yazdi, 2013), Iteration Perturbation Method (He, 2001; Sedighi et al., 2013). The Iteration Per-
turbation Method (IPM), which is developed by Ji-Huan He (2001), provides an effective and 
efficient tool for solving an extensive range of nonlinear equations.  

The present article attempts to indicate the impact of vibrational amplitude on dynamic pull-
in instability of actuated micro-beams by introducing the nonlinear frequency – amplitude rela-
tionship. In this direction, analytical expressions for vibrational responses of cantilever and 
clamped-clamped micro actuated beams are presented. The results presented in this paper exhibit 
that the analytical method is very effective and convenient for nonlinear vibration for which the 
highly nonlinear governing equations exist. The proposed analytical method demonstrates that 
two terms in series expansions is sufficient to obtain a highly accurate solution of micro-beam 
vibration. Finally, the influences of amplitude and significant parameters on the pull-in instability 
behavior are studied. 

 
2 EQUATION OF MOTION 

Consider an actuated micro-beam suspended above a rigid substrate and under electro-statically 
actuated voltage as shown in Fig. 1. The cantilever and clamped-clamped micro beams have 
length  l , thickness  h , width  b , density  ρ , moment of inertia  I  and a modulus of elasticity  E . 
The air initial gap is 

 
d

gap
 and an attractive electrostatic force which originates from voltage V

causes the micro-beam to deform. 
 

  
 

Figure 1Configuration of a: clamped-clamped and b: cantilever micro actuated beam 
 

Assume that the beam considered here, be the Euler–Bernoulli beam. By incorporating von 
Karman nonlinearity, large deflections, large rotations and small strains of the narrow micro-
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beam are taken into account. The governing equation of motion of micro actuated beam is ex-
pressed as follows (Moghimi Zand and Ahmadian, 2009): 
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Where 

 Ni
represents the axial force. By introducing the following non-dimensional variables 
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the non-dimensional nonlinear governing equation of motion can be written as follows: 
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Assuming 

    
W ξ,τ( ) = q τ( )φ ξ( ) , where 

  
φ ξ( )  is the first eigenmode of the micro-beam vibration 

and can be expressed as: 
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where

   λ1
= 4.73  and 

   λ2
= 1.875  are the roots of characteristic equations for the first two eigenmodes 

of clamped-clamped and cantilever micro beams. It should be pointed out that for cantilever micro-
beam vibrations the stretching term as well as the axial load is equal to zero. Applying the Bubnov-
Galerkin procedure yields the following non-dimensional nonlinear governing equation of motion: 
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where the parameters 

  β0
to 

  β4
 for clamped-clamped as well as cantilever micro-beam have been 

described in the Appendix A. 
 

3 APPROXIMATION BY THE ITERATION PERTURBATION METHOD 

The Iteration Perturbation Method proposed by He (2001) is constructed based on perturbation 
technique coupling with iteration method. This method is valid not only for weakly nonlinear 
problems but also for strongly nonlinear differential equations. Consider the nonlinear equation 
(5), in order to obtain an iteration perturbation solution of the governing equation, an artificial 
parameter  ε  should be introduced as: 
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Equation (6) can be approximated by: 
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where 

  q0  is the initial approximate solution. The initial solution can be assumed in the form

    
q

0
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Equation (8) can be rewritten in the following form 
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assuming that 
 

    q = q0 + εq1 + ε2q2 + ...  (10) 
 

    εβ1 = ω2 + εc1 + ε2c2 + ... (11) 
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Substituting equations (10) and (11) into (9), and equating the coefficients of the same power of 

e , the following differential equation for 
  q1  can be obtained 
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If the term 

   
cos ωτ( ) exists in the right hand side of equation (12), the secular term 

   
τ cos ωτ( )  

will appear in the final solution. Therefore, the coefficient of this term in (12) should be equal to 
zero, so we have 
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similarly, the following differential equation for 

  q2  can be obtained 
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No secular term in the second equation for 

    
q2 τ( )  yields: 
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thereby, solving equations (11) and (15) with    ε = 1  for fundamental frequency gives the following 
frequency amplitude relationship for actuated micro-beam vibrations as: 
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Solving Eq. (12) for 

    
q1 τ( )gives the following second order approximation for 

   
q τ( )as: 
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4 RESULTS AND DISCUSSION 

To indicate the validity of proposed solution by IPM, the analytical solutions at the side of corre-
sponding numerical results have been plotted. As can be seen in Fig. 2, the second order approxi-
mation of 

   
q τ( )  using analytical methods for both clamped-clamped and cantilever micro-beam 

show good agreement with numerical results from fourth-order Runge-Kutta method. The numeri-
cal values of system parameters used for asymptotic analysis are described in Appendix B. 
 

