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A FEM-BEM interactive coupling for modeling the piezoelectric
health monitoring systems

Abstract

In this research, finite element and boundary element meth-

ods are coupled together to model the interaction of a piezo-

electric ceramic working as an actuator with an elastic ma-

terial. Piezoelectric-elastic material’s interaction occurs in

smart structures. This work is aimed at determining the ac-

tuation effects being transferred from the actuators to the

host and the resulting overall structural response. To ob-

tain the amount of these actuations, the system of the host

structure and an actuator has been modeled by using cou-

pled finite element boundary element method in frequency

domain. The host structure, which is assumed as an isotropic

elastic solid region is modeled as a half space. The piezo-

electric ceramic region is modeled by the 3-D finite element

method, while the elastic half space with boundary element

method. Finite element model of piezoelectric ceramic and

boundary element model of the elastic half space are cou-

pled together at their interface such that the vibrations of

the piezo-actuator induce vibrations in the elastic half space.

A couple of examples are given to show the induced dis-

placement field around the piezo-actuator on the surface of

the elastic medium. The results show that high jump in

magnitude of horizontal displacements at the corners of the

actuator attached to the structure occurs, which is an indi-

cation of high stress concentration, of the shear stress type

at the corners. This stress concentration sometimes causes

complete debonding of the actuator from the base structure.

By using the suggested BEM-FEM coupled model for actu-

ators with different dimensions or material properties much

useful information concerning the amount of actuation and

load transfer can be obtained. The presented work is a step

towards modeling of structural health monitoring systems.

Keywords

finite element, boundary element, piezoelectric ceramic, elas-

tic half space, smart structure, actuators, stress concentra-

tion.

Abid A. Shah∗

Specially Units for Safety and Preservation of

Structures, College of Engineering, King Saud

University, P. O. Box 800, Riyadh 11421 –

Saudi Arabia

Received 12 Jan 2011;
In revised form 12 May 2011

∗ Author email: abishah@ksu.edu.sa

Latin American Journal of Solids and Structures 8(2011) 305 – 334



306 A.A. Shah / A FEM-BEM interactive coupling for modeling the piezoelectric health monitoring systems

1 INTRODUCTION

Health monitoring of the existing structures or materials is an issue of critical relevance in

many civil, mechanical, chemical, aeronautic and aerospace engineering applications. In some

of these cases conventional non-destructive evaluation methods are effective; however for some,

those methods are in-effective. A bulky mechanical structure cannot be taken to the laboratory

every time to check its body for unwanted displacements or damages initiated by small cracks

and even if it is possible, how often we can check the bodies of such structure to make sure

the system is healthy and there is no damage at all?

In recent years, structural health monitoring (SHM) has emerged as a concept in the

broader field of investigation of smart structures [1, 53]. Structural systems are usually de-

scribed as smart when they are able to sense and adapt their response to changing operational

or environmental conditions. Their development relies on the integration of sensors and actu-

ators with the structure and on the combination with appropriate electronics, modeling and

control algorithms. SHM systems exploit such features to detect the occurrence and location of

damage which may affect the performance and reliability of the structure. While conventional

non-destructive inspection procedures investigate directly for damage at scheduled intervals

applying the appropriate technique, in situ SHM systems are generally based on the real time

comparison of the local or global response of the damaged structure with the known response

of the undamaged one.

In piezoelectric structural usage and health monitoring systems, the monitoring is per-

formed through a network of suitably arranged piezoelectric sensors, some physical variables

and fields, such as strain, vibration, electrical conductivity and acoustic emission, which may

be affected by the changes of material and geometrical conditions in proximity of the damaged

area. This system has an advantage of the direct piezoelectric effect, which refers to the gen-

eration of an electric displacement field as a consequence of a mechanical load. As a result it

is able to sense structural deformation and signal it through a variation of voltage or rate of

variation of voltage [16].

Piezoelectric materials are among the most widely used smart materials because of their

reliability and sensitivity [43]. Their common use as sensors/actuators in smart structures is

also due to their fast response and low energy consumption [21]. Piezoelectric sensors for SHM

applications are usually employed in the form of small polyvinylidene fluoride (PVDF) patches

or thin lead zirconate titanate (PZT) monolithic wafers. While PVDF elements are mainly

used for sensing applications, stiffer PZT transducers can also be used for actuation purposes.

They can be bonded on the surface of the structure or embedded into the structure itself

and allow the determination of local values of strains. Due to their small sizes, the gradient

identification for damage detection applications is often based on the use of arrays of such

micro-electromechanical systems (MEMS).

A piezoelectric actuator usually consists of two main components [35]: a mechanical part,

which is a flexible structure, and an electrical part, which is the piezoelectric material block.

One of the important issues of using piezoelectric actuator is to improve their performance for

a certain amount of piezoelectric material, which is the goal of piezoelectric actuator design.
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Since the mechanical part of flextensional actuators is actually a compliant mechanism, piezo-

electric transducer [41] and thermal actuators [41, 63] have been also designed using topology

optimization technique. This topological design optimization was able to generate effective

mechanical structure that greatly improved the performances of the piezoelectric actuator.

Piezoelectric actuator has been increasingly used in MEMS system due to its advantage

of generality and flexibility. A flextensional actuator consists of a piezoceramic device, which

can convert electrical energy into mechanical energy and vice versa, and a flexible mechanical

structure, which can convert and amplify the output piezoceramic displacement in the desired

direction and magnitude [62]. A recent research in this area is optimizing the topology of the

mechanical part while fixing the electrical part [64]. There have also been design optimization

techniques developed for the electrical part of piezoelectric actuator. The placement and size

of piezo-material was optimized [47]. In a recent research, the distribution of piezoelectric

material in the optical MEMS was optimized [25].

The optimal design of piezoelectric actuators and sensors has been an interesting research

subject in recent years as may be seen in a review paper [24]. Researchers are focusing on

every aspect and every component in order to achieve the best performances, from piezo-

ceramic composite design, optimal sizing and locating to topology optimization [36]. Topology

optimization with homogenization method was proposed by [8] to design the stiffest structure.

This method is then applied to design compliant mechanisms and composite materials [49].

