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Abstract 
With consideration of pre-axial pressure and two-parameter elastic foundation (Pasternak), a new method was put 
forward for analysis of transverse free vibration of a finite-length Euler-Bernoulli beam resting on a variable Pasternak 
elastic foundation. Matrices and determinants corresponding to arbitrary boundary conditions were provided for 
engineers and researchers according to their own demand. In derivation process of new proposed method, Schwarz 
distribution was adopted for simplifying the partial derivative of Dirac function and compound trapezoidal integral 
formula was adopted for discretizing the shape function of beam. For the symmetrical boundary conditions, it was 
concluded that natural frequency of transverse free vibration obtained by FEM highly agreed with the new proposed 
method. In contrary, for the asymmetrical cases, the calculation results were different from each other. For solving the 
ordinary differential equation with nonlinear partial derivative terms of shape function, the key point of new proposed 
method was to establish stiffness equation set composed of obtained matrices, rather than a single equation on the 
basis of classical theory. This point should be treated as a great advantage. New proposed method can be generalized 
to solve more complicated problems, which were illustrated in conclusion and prospect. 
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1. Introduction 

The model of beams resting on elastic foundation have a wide range of applications in civil engineering, such as 
underground pipelines, rails, strip foundations, pile foundations, etc.[1-5] Winkler elastic foundation is treated as a 
single-parameter model and commonly used by engineers and researchers, but this model ignores the shearing 
interaction between soil elements. Previous studies have shown that [6,7], the assumption always results in a huge 
deviation. Therefore two-parameter model is introduced to overcome the shortcoming of Winkler foundation model, 
defined as Pasternak elastic foundation. In addition, structure components in engineering, such as railway or steel 
reinforced concrete, is often in the pre-axial load state. For example, application of pre-stress can improve the 
compressive strength of concrete. Axial force has a great influence on dynamic response of Euler–Bernoulli beam, and it 
should be considered in structural dynamic analysis. 

Theoretical analysis method was the most commonly used method, with the development of computer technology 
in recent years, finite element method and other numerical methods have become more and more popular, and were 
applied for solving problems, such as uniform beams resting on a nonlinear elastic foundation. But most of these results 
were obtained on the assumption of space-invariable elastic foundation [8-10]. As we know, elastic coefficient of 
foundation always varied with the longitudinal axis of beam, namely variable elastic foundation. Variable elastic 
foundation was firstly proposed and solved by the use of Taylor series on the assumption of linearly variable elastic 
coefficient of foundation along longitudinal axis of beam. The same process was confirmed by Hetényi[11,12]. On the 
basis of compound trapezoidal integral formula, natural frequency of a finite-length Euler–Bernoulli beam resting on 
variable elastic Winkler foundation were derived under six boundary conditions [13], but the influence of axial force and 
shearing interaction between soil elements was neglected. Assuming that elastic coefficient of Winkler foundation varied 
with the negative fourth power of a polynomial function, analytical solution of a finite-length beam under the action of 
concentrated and uniform load was derived[14], but the whole process was a static analysis, and the assumption of 
special space-variable elastic coefficient was aimed to set up Euler equation. In case while elastic coefficient varied 
arbitrarily, the method failed. In the hypothesis that elastic coefficient of Winkler foundation varied in Taylor series along 
the longitudinal axis of beam, power series method was applied for structural dynamic analysis of a finite-length Euler–
Bernoulli beam [15], but the application of power series method to solve differential equations always brought a large 
amount of calculation because the analytical solution was generally composed of multiple higher power functions. 

In summary, none of the above methods could reflect the influence of variable second-parameter of Pasternak 
elastic foundation, either directly ignored the influence of second-parameter, or simply assumed that second-parameter 
was constant. It was well known that the second-parameter must also be variable if foundation stiffness varied along the 
longitudinal axis of beam. In the present paper this problem would be discussed. 

With consideration of pre-axial pressure, transverse free vibration response of a finite-length Euler–Bernoulli beam 
resting on variable Pasternak elastic foundation was solved by a new proposed method in the present paper, which can’t 
be achieved by previous methods. Separation variable method was used to separate frequency and space domain, and 
variation of parameters was applied to solve fourth-order ordinary differential equation to obtain analytical expression 
of structural shape function, and then compound trapezoidal integral formula was introduced to discretize structural 
shape function and establish the stiffness equations set composed of corresponding matrices and determinants to obtain 
structural natural frequency under arbitrary boundary conditions. In the derivation process, Schwarz distribution theory 
was used to simplify the partial derivative of Dirac function, and Schwarz distribution theory was illustrated in Appendix 
B. The new proposed method can be used to carry out research on transverse free vibration response of a finite-length 
Euler–Bernoulli beam resting on arbitrarily variable Pasternak elastic foundations; By comparing with finite element 
method(FEM), it was verified that the new proposed method was extended with good applicability for continuous 
variable foundation and piece-wise homogeneous foundation. In numerical calculation, the whole process of new 
proposed method was demonstrated, and the influence of continuous variable coefficients of Pasternak elastic 
foundation on mode of transverse free vibration under different boundary conditions was discussed. New proposed 
method was rigorously theoretical and suitable for further popularization. 

