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On the stability of internally pressurized thick-walled spherical and cy-
lindrical shells made of functionally graded incompressible  

hyperelastic material 

Abstract 
In this paper, stability analysis of thick-walled spherical and cylindrical 
shells made of functionally graded incompressible hyperelastic material 
subjected to internal pressure is presented. Instability point happens in the 
inflation of above mentioned shells and in this paper effect of material inho-
mogeneity and shell thickness has been investigated. Extended Ogden strain 
energy function with variable material parameter is used to model the ma-
terial behavior. To model inhomogeneity, we assume that material parame-
ter varies by a power law function in the radial direction and inhomogeneity 
factor is a power in the power law function. Analytical method is used to find 
the internal pressure versus hoop extension ratio relations in explicit form 
for both of cylindrical and spherical shells and the non-monotonic behavior 
of the inflation curves is studied. Following this, profile of inflation pressure 
versus hoop stretch is presented and effect of the inhomogeneity and shell 
thickness in the onset of instability is studied. The obtained results show 
that the material inhomogeneity parameter and shell thickness have a sig-
nificant influence on the stability of above mentioned shells. Thus with se-
lecting a proper material inhomogeneity parameter and shell thickness, en-
gineers can design a specific FGM hollow cylinder that can meet some special 
requirements. 

Keywords 
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1 INTRODUCTION 

Rubber like materials under external loading possibly display different reactions dependent on their material 
properties, forces and geometry. Finite deformation theory is used to describe large deformation responses of these 
materials. A hyperelastic material shows a nonlinear behavior which imply that its answer to the load is not directly 
proportional to the deformation. Different strain energy functions are used to model hyperelastic behavior of these 
materials and there are numerous efforts in the literature on the derivation and/or fitting of various forms of strain-
energy functions, such as works of Mooney (1940), Blatz and Ko (1962), Yeoh (1993), Ogden (1972), Beatty 
(1987). Presenting precise constitutive model to describe hyperelastic behavior of rubber like material is the sub-
ject of a lot of researches in the recent years such as works by Anani and Alizadeh (2011), Bao et al. (2003), Silva 
and Bittencourt (2008), Pereira and Bittencourt (2010), Pascon and Coda (2013), Coelho et al. (2014), Santos et al. 
(2015), Tomita et al. (2008) and Barforooshi and Mohammadi (2016) 

As functionally graded rubber is the subject of this study it should be noted that graded rubber like materials 
were created by Ikeda et al. (1998) in the laboratory for the first time, a while after these materials have attracted 
the attention of investigators for modeling these materials behavior under mechanical and geometrical boundary 
conditions. Some important and novel researches about analysis of inhomogeneous rubber like materials struc-
tures are presented in details by Bilgili (2003,2004), Batra (2006), Batra and Bahrami (2009), Anani and Rahimi 
(2015,2016). 

This paper concern is about instability analysis of internally pressurized spherical and cylindrical thick shells 
made of isotropic functionally graded incompressible hyperelastic materials. Moreover, finding effect of material 
inhomogeneity and shell thickness in the onset of instability of above mentioned shells are also analyzed in this 
paper. Rubber-like materials experiencing large deformations, display a diversity of amazing instabilities. A review 
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of some of the more interesting instances has been presented in a recent paper by Gent (2005) where background 
literature can be found. In the context of stability of spherical and cylindrical shells, several aspects of this problem 
have been studied and cited here. Inflation of spherical rubber balloons has been studied by Needleman (1977). 
Goriely et al. (2006) have investigated stability and bifurcation of compressed elastic cylindrical tubes. Small am-
plitude radial oscillations of an incompressible, isotropic elastic spherical shell has been a subject of Beatty (2011) 
study. Rudykh et al. (2012) have researched about snap-through actuation of thick-walled electroactive balloons. 
Inflation and bifurcation of thick-walled compressible elastic spherical-shells has been studied by Haughton 
(1987). Comparison of stability and bifurcation criteria for inflated spherical elastic shells has been done by Haugh-
ton and Kirkinis (2003). 

A large number of works has been done on to analyzing instability of spherical and cylindrical shell but we 
found that there is a gap in the literature about stability analyzing of functionally graded incompressible hypere-
lastic cylindrical/spherical thick shells. Therefore, in this paper we focus on instability of these shells and effect of 
material parameters and structural parameters are investigated, carefully. 