Additional, existing research in this area may be divided into two categories: the optimal

placement of actuators with or without the optimization of controller parameters for prede-

termined structures [2, 26, 28, 29, 55, 65] and the optimization of actuators and surrounding

structures [14, 22, 38]. To maximize the stroke displacement of a piezoelectric actuator based

on the compliant mechanism, the topology optimization method (see, e.g., [8]) has been used

as an efficient design tool [14, 38]. As far as the topology optimization is concerned, some

investigations are focused mainly on the optimization of base structures made of passive non-

piezoelectric materials where the piezoelectric elements serve only as driving sources. Other

investigations are focused on piezoelectric material parts possibly in conjunction with non-

piezoelectric material parts.

Because of their importance in deformation and vibration control of flexible structures, the

modeling of plate and thin sheet actuators in smart structures had received significant attention

[19]. In the research [54] a beam-like structure with surface bonded or embedded thin sheet

piezoelectric actuators was analyzed to study the stresses transmitted by the actuators to

the host beam. In that analysis, the axial normal stress in the actuator was assumed to be

uniform across its thickness and the host was modeled as a Bernoulli-Euler beam. By ignoring

the inertial effect of the actuator, the result indicated that, for a perfectly bonded actuator, the

shear stress between the actuator and the host was transferred over an infinitesima1 distance

near the ends of the actuator, i.e., the entire shear force is transferred at the two ends of the

piezoelectric actuator. Since no structural force other than a pure bending moment upon the

cross section of beam was considered, this model did not account for the effect of the transverse

shear which was exerted on the beam by the piezo-actuator. This model is often referred to
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as Pin-force model [15, 54] or the uniform strain model [40].

Crawley and Anderson [18] developed a Bernoulli-Euler model of a piezoelectric actuator by

considering the linear stress distribution along its thickness to describe the actuation effect on

the host beam. To assess the accuracy of these models, the structural response of a beam with

piezoelectric actuators using the uniform strain model and Bemoulli-Euler rod was calculated

by [18]. By comparing the prediction of these models with finite element solutions and exper-

imental measurements of the surface strains from substructure and actuator, they concluded

that the Bernoulli-Euler model is more accurate than the uniform strain model. The earlier

actuator model presented by [54] was modified by [32] to investigate a beam with a piezoelec-

tric actuator under general loading. Both the axial force and the transverse shear force in the

beam were considered in formulating the governing equations of the problem. It was found

that the axial force in the beam had a significant effect on the shear stress transmitted from

the actuator to the host.

A refined actuator model based on the plane stress formulation of the theory of elasticity

was presented for a beam structure with symmetrically surface-bonded actuator patches [42].

The stress distribution in the actuators and the host beam was determined by using an ap-

proximated axial normal stress field with a parabolic profile in the direction of the thickness

of the actuator. It was then concluded, by comparing with the finite element results, that this

model captured the attenuation of the effective force/moment near the actuator edges, and

was in good agreement with the finite element results, except in the region about one actuator

thickness from the actuator edges. A plate and shell model was also used to model piezoelectric

structures by modifying the classical laminated plate theory for static loading [60].

Because of the approximation made in analytical modeling explained above, inertial effects

and singularities were ignored. In most of the theoretical investigations as stated above,

classical beam and plate theories were used to model the deformation of the host structure.

This results in zero transverse of shear stress across the actuator/host interface, except for

the ends of the actuator. Physically, the assumption of a linear strain distribution through

the thickness of a substrate material undergoing induced strain actuation from piezoelectric

actuators seems oversimplified as far as the local stress level is concerned [51]. This had

motivated the usage of numerical methods to investigate the local stress distribution around an

actuator and the load transfer between the actuator and the host. Kulkarni and Hanagud [39]

extended the variational formulation of Tiersten [57, 58] and presented a two dimensional finite

element formulation for the problem of an elastic body with bonded piezoelectric actuators

subjected to different electromechanical loadings. The problem of a cantilever beam with one

top and one bottom piezoelectric actuators was also investigated in details for different applied

electric loads. Although the axial strain distribution at the central part of the actuator/host

interface agreed well with the prediction of the uniform strain model [40], the interfacial shear

stress was found to be very high at and near the actuator ends.

The stress distribution of the bonded surfaces of embedded and surface mounted piezoelec-

tric actuators was further investigated by [52] using the finite element formulations. It was

found that the tractions at the actuator/host interface were concentrated towards the edge

Latin American Journal of Solids and Structures 8(2011) 305 – 334



A.A. Shah / A FEM-BEM interactive coupling for modeling the piezoelectric health monitoring systems 309

of the surface mounted piezoelectric actuator and therefore a small bonded area was used for

load transfer. There is very high stress gradient near the edge of the actuator and fifty percent

of the resultant force is transferred by approximately 10-20 percent of the interface near the

edge. The embedded piezoelectric transferred a smaller load, through this component of the

traction and the variation over the surface is also small. The resultant force transferred in

the thickness direction is concentrated towards the edge in both cases. However, singularity

appears at the edge in the case of the surface bonded piezoelectric. Comparison between em-

bedded and surface mounted actuators indicated that the stress concentration is less severe at

the corners of an embedded actuator.

Further in regard of the above explanation, it is also well known that analytical solutions can

be obtained only for the simple cases. However, for piezoelectric actuators used in engineering

applications, it is very difficult to obtain the closed form solution of the local electro-elastic

field. For obtaining solutions in general complicated cases, therefore, numerical methods, such

as the hybrid finite element method, boundary element method, and/or the coupled FEM–

BEM are used. Details on the modeling of piezoelectric materials and smart structures by

conventional finite elements and boundary element methods may be referred as [10, 20, 45].

With reference to the research in [46], for modeling of sensors and actuators frequently

boundary element method (BEM) based formulations have to be coupled with finite element

method (FEM) formulations. Because each method performs better than the other in some

domains or some parts of the same domain. Therefore, a combined approach could be both

accurate and efficient for a large class of problems. For example, problems with high stress

gradient regions could be modeled using BEM while FEM could be used for the rest of the

structure. Zhang et al. [66] analyzed the problem of a piezoelectric layer bonded to an elastic

substrate, considering the full coupling between electrical and mechanical fields. Ali et al.

