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Abstract 
This paper presents analytical and experimental results on ductility 
of reinforced lightweight concrete beams and columns in the form 
of moment curvature relationships, and compares the response with 
that of normal reinforced concrete members. The experimental part 
is limited to flexural tests on beams made of lightweight concrete. 
The latter is obtained with natural lightweight aggregates. Concre-
te and steel stress-strain models in compression and tension are 
integrated analytically through the section in order to derive the 
resulting moment and axial force. Lightweight concrete beams and 
columns showed a more ductile behavior than normal concrete 
members and the analytical model reproduced the response with 
very good accuracy. The lightweight ductility was more pronounced 
in columns subjected to axial compression forces and bending. 
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1 INTRODUCTION 

Lightweight concrete is no longer considered a special material. It is included in many codes of 
practice, such as the American Concrete Institute ACI (1987), as normal concrete but with a 
lower density and increased deformability. The LWC material properties and mechanics have 
long been identified and still continue to attract interest as shown by the Works of Hon Zhi 
(2007), Koh et al. (2008) and Muyasser et al. (20011). Many structural and bridge applications 
have been reported by authors such as Russel (2007) and Waldron et al. (2005). High strength 
has also been achieved by Katkhuda et al. (2009), Yasar et al. (2004) and others. LWC offers 
undeniable isolation advantages but the reduction in the overall cost generated by the lower dead 
loads is often overwhelmed by the higher production cost, especially with factory produced ex-
panded clay lightweight aggregates. LWC becomes however more challenging when using natural 
volcanic rocks reserves to produce lightweight aggregates. On the other hand, even if the reduced 
stiffness of LWC concrete requires a tighter deflection control, its higher ultimate strain confers a 
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major advantage to LWC in the form of improved ductility and better energy absorption capaci-
ty.  
 
2  ANALYTICAL MOMENT-CURVATURE RELATIONSHIP 

An analytical integration method of stress resultants over an arbitrary shaped section was formu-
lated and used to compute the axial force and moment. This method, dealing with biaxial ben-
ding combined with an axial force, is described in detail in the Works of Zupan, Saje (2005) and 
Charif et al. (2012). It performs better than the various numerical integration techniques such as 
those described by Sfakianakis (1999), Bonet et al. (2006) and Charalampakis, Koumousis (2008). 
The main steps are summarized here. Using the direct sign convention shown in Figure 1, the 
normal stress resultants for a beam-column member, subjected to an axial force and biaxial ben-
ding, are given by: 
 

N = σ dA∫ = σ dydz∫∫
My = σ zdA∫ = σ zdydz∫∫
Mz = − σ ydA∫ = − σ ydydz∫∫

 (1) 

 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 1   General section under axial force and biaxial bending 
(a): Inclined neutral axis in global axes 

(b): Rotated section and use of local neutral axes 
 
 
 
 

 
Y 

Z 

 

 

 

 Mz 

My 

(a) 
(b) 



    A. Charif et al. / Ductility of reinforced lightweight concrete beams and columns	  	  	    1253 

Latin American Journal of Solids and Structures 11 (2014) 1251-1274 
 

3  STRESS RESULTANTS FOR DISCRETE BAR REINFORCEMENT 

Reinforcing bars are lumped at their centroid points with coordinates ybi and zbi. Their contribu-
tion is easily determined from the corresponding area and stress. To account for the displaced 
embedding concrete, an equivalent stress is subtracted. 
 

NB = Fbi
i
∑ = Abi (σ bi −σ ci )

i
∑

MBy = Fbi
i
∑ zbi = Abi (σ bi −σ ci )zbi

i
∑

MBz = − Fbi
i
∑ ybi = − Abi (σ bi −σ ci )

i
∑ ybi

 (2) 

 
 Bar stress (σ bi ) and concrete stress (σ ci ) at the same point i are easily computed using co-
rresponding stress-strain models. The capacity of a section with discrete reinforcement is obtained 
by combining equations (1) and (2). All other forms of non-discrete reinforcement use equations 
(1) by summing integrations over all the components of the section.  
 The axial force in (1) and (2) is independent of y-z axis system whereas bending moments 
depend on the origin and orientations of these axes. It is common to express moments about the 
cross section centroid. This point is thus considered as the origin. With the assumption of plane 
sections and strain compatibility (perfect bond between various components), the total normal 
strain is a combination of axial force and bending moment effects: 
 

ε = ε0 +κ yz −κ zy  (3) 
 
 ε0  is the centroidal normal strain, whereas κ y  and κ z  are curvatures about respective axes.   