2 Problem formulation for cylindrical shell 

In this section, instability analysis of a pressurized thick-walled hollow cylindrical shell made of isotropic FG 

rubber like materials which is shown in Fig.1. A , B  and iP  represent inner and outer radius of the shell and in-

ternal pressure, respectively. The cylinder is considered initially stress-free and presumed to be deformed stati-

cally.  , ,R Z  and  , ,r z  represent reference and current configurations of cylindrical shell. The cylinder ge-

ometry in these configurations is described as follows: 

 
Figure 1: Configuration of internally pressurized thick hollow cylinder 

 

A R B   ,0 2 ,  0 Z L   (1) 

a r  b, 0 2 ,  0 z l      (2) 

Deformation field of the cylinder can be expressed by Ericksen's proposed universal solutions (1954): 

  , , zr f R z Z      (3) 

The deformation gradient tensor F  is presented by (Fu and Ogden (2001)): 

   d

d r R z z Z

f R f R

R R       F e E e E e E  (4) 
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Radial, circumferential and axial stretches are defined by: 
   

 ,  ,  r z z

df R f R

dR R       and J  is de-

terminant of the deformation gradient tensor F . As the subject of this paper is incompressible hyperelastic mate-

rials, incompressibility condition indicates: 2
3I J  1 and it leads to: 

        R d R / d 1r z z f f R R      (5) 

As a result, radial deformation of the cylinder is considered: 

   2 1 2 2 2R zf R A a     (6) 

Cauchy stress for incompressible hyperelastic materials is stated by (Fu and Ogden (2001)): 

ˆ
i i

i

W
p 




  


 (7) 

Where p  is the undetermined scalar function that explains the incompressible internal constraint conditions and 

Ŵ  is strain energy function which is function of the principal stretches. For thick walled hollow pressurized 
cylinder and in the absence of body forces only one of the equilibrium equation is not satisfied identically, which is 
(Fu and Ogden (2001)): 

d
0

d
rr

r r
  

   (8) 

Boundary conditions are expressed by: 

 r ir a P     and   0r r b    (9) 

Substitute r  and   from equation (7) to equation (8) and integrating in with respect to r yields: 

1
( )

ˆ ˆ
d

r

r r i
ra

W W
r P

r 


  
 

  
      
  (10) 

By comparison r from equations (7) and (10), hydrostatic pressure is calculated as follows: 

ˆ ˆ ˆ1
d

r

r r i
r ra

W W W
p r P

r 


  
  

    
     

     
  (11) 

Equations (11) and (7) allow to calculate hoop stress,  , and axial stress, z , by equations (12) and (13) as 

follows: 

ˆ ˆ
r r

r

W W
 



   
 
 

  
 

 (12) 

ˆ ˆ
z r z r

z r

W W   
 
 

  
 

 (13) 

b  is determined by implementing second boundary condition of equation (9): 

ˆ1
( )

ˆ
d

b

i r
ra

W W
P r

r 


 
 

  
     
  (14) 
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Following parameters are introduced for simplicity: 

B

A
  ,         

2 2 2, ,  1 1z zb a b a

b a

B A               (15) 

With the differentiation of the strain energy function Ŵ  in relation to  , denoted by Ŵ , and with the de-

rivative of  ,  2 1 z

dr
d

R     , the equation (14) can be rewritten as follows: 

 
( )

2
( ) 1

ˆa

b

i

z

W d
P








 

 



 


  (16) 

By differentiation of equation (16) with respect to ( )a  and using equation (15), it is found that: 

     1 2( ) ( ) 1 ˆ(ˆ ) , ( ) ,

( ) ( ) ( )
a a z a z b z

a a b

dP W W

d
      

  

     
  

 
   (17) 

Pressure turning-points at constant z  will exist, if 
 ( ) ,

( )

ˆ
zW

 



 


 is not monotonic in   and it leads to 

0ˆ ˆW W
       . Modified Ogden strain energy function for incompressible materials is used as follows (Fu and 

Ogden (2001)): 

   1 2 3 1 2 3
1

ˆ 3, , p p p

n

pN

p p

R
A

W   


     


 
 
      (18) 

Where p  and p  are material parameter which varies by power law function in radial direction 

  p0μ
n

p

R
R

A
    

 
, N  is Number of f Ogden strain energy function sentences and n  is material inhomogeneity 

parameter. By considering 1p   in relation (18), the result is defined: 

    p0μ , , , ,i OGCN z OGCN zP A b n A a n    (19) 

Where: 
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 (20) 

Where 2 1 F ( , ; ; )a b c x  is the Gauss-hypergeometric function (Arfken 1985). 