[3] developed an analytical model for constrained piezoelectric thin film sensors and applied

the model to the analysis of the problem of detection of subsurface cracks [4]. An analytical

solution for the coupled electromechanical dynamic behavior of a piezoelectric actuator bonded

to an infinite orthotropic elastic medium has been developed by Huang and Sun [30]. The

earlier efforts at integrating boundary elements and finite elements have been problematic and

inefficient due to the unsymmetrical nature of the boundary element method. This process

becomes even more cumbersome in a typical assembly process. When the different parts of a

structure are modeled independently of each other in a sub-domain format, it is important to

keep account of the fact that the nodes at the interfaces match exactly [12, 23, 33]. Additionally,

for the cases where the piezoelectric device is very small relative to the host structure, finite

element is not a very effective numerical tool and usually the required grid numbers are too

large that it is not economical anymore.

This paper is concerned with the development of a three dimensional numerical model for

the dynamic interaction of a piezoelectric ceramic bonded on the surface of a semi-infinite

elastic domain. In this numerical technique finite element method is implemented for the

modeling of the piezo-actuator and boundary element method for the semi-infinite isotropic

elastic domain. The model considers dynamic interaction of the two materials in frequency
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domain. This method is usually used to solve the problems which deal with sort of coupling

or interaction of two media because both FEM and BEM are very powerful numerical tools

the coupling of which have the advantage of modeling the complex piezoelectric materials

economically and reliably.

2 RESEARCH SIGNIFICANCE AND PLAN

Finite element has been used as a numerical tool to model piezoelectric electromechanical

coupling [9, 34, 67]. However, it is very costly to model a crack/defect or the complexity in-

volved in piezoelectric electromechanical coupling by using only finite elements. Recently, it is

demonstrated that hybrid finite element and boundary element formulations have the advan-

tages of high accuracy to model the smart structures and piezoelectric materials for computing

edge singularities [56]. For this sort of problems a combination of finite element and boundary

element is usually very effective and reliable since finite element method is especially suitable

when we are dealing with finite structures with some sort of complexities like piezoelectric

ceramic. While boundary element method is well suited for infinite domains, reducing the

dimension and simplifying the modeling considerably because of its boundary only approach.

It is also useful for a wide range of problems such as structural, acoustics, elastodynamics and

fluid analysis problems. Additionally, BEM is particularly good for problems that have singu-

lar or near singular behavior within the domain. In view of this, it is possible that different

parts of a structure are modeled independently by BEM and FEM methods and then coupled

together to solve the problem exploiting the advantages of both. In this case, the usefulness

of the combined approach, though limited, is obvious. This paper is, therefore, aimed at using

hybrid method that couples nodes of FEM and BEM to model the piezoelectric ceramics and

exploits the potential of each approach. The presented work can be very advantageous for

many types of problems dealing with modeling of structural health monitoring systems.

The present work is organized as follows. The piezoelectric materials and modeling are

first described. The basic concept of piezoelectricity is reviewed and preliminary equations are

stated. In the next section finite element modeling of piezoelectric materials is explained. Both

static and dynamic modeling of piezoelectric materials by finite element method is discussed.

Some numerical examples are then solved and the results are compared with the similar ex-

amples in other studies to show the accuracy of the developed FEM code. In Section 5 the

concept of boundary element method for the elastic solid is briefly reviewed and the main

features of the hierarchical format are revised. Section 6 introduces the idea of coupling of

finite element and boundary element methods, its history perspective and different coupling

approaches. Additionally, the approach used in this research is also explained. In Section 7

the model for the structure with attached piezoelectric patches is introduced. Several numer-

ical applications are performed by the developed FEM-BEM code while the results obtained

are presented in the form of graphs and discussed. Section 8 includes the conclusions and

judgments made to illustrate the potential use of the developed FEM-BEM code for design of

SHM systems.
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3 THEORY OF PIEZOELECTRICITY

Some material usually ceramics have a property called piezoelectricity [6]. If stress is applied

to such material, it will develop an electric moment proportional to the applied stress. This

is the direct piezoelectric effect. Conversely, if it is placed in an electric field, a piezoelectric

material changes its shape slightly. This is the inverse piezoelectric effect. Fig. 1 shows this

property in a cylindrical piezoelectric material.

(a) (b) (c)

(d) (e) (f)

Figure 1 The Piezoelectric effect in a cylindrical body of piezoelectric ceramic (a) no load, (b) compressed,
(c) stretched, (d) shorten, (e) lengthen, and (f) grow and shrink [61].

Piezoelectric materials are the piezoelectric ceramics, of which PZT is an example. These

are polycrystalline ferroelectric materials with the perovskite crystal structure-a

tetragonal/rhombahedral structure very close to cubic. The composition, shape, and dimen-

sions of a piezoelectric ceramic element can also be modified to meet the requirements of

a specific purpose. Ceramics manufactured from lead zirconate/lead titanate group exhibit

greater sensitivity and higher operating temperatures, relative to ceramics of other composi-

tions.

PZT materials currently are the most widely used piezoelectric ceramics. They can be con-

sidered as a mass of minute crystallites. Above a temperature known as the Curie point, these

crystallites exhibit simple cubic symmetry, with positive and negative charge sites coinciding.

Therefore, there are no dipoles present in the material (which is said to exhibit paraelectric

behaviour). Below the Curie point, however, the crystallites take on tetragonal symmetry in

which the positive and negative charge sites no longer coincide, so each elementary cell then

has a built-in electric dipole which may be reversed, and also switched to certain allowed direc-

tions by the application of an electric field. Such materials are termed ferroelectric because this

electrical behaviour presents a physical analogy with the magnetic behaviour of ferromagnetic

materials.
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The dipoles are not randomly oriented throughout the material. Neighbouring dipoles align

with each other to form regions of local alignment known as Weiss domains. Within a Weiss

domain, therefore, all the dipoles are aligned, giving a net dipole moment to the domain, and

hence a net polarization (dipole moment per unit volume).