 For dissymmetric sections, bending about one axis causes curvatures about both axes and 

bending angle 
Mz

My

⎛

⎝⎜
⎞

⎠⎟
 is in general different from neutral axis angle 

κ z

κ y

⎛

⎝⎜
⎞

⎠⎟
. 

 
4  EXPRESSIONS OF INTEGRALS IN LOCAL NEUTRAL COORDINATES 

Normal strain (3) and the resulting normal stress are functions of both y and z coordinates. There 
exists a system of axes (ζ ,η ) as shown in Figure 1 where normal strain and stress depend on 
coordinate η  only (ζ -axis parallel to the neutral axis). 
 

κηεε += 0  (4) 
 

Where             κ =κ y cosφ +κ z sinφ           and            φ = arctan κ z

κ y

⎛

⎝⎜
⎞

⎠⎟
                      (5) 
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Integral relations (1) can be equally expressed with respect to coordinates (ζ ,η ), and then by 
virtue of relation (4) with respect to coordinates (ζ ,ε ). We obtain: 
  

N = 1
κ

σ (ε )dζ dε∫∫
My =

1
κ

ζ sinφ + ε − ε0
κ

cosφ⎛
⎝⎜

⎞
⎠⎟σ (ε )dζ dε∫∫

Mz = − 1
κ

ζ cosφ − ε − ε0
κ

sinφ⎛
⎝⎜

⎞
⎠⎟σ (ε )dζ dε∫∫

 (6) 

 
5  BOUNDARY INTEGRATION OF STRESS RESULTANTS 

Green's theorem is a very useful tool as it reduces the problem dimension by replacing area inte-
grals by path integrals along the border. The resulting boundary integration method offers many 
advantages and is very convenient for complex sections as it can elegantly handle various parts 
including voids. Figure 2 shows a composite section with three parts. The inner zone is either a 
void or a different material part. Figure 2b shows the appropriate vertex numbering (12 points) 
for the main part which eliminates the inner one, thanks to direction sign dependence of line inte-
grals. If the inner part is not a void, it is dealt with similarly by a vertex numbering in the coun-
terclockwise direction. The external skin reinforcement is also treated separately in the same way. 
 
 
 

 
 
 
 

 
 
 
 
 
 

Figure 2   Border integration of a composite multi-polygon section 
(a): Composite section      (b): Vertex numbering for main part 

 
 Figure 3 shows vertex numbering for the original section as well as identification of vertices for 
various parts. It is supposed in this case that both compression and tension models have two 
equations each as shown. The various parts are defined by lines parallel to the neutral axis, resul-
ting in sub-polygons. The vertices for each part are shown in Table 1. 
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Figure 3   Identification of vertices for various parts of the section 
(a) Full-Section vertices     (b) Vertices of various parts 

(c) Stress distribution across the section 
 

Table 1   Vertices for various polygons in Figure 3 
 

Polygon Full  
Section 

Compression  
Zone 

Tension  
zone 

Compr. 
Part C1 

Compr.    
Part C2 

Tension 
Part T1 

Tension  
Part T2 

Points 1-2-3-4-5-6 1-2-c-d-5-e-f c-3-4-d-e-6-f 1-2-a-b a-c-d-5-e-f-b g-h-i-j c-g-j-d-e-6-f 

 
 Applying Green transformations to equations (6) leads to: 
 

 

N = 1
κ

ζ σ (ε ) dε
∂A!∫

My =
1
κ

ζ 2

2
sinφ +ζ ε − ε0

κ
cosφ⎛

⎝⎜
⎞
⎠⎟
σ (ε )dε

∂A!∫

Mz = − 1
κ

ζ 2

2
cosφ −ζ ε − ε0

κ
sinφ⎛

⎝⎜
⎞
⎠⎟
σ (ε )dε

∂A!∫

 (7) 