 
(a) 
 

Figure 2Comparison of the results of analytical solutions with the numerical solution for 0.2A = . 
Symbols: numerical solution; Solid line: analytical solutions 

a: Clamped-clamped and b: Cantilever micro-beam 
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(b) 

 
Figure 2 (continued)   Comparison of the results of analytical solutions with the numerical solution for 0.2A = . 

Symbols: numerical solution; Solid line: analytical solutions 
a: Clamped-clamped and b: Cantilever micro-beam 

 
Analytical simulation of the dimensionless dynamic pull-in voltage of clamped-clamped and can-

tilever micro-beam versus non-dimensional amplitude are depicted in Figs. 3 to 5. The effect of di-
mensionless axial force parameter 

 fi
 on the dynamic pull-in voltage as a function of initial ampli-

tude is illustrated in Fig. 3. It is obvious that the dynamic pull-in voltage increases by increasing 
the axial force parameter. It appears from Fig. 3 that the dynamic pull-in voltage decreases when 
the normalized amplitude increases. Fig. 3 also shows that the effect of normalized amplitude on the 
dynamic pull-in voltage is more considerable than its effect on the axial force parameter

 fi
. Fig. 4 

shows the characteristic curves of dynamic pull-in voltage of double clamped micro-beam for vari-
ous values of dimensionless parameter  α . Fig. 4 indicates that the dynamic pull-in voltage increases 
as the parameter  α increases. In addition, the impact of dimensionless parameter a is more consid-
erable when the normalized amplitude increases from zero to unity. 
 

 
 

Figure 3 Dimensionless dynamic pull-in voltage of clamped-clamped micro-beam versus axial force parameter
 
fi  
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Figure 4   Dimensionless dynamic pull-in voltage of clamped-clamped micro-beam versus parameter α  
 

 
 

Figure 5  Dimensionless dynamic pull-in voltage of clamped-clamped micro-beam versus parameter γ  
 

The influence of nondimensional parameter  γ  on the dynamic pull-in voltage of cantilever and 
double clamped actuated micro-beams are depicted in Figs. 5 and 6. The comparison between the 
values of pull-in voltages reveals that the dynamic pull-in voltage for cantilever micro-beam is less 
than its value for double clamped one.  From Figs. 5 and 6, it is concluded that the increase in the 
parameter  γ  causes decrease in the dynamic pull-in voltage. Furthermore, it is clear that the effect 
of dimensionless parameter  γ  is more considerable when the normalized amplitude decreases. 
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Figure6   Dimensionless dynamic pull-in voltage of cantilever micro-beam versus parameter  γ  
 
 
5 CONCLUSIONS 

A modern powerful analytical approach called Iteration perturbation method was employed to es-
tablish the frequency - amplitude relationship of vibrating actuated micro-beams. The influence of 
vibrational amplitude on pull-in instability and dynamic pull-in voltage was investigated in this 
research. The accuracy of the obtained analytical solutions is verified by numerical results. It is 
indicated that two terms in series expansions is sufficient to produce an acceptable accurate solu-
tions. Finally, the significant effects of non-dimensional parameters on the dynamic pull-in voltage 
were investigated. 
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Appendix A 

For clamped-clapmed micro beam the defined parameters are: 
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For cantilever micro beam the defined parameters are: 
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Appendix B 

System parameters used for numerical analysis 
 

    l = 210µm  micro-beam length     h = 1.5µm  micro-beam thickness 

   E = 169 GPa  modulus of elasticity     b = 0.5µm  micro-beam width 

    ρ = 2329 kg /m3  density     
d

gap
= 1.18µm  initial gap 

    ε = 8.854187817620×10-12 F /m  vacuum permittivity    β = 0.65  fringing fields effect parameter 

 