The direction of polarization between neighbouring Weiss domains within a crystallite can

differ by 90○ or 180○, and owing to the random distribution of Weiss domains throughout

the material (Fig. 2 (a)), no overall polarization or piezoelectric effect is exhibited. The

ceramic may be made piezoelectric in any chosen direction by a poling treatment which involves

exposing it to a strong electric field at a temperature slightly below the Curie point (Fig. 2

(b)).

Under the action of this field, domains most nearly aligned with the field will grow at

the expense of other domains. The material will also lengthen in the direction of the field.

When the field is removed (Fig. 2 (c)), the dipoles remain locked in approximate alignment,

giving the ceramic material a remanent polarization and a permanent deformation (i.e. mak-

ing it anisotropic). The poling treatment is usually the final treatment of PZT component

manufacture.

(a) (b) (c)

Figure 2 Electric dipole moments in Weiss domains (a) before polarization, (b) no polarization and (c) after
polarization [61].

Although the magnitudes of piezoelectric voltages, movements or forces are small and of-

ten require amplification, piezoelectric materials have been adapted to an impressive range of

applications. The piezoelectric effect is used in sensing applications, such as in motors and

devices that precisely control positioning, and in generating sonic and ultrasonic signals. A

piezoelectric system can be used almost instead of any other type of electromechanical trans-

ducer. Piezoceramic devices fit into four general categories: generators, sensors, actuators,

and transducers.

From the view point of elasticity, the difference in an ordinary material and a piezoelectric

ceramics can be best explained as follows [31]. All the material properties that affect the

stress or strain of an ordinary material can be represented by the elasticity matrix which is a

symmetric 6 x 6 matrix as follows,
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⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

C11 C12 C13 C14 C15 C16

C12 C22 C23 C24 C25 C26

C13 C23 C33 C34 C35 C36

C14 C24 C34 C44 C45 C46

C15 C25 C35 C45 C55 C56

C16 C26 C36 C46 C56 C66

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

; (1)

However, in piezoelectric material electric potentials or charges can affect mechanical stress

or strain too. This behavior depends on the values of the piezoelectric constants. Because

a piezoelectric ceramic is anisotropic, physical constants relate to both the direction of the

applied mechanical or electric force and the directions perpendicular to the applied force.

Consequently, each constant generally has two subscripts that indicate the directions of the two

related quantities, such as stress and strain for elasticity. The direction of positive polarization

usually is made to coincide with the Z-axis of a rectangular system of X, Y, and Z axes.

Directions X, Y, or Z are represented by the subscript 1, 2, or 3, respectively, and shear about

one of these axes is represented by the subscript 4, 5, or 6, respectively [31].

4 FINITE ELEMENT MODEL FOR PIEZOELECTRIC MATERIALS

The constitutive equations of the piezoelectric materials are given by

τij = CijklSkl − ekijEk; (2)

Di = eiklSkl + εikEk; (3)

where C is the elasticity matrix for constant strain, ε is the matrix of dielectric constants

for constant mechanical strain, e is matrix of piezoelectric constants, and τ , S, E and D

are vectors of stress, strain, electric field and electric displacement, respectively. In the finite

element formulation, the displacement field {u} and the electric potential ϕ over an element

are related to the corresponding node values ui and {ϕi} by the means of the shape functions

[Nu], and [Nϕ], as indicated by equations (4) and (5).

{u} = [Nu] {ui} ; (4)

ϕ = [Nu] {ϕi} ; (5)

Therefore, the strain field {S} and the electric field {E} are related to the nodal displace-

ments and potentials by the shape functions derivatives [Bu] and [Bϕ] defined by

{E} = −∇ [Nϕ] {ϕi} = − [Bϕ] {ϕi} ; (6)

{S} = [D] [Nu] {ui} = − [Bu] {ui} ; (7)
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where ∇ is the gradient operator and D is the derivation operator defined as

[D] =

⎡⎢⎢⎢⎢⎢⎢⎣

∂
∂x

0 0 ∂
∂y

0 ∂
∂z

0 ∂
∂y

0 ∂
∂x

∂
∂y

∂
∂z

0 0 ∂
∂z

0 ∂
∂y

0

⎤⎥⎥⎥⎥⎥⎥⎦

; (8)

and {ui} = {ux1 uy1 uz1 ux2 uy2 uz2 . . . ux20 uy20 uz20} is the vector of nodal displacements for

20-node quadratic three dimensional element as shown in Fig. 3 [7, 17], which is used in this

model and ϕ = {ϕ1 ϕ2 . . . ϕ20} is the vector of nodal electric potentials for 20-node quadratic

three dimensional element.

Figure 3 A 20-node element.

Allik and Hughes [5] developed the finite element method for a piezoelectric material in

the form of equation (8) in frequency domain

( Mff 0

0 0
){ −ω

2U

0
} + ( Kff Kfϕ

KT
fϕ Kϕϕ

){ U

ϕ
} = { F

Q
} ; (9)

In which,

[Kff ] = ∫
v
[Bu]T [c] [Bu]dv [KUϕ] = ∫

v
[Bϕ]T [e] [Bϕ]dv

[Kϕϕ] = ∫
v
[Bφ]T [ε] [Bϕ]dv; [Mff ] = ∫

v
[Nu]T [ρ] [Nu]dv

(10)

where, F is the mechanical force, Q is the electric charges, r is the mass density of the material.

The finite elements system of equations for the whole FEM domain is assembled by considering

the finite element equation for each of the elements in the finite element mesh.

4.1 Typical example to verify the finite element code (single layer longitudinal d33 motor
or actuator)

A single layer actuator is modeled and the results for deflection are compared to exact solutions

to verify the Finite Element code. The dimensions of the actuator in x1, x2, and x3 directions

are 0.02, 0.1, and 0.04 m, respectively. The geometry of the problem is given in Fig. 4.

The actuator is made of PZT4 whose corresponding nonzero material constants are as

follows,
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Figure 4 The piezoelectric actuator related to example 4.1.