 
 These integrations (7) are performed along the border lines of the section. 
 For a polygonal section, vertex points are expressed in (y , z) coordinates and then transfor-
med to (ζ , η ) coordinates. Each polygon side is identified by two successive vertices (v) and 
(v+1) with a linear relation between their coordinates: 
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ζ (ε ) = svε + tv       with         sv =
ζ v+1 −ζ v

εv+1 − εv
      and        tv = ζ v − svεv  (8) 

 
nv is the total number of vertices and point (nv +1) refers to the first vertex in order to complete 
the closed boundary integral. Substitution and arrangement lead to: 
 

N = 1
κ

svI2v + tvI1v( )
v=1

nv

∑

M j =
1
κ

cv1 j I3v + cv2 j I2v + cv3 j I1v( )
v=1

nv

∑ j = 2,3
 (9) 

 
 With: 
 

cv12 cv22 cv32
cv13 cv23 cv33

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=

cosφ sinφ
sinφ −cosφ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

sv
κ

tv − svε0
κ

− tvε0
κ

sv
2

2
svtv

tv
2

2

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 (10) 

 
The three different integrals in the previous relations are: 
 

I1v = σ (ε ) dε
εv

εv+1∫ I2v = εσ (ε ) dε
εv

εv+1∫ I3v = ε 2σ (ε ) dε
εv

εv+1∫  (11) 

 
6  ANALYTICAL BORDER INTEGRATION OF POLYNOMIAL MODELS 

Nonlinear stress-strain models are usually expressed by one or two equations and the integrals 
(11) cannot be derived analytically in all cases. They are straightforward for polynomial models.  
For a polynomial stress-strain model of order k:  
 

σ (ε ) = c0 + c1ε + c2ε
2 + ....+ ckε

k = cjε
j

j=0

k

∑  (12) 

 
 The three integrals (11) become: 
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I1v = σ (ε ) dε
εv

εv+1∫ =
cj
j +1j=0

k

∑ εv+1
j+1 − εv

j+1( )

I2v = εσ (ε ) dε
εv

εv+1∫ =
cj
j + 2j=0

k

∑ εv+1
j+2 − εv

j+2( )

I3v = ε 2σ (ε ) dε
εv

εv+1∫ =
cj
j + 3j=0

k

∑ εv+1
j+3 − εv

j+3( )

 (13) 

 
 Relations (9) and (13) deliver closed-form solutions of normal stress resultants. It can be seen 
from (13) that all boundary lines parallel to the neutral axis εv+1 = εv( )  have no contributions to 
force and moment resultants. This in fact is true by virtue of (11) and (9) whether the model is 
polynomial or not. 
 This formulation cannot however be used for non-integrable material models. An alternative to 
using numerical integration, is replacing the original model by an appropriate polynomial fit and 
then use the present method. Charif et al. (2012) proved that this was more efficient than per-
forming numerical integration on original models. 
 Apart from the moment-curvature relationship for a given constant axial force, the preceding 
formulation can also be used to determine N-My-Mz interaction curves and surfaces, and the 
stress state for a given loading. 
 
7  EXPERIMENTAL VALIDATION ON BEAM FLEXURE 

7.1 Introduction 

The present work is part of a strategic and ambitious project to promote LWC in Saudi Arabia 
using large reserves of natural basalt tuffs (scoria) and volcanic rocks available in some northwes-
tern parts of the country, as reported by the Saudi Ministry of Petroleum (1998). Figure 4 shows 
some volcanic rock samples and the aggregates obtained after crushing and sieving. The various 
properties of these aggregates and the mix design techniques used are described by Shannag et al. 
(2013). With a weight ranging from 1750 to 1950 kN/m3, compression strengths from 18.0 to 45.0 
MPa, were obtained. Two concrete grades (25 and 35 MPa) are used in this work. Their stress-
strain relationships, measured under displacement controlled loading, are shown in Figure 5. 
 

 
 

Figure 4   Samples of natural volcanic rocks and aggregates obtained after crushing and sieving 
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Figure 5   Measured compression stress-strain curves for LWC grades used 
 
 

7.2  Experimental f lexural beam tests 

Full scale beams were tested under third point loading until failure for both concrete grades. The 
under reinforced beams were provided with sufficient stirrups to prevent shear failure (Figure 6). 
The bottom tensile steel consisted of three bars of 16 or 20 mm diameter, corresponding to 0.9% 
and 1.5% steel ratios. The beams were loaded up to failure and the curvature was tracked 
through material strains using electrical gauges and transducers. 
 