3 Result and Discussion 

Material constants “ p0μ ” and “ α ” are determined by using Levenberg–Marquardt nonlinear regression 

method for the rubber tested by Treloar (1944). By this method p0μ 0.69  and α 1.3  are achieved. Figure 2 
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shows 
0

ip


 versus ( )a  for different z  in an approximately thin shell which its 1.1

B

A
 . By analyzing this figure, 

it is found that critical pressure will increase by decreasing z . Moreover related critical pressure happens in a 

higher ( )a  when z  decreases. Figures 3 and 4 demonstrate 
0

ip


 versus ( )a  for different z  in shells with 

2
B

A
  and 3

B

A
 , respectively. These figures show that critical pressure increases by increasing 

B

A
. For example 

0

ip


 for 3

B

A
  and 0.2z   is 1.716 times of 

0

ip


 for 2

B

A
  and 0.2z  . 

0

Δp


 is used to as dimensionless pres-

sure. This dimensionless pressure can be used to predict behavior of the structure without knowing its material 
and after that it can be used very important factor in material tailoring. In addition, critical pressure happens in a 

higher ( )a  when 
B

A
 increases in a constant z . Figure 5 shows 

0

ip


 versus ( )a  for different z  in a very thick 

shell with 20
B

A
 . In this case, shell is very stable. For instance, instability does not occur for 0.2z   even in 

( ) 7a  . 

 

Figure 2: 
0

ip


 versus ( )a  for different z , constant material inhomogeneity parameter and 1.1

B

A
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Figure 3: 
0

ip


 versus ( )a  for different z , constant material inhomogeneity parameter a nd 2

B

A
  

  

Figure 4: 
0

ip


 versus ( )a  for different z , constant material inhomogeneity parameter and 3

B

A
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Figure 5: 
0

ip


 versus ( )a  for different z , constant material inhomogeneity parameter and 20

B

A
  

Figures 6, 7 and 8 show 
0

ip


 versus ( )a  by considering 2

B

A
  for different inhomogeneity parameter and 

for 0.75z  , 1, 1.25, respectively. These figures demonstrate critical pressure increases by increasing material 

inhomogeneity parameter  n . For example, ratio of critical pressure for 4n   and 0n   is 4.78. Moreover, re-

lated critical pressure happens in a higher ( )a  when n  increases. For instance, critical pressure in figure 5 hap-

pens for 4n   and 0n   in ( ) 5.23a   and ( ) 2.94a  , respectively. 

 

Figure 6: 
0

ip


 versus ( )a  by considering 2

B

A
  for different inhomogeneity parameter and 0.75z   
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Figure 7: 
0

ip


 versus ( )a  by considering 2

B

A
  for different inhomogeneity parameter and 1z   

 

Figure 8: 
0

ip


 versus ( )a  by considering 2

B

A
  for different inhomogeneity parameter and 1.25z   

Figures 9, 10 and 11 show 
0

ip


 versus ( )a  for different 

B

A
. It is very interesting to observe that for very 

thick shells( 20
B

A
 ), instability does not occur even at ( ) 7a  . In contrast for a thin shells 

( 1.05  0.75z

B
and

A
  ), instability occurs at ( ) 1.12a  . 
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Figure 9: 
0

 ip


 versus ( )a  for different 

B

A
, constant inhomogeneity parameter and 1.25z   

 

Figure 10: 
0

 ip


 versus ( )a  for different 

B

A
, constant inhomogeneity parameter and 1z   
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Figure 11: 
0

 ip


 versus ( )a  for different 

B

A
, constant inhomogeneity parameter and 1z  .25 

4 Problem formulation for spherical shell 

In this section, instability analysis of a pressurized thick-walled hollow spherical shell made of isotropic FG 

rubber like materials. A , B  and iP  represent inner and outer radius of the shell and internal pressure, respec-

tively. Condition s are the same of the cylindrical shell and reference and current configurations of spherical shell 

are presented by  , ,R    and  , ,r   . The sphere geometry in these configurations is described as follows: 

A R B   ,0 2 ,0 2     (21) 

r  b, 0 2 ,  0 2        (22) 

Ericksen's universal solutions is used to find deformation of spherical shell (Ericksen, 1954): 

  ,  ,r f R        (23) 

Components of stretch in spherical coordinates are defined as follow: 
   

,  r

df R f R

dR R       The de-

formation gradient tensor F  is presented by (Fu and Ogden (2001)):: 

     d

d r R

f R f R f R

R R R       F e E e E e E  (24) 

Method which is used for the cylinder is also applied for the sphere. As a result, internal pressure is found as 
follows: 

 
( )

3
( ) 1

ˆa

b

i

W d
P



 













  (25) 

In this section, following parameters are also defined: 

   
1

3 3 3 3 33( ) , ( ) ( ) , , / 1,  ( ) 1 ( ) 1a b a b a

a b
B A

A B                     (26) 
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By differentiation of equation (25) with respect to ( )a  and some simplification, it is found that: 

     2

2 2

( ) ( ) ( ) ( )