Elasticity constants Piezoelectric constants Dielectric constants

C11 = C22 = 138.5GPa e13 = e23 = −5.2C/m2 ε11 = ε22 = 13.06 × 10−9F /m
C12 = 77.4GPa e33 = 15.1C/m2 ε33 = 11.51 × 10−9F /m

C13 = C23 = 73.6GPa e52 = e61 = 12.7C/m2

C33 = 114.7GPa d13 = d23 = −1.226143012 × 10−10C/N
C44 = 30.0GPa d33 = 2.888088 × 10−10C/N

C55 = C66 = 25.6GPa

The finite element three dimensional mesh consists of eight elements; One element along

x1 direction, four elements along x2 direction and two elements along x3 direction.

The mechanical boundary conditions are chosen such that the actuator is free to move in

any direction and at the same time the structure remains statically stable. These mechanical

boundary conditions are shown in the Fig. 5. In that figure, the blue supports are the supports

in x1 direction, the green supports are the supports in x2 direction and the red supports are

the supports in the x3 direction.

Figure 5 Mechanical boundary conditions of the example 4.1.

The actuator is connected to the electric potential of one volt on the top surface and the

bottom surface is grounded .Moreover no electric charges is associated to the nodes inside the

piezoelectric [27, 48]. The results obtained from the Finite Element code for the expansion

in the thickness direction is Z = −0.2888088 × 10−9 m and from the exact solution is Z =
−0.2888088 × 10−9 which shows a very good agreement.

For the contraction in the transverse direction the Finite Element Code gives the transverse

contraction of X = 6.130715 × 10−11 at x1 direction and Y = 3.065358 × 10−10 at x2 direction.

The exact solutions are calculated using the following equations,
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∆T = V d33; (11)

∆L = V d31L

T
; (12)

where ∆T is the amount of displacement in thickness direction, V is the electric potential d33,

d31 are the piezoelectric strain constants, ∆L is the amount of displacement in length direction

and L is the dimension of piezoelectric in the length direction.

From Eqs. (11) and (12), therefore

X = V d31L

T
= 1 × −1.226143012 × 10−10 × 0.02

0.04
= 6.13071506 × 10−11 m

Y = V d32L

T
= 1 × −1.226143012 × 10−10 × 0.1

0.04
= 3.06535753 × 10−10 m

which again shows a very good agreement with the results of FEM code.

4.2 A parallel bimorph beam

A parallel bimorph beam, made of two layers of piezoelectric polymetric polyvinylidene fluoride

(PVDF) with the same polarities is connected to the voltage source of one volt in a parallel

connection. The material properties of PVDF are as follows,

Elastic Modulus 0.2 × 1010 N/m2

Poisson ration ν = 0.29

Non-zero Piezoelectric coefficients
e31 = 0.046 C/m2

e32 = 0.046 C/m2

Dielectric Coefficients ε11 = ε22 = ε33 = 0.1062 × 10−9 F /M

The geometry of the problem has been shown in Fig. 6. The dimensions are in millimeter.

Figure 6 A bimorph beam related to example 4.2.
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To model the bimorph beam with Finite Element, two different models were used. The

first one is a mesh consists of one element along the width direction, two elements along the

length direction and two elements along the height direction or totally four elements and the

second one consists of one element along the width direction, four elements along the length

direction and two elements along the height direction or totally eight elements.

The deflection at different distances from the fixed end of the beam for these two different

models were calculated and compared with the exact solution of Eqs. (11) and (12). The

result of this comparison is tabulated in Table 1.

Table 1 Deflection of a parallel bimorph beam.

No. of FE Elements
Deflection at distance from fixed end

2.5 cm 5.0 cm 7.5 cm 10 cm

FEM 8 elements

results
3.2414 × 10−8 1.2741 × 10−7 2.8292 × 10−7 4.9952 × 10−7

FEM 4 elements

results
3.2561 × 10−8 1.2960 × 10−7 2.8967 × 10−7 5.0913 × 10−7

Exact solution 3.0618x10-8 1.224 × 10−7 2.75568 × 10−7 4.889 × 10−7
Error ratio for 8

elements
5.5% 3.87% 2.60% 1.92%

Error ratio for 4

elements
6.34% 5.81% 5.11% 3.92%

From the Table 1, we can observe that by increasing the number of elements or using

smaller mesh, FEM results converge to the exact solution. Also according to Table 1, error

ratio around the fixed end of the beam is more than at the free end and as we approach to

the free end of the beam the trend is clearly noticeable. The reason of this behavior is that

the discritized finite element is relatively rigid near the fixed end. The model can be improved

by using more elements [59]. Figs. 7 (a) and 7 (b) also show the distribution of displacement

in the bimorph beam for two opposite direction of electric potential of one volt. The figures

indicate that opposite direction of electric potential produces opposite direction of bending in

the bimorph beam.

5 BOUNDARY ELEMENT FORMULATION FOR AN ELASTIC SOLID

Consider an elastic body Ω which has the boundary Γ and the unit normal to this boundary

is n as shown in Fig. 8. In boundary element method (BEM) [13], for frequency domain

elastodynamics, we establish a relationship between the values of the displacements and the

surface tractions on the boundary Γ. To do so a numerical integration has to be done over the

boundary Γ.

The fundamental equation in the elastodynamics BEM is known as Somigliana’s identity

[37]. In this equation the weighting functions are the fundamental solution, which satisfies the

Latin American Journal of Solids and Structures 8(2011) 305 – 334



318 A.A. Shah / A FEM-BEM interactive coupling for modeling the piezoelectric health monitoring systems

(a) (b)

Figure 7 Deflection of a bimorph beam for Electric potential of (a) 1 volt (b) -1 volt.

Figure 8 The domain Ω with surface Γ and outward unit normal.

Sommerfeld radiation condition.

Eq. (13) shows the displacement fundamental solution for an elastic, homogeneous and

isotropic continuum in frequency domains for infinite medium.

Ui (x, y) =
1

4πµ
[e

ikT r

r
+ 1

k2T
{e

ikT r

r
− eikLr

r
}] ; (13)

where ks, kp are shear wave number and pressure wave number, respectively and r is the

distance between the source point y and the field point x.