 
 
  
 

 
 
 
 
 
 
 

Figure 6   Flexural beam testing and dimensions 
 
 
 
 
 
8  MATERIAL MODELING AND MOMENT-CURVATURE RESPONSE FOR BEAMS 
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8.1 Material modeling 

An integrated modeling strategy is used. The LWC material stress-strain models are first ap-
proached by polynomials using an efficient constrained least square method. The resulting 
polynomial model is then analytically integrated to compute the stress resultants. The parameters 
of the equivalent rectangular stress block, having the same area and centroid as the original 
stress-strain curve, are also delivered. Polynomial modeling for the two lightweight concrete gra-
des used is shown in Figure 7. In each case two polynomials of rank 4 or 5 are used. The rank is 
adjusted until the desired accuracy is achieved. 
 Concrete tension model and steel bar model are also analytically integrated. Concrete tensile 
stress-strain model was not directly recorded but it was based on the measured modulus of ruptu-
re and assuming a parabolic variation with a quadratic decay (tension stiffening) as shown in 
Figure 7. The 16 and 20 mm reinforcing steel bars recorded an average yield strength of 425 MPa 
and exhibited strain hardening behavior up to an ultimate stress of 660 MPa (Figure 8). The 
nonlinear strain hardening was modeled using Rasmussen (2001) modified equation of Ramberg-
Osgood. 
  

 
 

Figure 7   Polynomial modeling of LWC compression stress-strain response 
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Figure 8   Steel model with yield plateau and nonlinear strain hardening  

 
8.2 Moment-Curvature algorithm 

The steps to compute moment curvature up to failure are: 
1. Determine the initial section stress state under the constant axial force (if any). 
2. Increase the top concrete strain using appropriate steps and for each level: 

• Update tension steel strain to satisfy force equilibrium 
• Compute corresponding moment and curvature 

 The process is usually stopped when a failure criterion is reached. In this work the section 
strength is computed at any straining level, even beyond the material ultimate strains, and the 
algorithm is stopped only if there is a major strength drop. This allows load transfer between the 
various section components and is particularly convenient for analysis of complex composite sec-
tions with many parts and different material properties. Limited local failures as well as the 
spread of crushing inside the concrete cover can thus be captured. Some significant points, such 
as the cracking and yielding moments, may be skipped by this incremental procedure. They are 
therefore determined separately and then added to the recorded points. 
 Figures 9 and 10 show the measured and predicted moment-curvature responses for both LWC 
grades and the two steel ratios used. These curves show a very good concordance at all load levels 
and confirm the reduced ductility with higher reinforcement ratios. The stiffness reduction after 
cracking is more important with a lower steel ratio. The three major stages (uncracked, cracked 
service, cracked ultimate) are clearly illustrated. The stiffer uncracked stage and the hardening 
ultimate stage reflect the effect of both tensile concrete as well as steel strain hardening. Figure 
11 shows the deviation between the measured and predicted moment curvatures when neglecting 
both concrete tension and steel hardening.  
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Figure 9   Predicted and measured moment-curvature for grade 25 LWC beams  
 
 

 
 

Figure 10   Predicted and measured moment-curvature for grade 35 LWC beams  
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Figure 11   Predicted and measured moment-curvature for grade 35 LWC beams  
with concrete tension and steel hardening neglected 

 
8.3 Moment-Curvature and ductil ity of normal and lightweight concrete beams 

The previous LWC beam responses are now compared to similar normal concrete (NC) beams. A 
similar strength normal concrete is used with 0.004 ultimate strain and Thorenfeldt et al. model 
(1987) which is valid for normal and high strength concrete. This model uses a single equation 
but with different parameters for the ascending and descending branches: 
 

fc = fc
'

n εc
ε0

⎛
⎝⎜

⎞
⎠⎟

(n −1)+ εc
ε0

⎛
⎝⎜

⎞
⎠⎟

nk

εc ≤ ε0 : k = 1.0

εc > ε0 : k =Max 0.67 + fc
'