( ) ) )

ˆ

( (

ˆ
a a a b

a a b

dP W W

d
    

  

    
  


   (27) 

Pressure turning-points will exist, if 
2( )

Ŵ



is not monotonic in   and it leads to 2 0ˆ ˆW W

       . By using 

modified Ogden strain energy function for incompressible hyperelastic material and Eq. (25), we have: 

   1μ , ,i OGSN OGSNP A b m A a m       (28) 

Where: 

   
 

 

1
11

1 1

1
2 αα2 α 3

3

3 3

1

3 3 3

3 α 3α1 1 1 1 1

2 1 1 2 13 3 3 3 3 3

3
, 1

α

2α 2α α α α 31
, 2α ;1 ; 2 1 , ; ;

3 3 3 3 3 3 3

mm

OGSN m

r R r
A r m

A b B

mm r r r
R F r F

b B b B b B



 

 


 
     

  

 
 
 

      
      

      

 (29) 

5 Result and Discussion 

Figures 12-14 show 
0

ip


 versus ( )a  for different inhomogeneity parameter m . By analyzing these figures, 

it is found that critical pressure will increase by increasing m . Moreover related critical pressure happens in a 

higher ( )a  when m  increases. These figures show that critical pressure also increases by increasing 
B

A
. In ad-

dition, Figures 15-18 show 
0

ip


 versus ( )a  for different 

B

A
 and specific material inhomogeneity parameter in 

each figure. These figures show that critical pressure increases by increasing 
B

A
. For example 

0

ip


 for 4

B

A
  and 

3m    is 3.52 times of 
0

ip


 for 1.1

B

A
  and 3m   . In addition, critical pressure happens in a higher ( )a  

when 
B

A
 increases. 
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Figure 12: 
0

 ip


 versus ( )a  by considering 1.1

B

A
  for different inhomogeneity parameter 

 

Figure 13: 
0

 ip


 versus ( )a  by considering 1.5

B

A
  for different inhomogeneity parameter 
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Figure 14: 
0

 ip


 versus ( )a  by considering 2

B

A
  for different inhomogeneity parameter 

 

Figure 15: 
0

 ip


 versus ( )a  by considering 6m    for different 

B

A
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Figure 16: 
0

 ip


 versus ( )a  by considering 3m    for different 

B

A
 

 

Figure 17: 
0

 ip


 versus ( )a  by considering m =0 for different 

B

A
 

6 Validation 

For validating of obtained theoretical results, numerical method is used to find the accuracy of these result. In 

this order sphere with 2
B

A
  and 2m   is considered. Comparison of numerical results and theoretical re-

sults is presented in Figure 19. Comparison of numerical and theoretical results shows that, maximum diffe-
rences between these results are about 6.3%; therefore it is concluded that there is good agreement between 
numerical and theoretical results, so theoretical solution can be applied for finding stability of the axisym-
metric thick vessel composed of FG hyperelastic material. 
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Figure 18: 
0

 ip


 versus ( )a  by considering m =2 for different 

B

A
 

 
Figure 19: Comparison between theoretical and numerical results of FG sphere 

6 Conclusion 

One of the most important and amazing problems in inflated hyperelastic bodies from a hypothetical viewpoint 
is instability analysis and finding instability point onset of these bodies, because they happen unexpectedly. Uni-
versal solution of Ericksen's family is used to find expansion of thick spherical/cylindrical shells made of inhomo-
geneous, isotropic incompressible hyperelastic material. Material inhomogeneity is assumed to model by function-
ally graded material. Modified Ogden strain energy function with power law variable material property is used to 
model grading of material properties. It should be noted, Ogden material shows non-monotonic pressure-radius 
relationship and behaviour for cylindrical and spherical shells. Therefore, onset of instability with the predictions 
of effect of material inhomogeneity parameter and shell thickness is investigated. 
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Results show that in the thick spherical/cylindrical shell, critical internal pressure and its related hoop stretch 

( )a  increases by increasing material inhomogeneity parameter and shell thickness. This means that, shell can 

tolerate higher pressure and more radial deformation. Moreover, in cylindrical shells, critical pressure and its re-

lated hoop stretch increases by decreasing longitudinal stretch. This imply that in cylindrical shell when 1z  , 

longitudinal stretch has an opposite effect of internal pressure in shell behavior and instability point will be delayed 

by decreasing z . 

From an applied perspective, unstable conditions are absolutely unwelcome and should be evaded because 
the deformation becomes highly non-uniform, leading to early failure. Above results in investigating mechanical 
behavior of these shells reveal great effect of shell thickness and material inhomogeneity to delay instability and 
should be noted in design of these shells. 
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