The fundamental solution for traction (T k
i ) is obtained by taking the dot product between

the stress fundamental solution tensor and the unit outward normal vector, as follows

T k
i = −Dkl

i nl; (14)

where Dkl
I is the fundamental solution for stress and it is calculated from the displacement

fundamental solution through the following relationship.

Dij =
λ

2
Uk,kδij + µ (Ui,j +Uj,i) ; (15)
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where r,i is the derivative of r with respect to x and r,i is the derivative of r with respect to y.

For BEM integral formulation in frequency domain, if we consider two elastodynamics

states over the body Ω and displacement, traction and body forces respectively are shown by

U1
i , P

1
i , B

1
i , and U2

i , P
2
i , B

2
i for the two states. Considering Betti Reciprocal Theorem, the

following relationship may be formulated between the two states.

∫Γ P
1
i (x,ω)U2

i (x,ω)dΓ + ∫Ω ρB1
i (x,ω)U2

i (x,ω)dΩ =
∫Γ P

2
i (x,ω)U1

i (x,ω)dΓ + ∫Ω ρB2
i (x,ω)U1

i (x,ω)dΩ;
(16)

Taking U1
i , P

1
i , B

1
i as the state of real, physical displacements, tractions and body forces,

and assuming that the second state corresponds to the fundamental solution, Eq. (16) changes

to Eq. (17):

Ul (y,ω) + ∫Γ P
∗
il (x,ω; y)Ui (x,ω)dΓ =

∫ΓU
∗
il (x,ω; y)Pi (x,ω)dΓ + ∫Ω ρU∗il (x,ω; y)Bi (x,ω)dΩ;

(17)

Using U∗il (x,ω; y) = U∗il (y,ω;x), by substituting i by l, and x by y we can rewrite Eq. (17)

as,

Ui (x,ω) + ∫Γ P
∗
il (x,ω; y)Ul (y,ω)dΓ =

∫ΓU
∗
li (x,ω; y)Pl (y,ω)dΓ + ∫Ω ρU∗il (x,ω; y)Bi (y,ω)dΩ;

(18)

This equation holds for any observation point x which is interior to the domain.

If there are no body forces then the integral equation for a point on the surface may be

derived from Eq. (18) as,

Cil (x)Ul (x,ω) + ∫
Γ
P ∗il (x,ω; y)Ul (y,ω)dΓ = ∫

Γ
U∗li (x,ω; y)Pl (y,ω)dΓ; (19)

where, U∗ is the displacement fundamental solution, P ∗ is the traction fundamental solution,

U is the displacement, P is the traction, C is a parameter which depends on the geometry of

the boundary. Eq. (19) is called somigliana identity and forms the mathematical basis for the

direct boundary integral and boundary element methods.

The tensor Cil(x) depends on the geometry of the boundary Cil(x) = 1/(2δil), if the surface
is smooth at x. For any other configuration of the surface geometry at the observation point,

other values of Cil(x) are used.

Replacing Eq. (19) in the Eq. (18) the discretized boundary integral equation, i.e. the

BEM formulation for a single collocation node with the coordinate x is obtained from the Eq.

(20):

C (x) Ui (ω) + ∑NE
j =1 {∫Γj

P ∗ (xi, ω; y) Φj (y) dΓj} Ui (ω) =

∑NE
j =1 {∫Γj

U∗ (xi, ω; y) Φj (y) dΓj} Pj (ω)
; (20)

whereNE is the number of boundary elements in the domain. Ui(ω) are the complex amplitude

of displacement at xi.
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The N matrix equations for each of the collocation nodes in the BE domain may all be

assembled into a single, global matrix equation for the entire domain [11] as

( ÌC + ÌH)U = GP ; (21)

which is the matrix form of Eq. (20):

The ÌC matrix has nonzero values only on the diagonal for smooth surface boundaries.
ÌH and G are the values of the integrals over the fundamental solutions for the traction and

displacement, respectively and U and P are vectors storing the displacements and tractions

at each node and for each degree of freedom respectively. Therefore for a three dimensional

problem like the one in this paper ÌC and ÌH and ÌG are 3N × 3N matrices and U and P are

vectors of 3N dimension.

We can simply show Eq. (21) by Eq. (22):

HU = GP ; (22)

considering that

H = ( ÌC + ÌH) ; (23)

Eq. (22) is usually referred to as the basic formulation for boundary element system in

matrix form, before any boundary conditions are taken into account.

6 COUPLING OF BOUNDARY ELEMENT AND FINITE ELEMENT METHODS

To take advantages of the both methods of FEM and BEM and get rid of the disadvantages

of each, the two methods can be combined together to solve a vast group of problems usually

dealing with sort of interaction of two or more different regions [12]. Some examples of such

problems are interaction of a semi infinite soil layer and the built structure such as a tunnel or

building or as in this works the interaction between an elastic material with a more complex

material having piezoelectric and isotropic properties. The piezoelectric actuator has been

modeled by using finite element method. Because of the relatively complicated formulation

of boundary element method for piezoelectric materials, finite element method seems to be

a better choice for these materials while for elastic half space, boundary element method is

clearly the superior choice. Coupling of BEM and FEM is established base on the continuity

of the displacements and equilibrium of the forces at the interfaces of the boundary elements

and finite elements [68]. One point which should be considered in coupling finite and boundary

elements is that in boundary element method we are dealing with the nodal tractions whereas

in finite element method usually we deal with nodal forces. The method used for the coupling

is that we consider the boundary element domain as an equivalent huge finite element, and

thus assembling the effective boundary elements stiffness matrix similar to a finite element

stiffness matrix into the existing finite elements stiffness matrix of the whole finite elements.
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The combined FEM-BEM is applied to compute the actuation effect of a piezo-actuator

on a body in this research. Although it seems that FEM is an appropriate method to model

the coupling of an actuator and host structure, it is not so effective when the size of the piezo-

device and the host structure are very different as shown in Fig. 9 (a) for the two dimensional

case. From Fig. 9 (b) it is clearly observed that for such a problem the required elements

number becomes so high that does not justify meshing the whole domain and hence using

FEM in the first place. Since in reality we are usually dealing with a piezoelectric device,

which is much smaller in terms of thickness and surface area compared to the host structure,

assuming the host structure as a half-space or a semi-infinite domain seems reasonable for such

cases. For numerical analysis of a half-space or any problem having sort of infinity, boundary

element method is an excellent tool. However, modeling piezo-device by boundary element

method does not seem to be a good idea. Because, as stated, BEM formulations for modeling

piezoelectric devices are too complicated and hence FEM is utilized to model the piezoelectric

actuator [12].