62
, 1.0

⎛
⎝⎜

⎞
⎠⎟

n = 0.8 + fc
'

17.2
, ε0 =

fc
'

Ec

n
n −1

⎛
⎝⎜

⎞
⎠⎟

⎧

⎨

⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪

 (14) 

 
 This model cannot be integrated analytically and the stress resultants must therefore be nu-
merically integrated. Alternatively the original model may be approximated to any desired accu-
racy by polynomials which can then be integrated analytically. Figure 12 shows the polynomial 
fitting for the two parts. Using fourth rank polynomials reproduces the original equations almost 
to perfection. 
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Figure 12   Thorenfeldt et al. model for normal concrete least-square fitted by second or fourth rank polynomials 
 
 Figure 13 shows the moment curvature responses of NC and LWC beams for both steel ratios. 
The strength capacity is similar but the NC beams exhibit a better initial stiffness whereas the 
LWC beams develop more ductility. 
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Figure 13   Moment curvature responses of NC and LWC beams 
 
9  MOMENT-CURVATURE AND DUCTILITY OF COLUMNS 

9.1 Introduction 

Beams are usually designed as under reinforced and tension controlled sections with a sufficient 
ductility. Concrete ductility is more needed in columns, which are often subjected to axial com-
pression forces reducing their energy absorption capacity. A validation of the theoretical model 
developed is first presented using experimental results from literature with a confined concrete 
model, and then a parametric investigation is carried out using the previous normal and 
lightweight concrete models. 
 

9.2 Validation 

Experimental data on moment-curvature of reinforced columns is rather scarce. Testing of columns 
under increasing lateral load up to failure, while maintaining a constant axial force, is difficult. 
Tests using an eccentric axial force have also been reported but these are different since both axial 
foce and moment vary at the same time. The present validation uses results reported by Sheikh et 
al. (1990). They tested several square (305 x 305 mm) columns under various levels of axial force 
and different configurations of transverse steel ties, in order to study their lateral confinement ef-
fect. In a follow up paper, Sheikh et al. (1992), the same authors reported the inability of most con-
fined concrete models to reproduce their experimental results. The recent model proposed by Red-
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diar (2009) was used because of its integrable form (Figure 14), its simplicity, and its validity for 
both normal and high strength concrete. 
 

 
 

Figure 14   Stress-strain relation for confined high-strength concrete – Reddiar (2009). 
 
The confined model is described by an ascending power equation followed by two linear descending 
parts : 
 

0 ≤ εc ≤ εcc : fc = Kfc
' 1− 1− εc

εcc

⎛
⎝⎜

⎞
⎠⎟

n⎛

⎝
⎜

⎞

⎠
⎟

εcc ≤ εc ≤ εccr : fc = Kfc
' − fc

' −12( ) εc − εcc
εccr − εcc

⎛
⎝⎜

⎞
⎠⎟

εccr ≤ εc ≤ εccu : fc = fccr
εc − εccu
εccr − εccu

⎛
⎝⎜

⎞
⎠⎟

⎫

⎬

⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪

 (15) 

 
The model is completely defined by the confining strength parameter K and the values of the 
crushing and ultímate strains (εccr and εccu). This offers more versatility to the model as it can 
easily be adapted to various confining configurations for circular or rectangular columns. The 
other model parameters are defined as follows: 
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εcc = εc0 1+ 5 K −1( )( )
εc0 = 0.0015 +

fc
'

70000
(MPa)

n = Ecεcc
Kfc

'

Ec = 5000 fc
' (MPa)

 (16) 

 
The linear parts are integrable as first rank polynomials. The power function of the first part is 
not polynomial but can be integrated analytically. The three corresponding integrals (11) are : 