In Fig. 9 (c) finite element model of piezo-actuator and boundary element model of the

host structure are coupled together and the boundary conditions at the interface of the two

material is perfectly bonded condition because in practice, the actuator is usually attached on

the surface of the structure in a perfect bonded conditions.

Fig. 10 shows the FEM and BEM regions. In order to combine the two regions together

and make the system of equations for the whole system in the finite element approach, the

following procedure should be performed. In the boundary element region, before implementing

the boundary conditions, the formulation of the system of equations is according to Eq. (22).

In order to consider this region similar to a finite element region, we have to modify Eq.

(24) to obtain an equation in the form of a finite element equation. To do so, first we multiply

both sides of equation (22) by the inverse of G to obtain:

G−1HU = P ; (24)

Next, considering M as a tensor which transforms the vector of nodal tractions of the whole

system to that of nodal forces and multiplying both sides of Eq. (24) by M , we obtain the

following equation:

MG−1HU =MP ; (25)

or simply

K ′U = f ; (26)

where K ′ = MG−1H and f is the vector of nodal forces. Eq. (26) is similar to the finite

element system of equations and thus boundary element region can be assumed as one super

finite element and fed into the existing finite element system of equations. However, it should

be noted that K ′ unlike ordinary finite element stiffness matrices, is not symmetric and after
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(a)

(b)

(c)

Figure 9 Piezo-device and the host structures (a) piezo-device attached on the surface of the host structure,
(b) piezo-device and the host structure modeled by FEM, and (c) piezo-device and the host structure
modeled by FEM-BEM.

Figure 10 FEM-BEM region.
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entering the finite element stiffness matrix, it destroys symmetry property of the finite element

stiffness matrix.

Calculating M matrix or the traction-to-force transformation matrix accurately is an im-

portant step in the finite element coupling approach. The theory is to first consider the

following integral [12]:

∫
Γ
pku

∗
kdΓ; (27)

which, is the boundary tractions weighted by the virtual displacement. For a particular element

pTk is a row vector containing the nodal values of tractions and u∗k a column vector containing

the arbitrary virtual displacements u∗. Eq. (27) may now be written as:

∫
Γ
u∗,Tk pkdΓ; (28)

Assuming the interpolation functions for u and p as Φ and Ψ, we can write:

u∗k = Φu
∗,n
k

pk = Ψpnk
(29)

Eq. (28) reduces to Eq. (30)

u∗n,Tk {∫
Γ
ΦTΨdΓ}pnk ; (30)

and, the matrix M may then be found from

U∗MP =∑ [u∗n,Tk {∫
Γ
ΦΨTdΓ}pnk] ; (31)

To make theM transformation tensor numerically, first the traction-to-force transformation

matrix (A) is made for each element and then they are all assembled together to form the matrix

M which transform all the nodal tractions in the system to nodal forces.

By looking at the Eq. (31) matrix A for an arbitrary element is:

A = {∫
Γ
ΦΨTdΓ} ; (32)

Assembling the M matrix using A matrices of the elements is performed analogously to

formation of the stiffness matrix of the system using the element stiffness matrices in finite

element method.

7 BOUNDARY CONDITIONS

After the BEM system of equations (26) is fed into the FEM system of equations, boundary

conditions should be applied. At the interface of boundary elements (BE) and finite elements

(FE) two conditions should be satisfied. First is the equality of the displacements and second

is the equilibrium of forces. The first condition is satisfied automatically by assuming that the
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FE nodes and BE nodes on the interface are coincided and assigning one equation number for

those nodes in the FE-BE system of equations. The second one however should be satisfied

by considering the equilibrium of forces at the nodes on the interface. After applying interface

boundary conditions and also other boundary conditions of a problem the system is ready

to be solved similar to FEM problems and the unknown displacement or nodal forces can be

obtained.

8 NUMERICAL RESULTS

8.1 A cantilever beam under axial force

This example is a cantilever beam without piezoelectric properties and with the material

elasticity property of, E = 0.2 × 1011 kg/m2 and ν = 0 under the axial load of P = 210 kgf at

its end. The length of the beam is 2 m and the dimension of the cross section is 25 × 25 cm2.

The beam has been modeled by a combination of BEM and FEM as in Fig. 11, and the axial

displacement obtained along the beam has been plotted in the Fig. 12.

The poisson ratio was assumed as zero because the results are compared with the following

exact solution which disregards the effect of Poisson ratio in axial displacement.

δ = Pl

EA
; (33)

where δ is the axial displacement; P is the axial force; l is the distance from the fixed end of

the beam; A is the cross sectional area of the beam; and E is the Young modulus.

Figure 11 Beam modeled by coupled FEM-BEM of Example 7.1.

8.2 Surface-bonded PZT-4 actuator on steel half-space

In this example a 6 × 6 × 4mm piezoelectric patch of the transversely isotropic PZT4, working

as a piezoelectric actuator is attached on the surface of a steel medium as shown in Fig. 13.
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Figure 12 Axial displacement of the cantilever beam.

The poling direction of the actuator is along its thickness. A voltage (V ) between the

upper and the lower electrodes of the actuator is applied which results in an electric field with

frequency of f along the poling direction of piezo-actuator. The medium is assumed as a

half-space and it has been modeled by 298 boundary elements as in Fig. 14.

The piezo-actuator has been modeled by three and two elements in the plate’s length

direction and thickness direction respectively and it is placed at the middle of the half space

mesh as indicated with green color in Fig. 14. Fig. 15 shows the FEM mesh to model the

piezo-actuator using 9 finite elements.

Figure 13 Surface bonded piezo-actuator on the steel medium.

The nonzero elastic, piezoelectric and dielectric constants of PZT4 [50] are:

C11 = C22 = 139GPa

C12 = 77.8GPa

C13 = C23 = 74.3GPa

C33 = 115GPa

C44 = 30GPa

C55 = C66 = 25.6GPa

e13 = e23 = −5.2C/m2

e33 = 15.1C/m2

e52 = e61 = 12.7C/m2

ε11 = ε22 = 13.06 × 10−9F /m
ε33 = 11.51 × 10−9F /m
ρ = 7800kg/m3
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Figure 14 BEM half-space mesh to model steel domain.

Figure 15 FEM mesh to model piezo-actuator.

The host structure on the other hand is made of steel with the Young modulus of E =
0.2 × 1011 kg/m2 and Poisson ratio of ν = 0.29 or the pressure wave velocity of Cp = 5900 m/s

and shear wave velocity of Cs = 3200 m/s and density of ρ = 7900 kg/m3. The piezo-actuator

is connected to harmonic electric potential of V = 300
√
2 exp (5024000it).

Distribution of the maximum induced displacement field on the surface of the steel medium

at x, y and z directions are shown in Fig. 16 and 3-D graphs are shown in Figs. 17, 18,

and 19, respectively. These figures show a high displacement jump at the corners of the

actuators especially at x and y directions, which are due to a very high stress concentration

especially, shear stress concentration at the corners. The figures also show that for this problem

the vertical displacement field is more uniform than the horizontal displacement field, at the

vicinities of the actuator or at the interface between the actuator and the steel solid.

Hence from Figs. 16, 17, 18, and 19, it is clear that the induced displacement by an actuator

changes with the change in the thickness of the plate and it is higher for small thickness piezo-

actuators.

8.3 Surface-bonded PZT-5H actuator on steel (circular half-space)

In this example a 6×6×4mm piezoelectric patch of the transversely isotropic PZT-5H, working

as a piezoelectric actuator is attached on the surface of a steel medium. The poling direction of

the actuator is along its thickness. A voltage (V ) between the upper and the lower electrodes

of the actuator is applied which results in an electric field with frequency of f along the
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(a) (b)

(c) (d)

(e) (f)

Figure 16 Displacement in plate with 4mm thickness (a) real part at x direction, (b) imaginary part at x
direction, (c) real part at y direction, (d) imaginary part at y direction, (e) real part at z direction,
and (f) imaginary part at z direction.
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(a) (b)

Figure 17 Displacement in x direction (a) real part, and (b) imaginary part.

(a) (b)

Figure 18 Displacement in y direction (a) real part, and (b) imaginary part
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(a) (b)

Figure 19 Displacement in z direction (a) real part, and (b) imaginary part.

poling direction of piezo-actuator. The medium is assumed as a circular half-space and it

is modeled by 489 boundary elements. The piezo-actuator has been modeled by nine finite

elements, three elements in the length direction and one element in the thickness direction.

The material properties of the PZT-5H [44] are as follows:

Elastic, piezoelectric and dielectric constants of PZT-5H

C11 = C22 = 126GPa

C12 = 79.5GPa

C13 = C23 = 84.1GPa

C33 = 126GPa

C44 = 23.3GPa

C55 = C66 = 23GPa

e13 = e23 = −6.5C/m2

e33 = 23.3C/m2

e52 = e61 = 17C/m2

ε11 = ε22 = 1.503 × 10−8F /m
ε33 = 1.3 × 10−8F /m
ρ = 7800kg/m3

The second medium is made of steel with the Young modulus of E = 0.2 × 1012 GPa, and

Poisson’s ratio of ν = 0.29 and density of ρ = 7900 kg/m3. The piezo-actuator is connected to

the time harmonic electric potential of 1 kV and frequency of vibration of 590 kHz. Distribution

of induced displacement field in horizontal and vertical directions on the surface of the circular

half space steel medium are shown in Fig. 20.

In this example, since the BEM half space is modeled by circular area, the wave propa-

gation is circular. Unlike the previous example, which shows that although the actuator is

in rectangular shape but the wave propagation becomes circular when it takes distance from

the actuator. Fig. 20 shows high values of displacements on the half space at the corner of

actuator.
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(a) (b)

(c) (d)

(e) (f)

Figure 20 Displacement in plate with 4mm thickness (a) real part at x direction, (b) imaginary part at x
direction, (c) real part at y direction, (d) imaginary part at y direction, (e) real part at z direction,
and (f) imaginary part at z direction.

Latin American Journal of Solids and Structures 8(2011) 305 – 334



A.A. Shah / A FEM-BEM interactive coupling for modeling the piezoelectric health monitoring systems 331

9 CONCLUSIONS

In this research the coupling of finite element and boundary element for the interaction of a

piezoelectric material and an isotropic elastic solid in frequency domain has been performed

successfully. The results of this numerical modeling show high jumps in horizontal displace-

ments of the half-space at the corners of the interface between the actuator and the elastic

solid medium, which show that the high stress concentration occurs at the corners. In reality

this shear stress concentration at the corners of the actuator may cause unwanted debonding

between a piezo-actuator and the base structure at the corners and lead to complete debonding

of the actuator from the structure.

The results further indicate that the displacement field induced by a piezo-actuator de-

pends on the thickness of the actuator and for the thicker actuator we have smaller values of

displacement induced in the host structure.

The numerical simulation of the actuation behavior of a piezo-actuator on another structure

has high applications in actuator designing. It can help the actuator designer to find the

appropriate dimensions and choose the material properties by numerically analyzing different

existing options instead of performing more costly experiments for every case.

The presented work will serve as a useful step towards modeling of structural health moni-

toring systems. By using the suggested BEM-FEM coupled model for actuators with different

dimensions or material properties much useful information on the effect of each of these pa-

rameters on the amount of actuation and load transfer can be obtained.

FUTURE WORKS

In future research in the following directions should be performed:

1. Time domain analysis of the coupling of a piezoelectric material and an elastic solid.

2. Comparison of the actuation effects of a surface bonded actuator and an embedded

actuator.

3. Study the interaction of two or more actuators bonded on the surface of a structure.

4. Modeling a piezo-sensor and study its coupling with a structure.
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