I1 = σ dε∫ = Kfc
' εc + εcc 1−

εc
εcc

⎛
⎝⎜

⎞
⎠⎟

n+1⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

I2 = σε dε∫ = Kfc
' εc( )2

2
+ εcc( )2 1

n +1
1− εc

εcc

⎛
⎝⎜

⎞
⎠⎟

n+1

− 1
n + 2

1− εc
εcc

⎛
⎝⎜

⎞
⎠⎟

n+2⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

I3 = σε 2 dε∫ = Kfc
' εc( )3

3
+ εcc( )3

1− εc
εcc

⎛
⎝⎜

⎞
⎠⎟

n+1

n +1
+
1− εc

εcc

⎛
⎝⎜

⎞
⎠⎟

n+2

n + 2
−
1− εc

εcc

⎛
⎝⎜

⎞
⎠⎟

n+3

0.5 n + 3( )

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

⎫

⎬

⎪
⎪
⎪
⎪
⎪
⎪
⎪⎪

⎭

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

 (17) 

 

This model was implemented using the previously described strategy in order to predict the mo-
ment-curvature response of two columns E2 and E13 tested by Sheikh et al. (1990). The columns 
have the same longitudinal steel (eight 19-mm bars) and same 12.7-mm lateral ties spaced at 114 
mm. They differed by the concrete strength (31.4 and 27.3 MPa) and by the axial force value (1782 
and 1879 kN). The column section and material models are shown in Figure 15, with a confinement 
parameter value of 1.14. 
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Figure 15   Column section and material data used – Sheikh et al. (1990). 
 

Figure 16 shows experimental and predicted moment-curvature relations for both columns E2 
and E13. The analytical integration method proves itself, once again, very efficient in predicting 
with very good accuracy the response of RC columns, provided the adequate material models are 
used.  
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Figure 16   Measured and predicted moment-curvature relationships for columns E2 and E13 
 

 
9.3 Column ductil ity investigation 

A parametric investigation is now performed using previous models, used in beams, for normal 
and lightweight concrete. A square column 400x400 mm with eight 16 or 30 mm bars is now stu-
died using grade 25 normal and lightweight concretes. Figures 17 and 18 show the column mo-
ment-curvature response at various axial force levels for both normal and lightweight concrete 
with 1.57% and 3.5% steel reinforcement respectively. Lightweight concrete ductility is better 
than that of normal concrete in all cases at any level of the axial force including negative tension 
values. The advantage of LWC is more pronounced with higher steel ratio and increased compres-
sion forces (Figures 17 and 18). 
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Figure 17   Moment-curvature for NC and LWC columns with 3.5% reinforcement (8F30) 
at various axial force levels 
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Figure 18   Moment-curvature for NC and LWC columns with 1.57% reinforcement (8F16) 
at various axial force levels 

 
10  CAPTURE OF LOCAL AND PARTIAL FAILURE 

As mentioned previously, the strategy used in this work allows tracking any possible response 
after reaching any material ultimate strain. Figures 19 and 20 show the ability of the present 
analytical integration method to track the complex load transfer mechanism after local failure. 
Figure 19 shows the capture of the spread of concrete crushing inside the cover (from point B to 
point D) for the previous 400x400 mm LWC column. Figure 20 shows the progressive steel ruptu-
re in a multi-layer beam. It must be pointed out that Charif et al. (2012) showed that numerical 
integration methods failed to track the spread of crushing inside the concrete cover. 
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Figure 19   Moment-curvature predicted at zero axial force for the LWC column and 
stress distributions at various stages, showing progressive concrete crushing 
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Figure 20   Moment-curvature for a multi steel layer beam with stress distributions at various stages, showing the progressive layer 
rupture  

 
11  CONCLUSIONS 

Experimental and theoretical moment-curvature responses of normal and lightweight reinforced 
concrete beams and columns were presented. Lightweight concrete members developed more duc-
tile behavior than their normal concrete counterparts, and this enhanced ductility was more pro-
nounced in columns subjected to axial compression forces. The theoretical model, based on analy-
tical integration of stress resultants through the cross-section, predicted the moment-curvature 
response with very good accuracy. It also predicted with very good satisfation the moment-
curvature response of reinforced concrete columns with lateral steel providing confinement effect. 
This method, which is also valid for the analysis of biaxial bending and interaction surfaces, is 
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not only more economical than numerical integration techniques, but allows a better capture of 
the sensitive ultimate response. The method was more appealing when combined with material 
modeling using an efficient constrained least square method for polynomial fitting of experimental 
stress-strain results. It was also further successfully extended to existing non-integrable material 
models using the same polynomial approach. 
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