2. Transverse free vibration of a finite-length Euler–Bernoulli beam with pre-axial pressure resting on variable 
Pasternak elastic foundation 

As shown in Fig.1, influence of pre-axial pressure was considered into the transverse free vibration of a finite-length 
Euler–Bernoulli beam resting on variable Pasternak elastic foundation, illustrated in Cartesian rectangular coordinate 
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system, x  was the longitudinal axis of beam, ,y z  was coordinates of beam cross-section, the downward direction of 
y  was positive. 

 

Figure 1. Analytical model 

2.1. The solution of structural motion equation 

Transverse free vibration equation of a finite-length Euler–Bernoulli beam with pre-axial pressure resting on variable 
Pasternak elastic foundation, 

( , ) [ ( )] ( , ) ( , ) ( ) ( , ) 0iv
z pEI v x t F G x v x t mv x t k x v x t′′+ − + + =  (1) 

Where ( )k x  and ( )pG x  represented respectively coefficients of Winkler and Pasternak elastic foundation, varied along 
the longitudinal axis x , F  represented constant pre-axial pressure acting along x , ( , )v x t  represented transverse 
displacement response of structural free vibration, ( , )ivv x t and ( , )v x t′′  represented respectively fourth and second-order 
partial derivatives of ( , )v x t  to x , ( , )v x t  was second-order partial derivatives of ( , )v x t  to t , zEI  represented 
flexural rigidity and A  area of structural cross-section, According to principle of mass distribution m Aρ= ; ω  
represented structural natural frequency. 

Transverse free vibration equation in the non-dimensional form was simplified and expressed as, 

( , ) [ ( )] ( , ) ( , ) ( ) ( , ) 0iv
pv x t F G x v x t mv x t k x v x t′′+ − + + =  (2) 

Where 4 2 2 4/ , / , / , ( ) ( ) / , ( ) ( ) /z z p p z zx x L m AL EI F FL EI G x G x L EI k x k x L EIρ= = = = =  

According to the method of separation of variables ( , ) ( ) i tv x t V x e ω= , ( )V x  was shape function, where 1i = − ,then it 
was substituted into Eq(2), 

2( ) ( ) ( ) ( ) ( ) ( ) ( )iv
pV x FV x m V x G x V x k x V xω′′ ′′+ − = −  (3) 

If the coefficients of elastic foundation were invariable, analytical solution of Eq(3) can be solved by Fourier integral 
and Laplace transformation under specified boundary conditions, but in present paper it aimed to solve motion equation 
of Euler–Bernoulli beam resting on variable Pasternak elastic foundation, so theoretical analysis method failed. 

It was assumed that the solution of Eq(3) was composed of ( ) ( ) ( )g pV x V x V x= + . The left side of Eq(3) was 
homogeneous differential equations, and general solution ( )gV x  was simplified to obtain analytical expression. In 
contrast, the right side of Eq(3) was much more complicated, variation of parameters was used to obtain ( )pV x , 
theoretical basis of method and whole process of solution was illustrated in Appendix A. 
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∫
  (4) 

2.2 Undetermined coefficients under specified boundary condition 

Undetermined coefficients ( 1,2,3,4)mB m =  in Eq(4) were assumed as unknown real numbers,and can be 
determined under specified boundary condition. Herein Pinned-Pinned beam (P-P) was chosen as an example and its 
corresponding boundary condition was expressed as, 

( ) ( ) ( 0) 0, ( ) ( ) ( 1) 0V x V x x V x V x x′′ ′′= = = = = =   (5) 

Boundary condition of P-P beam was substituted into Eq(4), then undetermined coefficients mB  were obtained 
and expressed as, 

1

1 22 20

1

3 42 20

sin (1 )[ ][ ( ) ( ) ( ) ( )] , 0
( )sin
sinh (1 )[ ][ ( ) ( ) ( ) ( )] , 0

( )sinh
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λ
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γ
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− ′′= − − =
+

∫

∫
  (6) 

2.3. Compound trapezoidal integral formula 

Due to the complexity of the integrand, well-known Newton-Leibniz integration formula was too difficult for solving 
the integration in many practical problems. Therefore, many numerical integral formulas were put forward, such as 
Gaussian integral formula, compound trapezoidal integral formula, and Simpson integral formula. Herein compound 
trapezoidal integral method was used and integral interval [0,1]  was discretized into n  equal parts, coordinates of 
each equal parts was 1 2 1[0, , ,..., ,1]nx x x −  with its corresponding length 1/ n . The approximation of Eq(4) and (6) was 
expressed as, 
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sinh (1 )
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( )sinh

n
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 (7) 
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Eq (7) was substituted into (4), then 
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  (8) 

In order to eliminate inconvenience of second-order partial derivative term in Eq(8) to the subsequent calculation, 
second-order partial derivative of Eq(8) to x  was performed, 
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  (9) 

2.4. Structural natural frequency and mode of transverse free vibration 

Eq(8) and (9) were respectively multiplied by 
1

0

( )jx x dxδ −∫ , and expressed as 

2 2
1

2 2 2 2
1 1

sin (1 )
( ) [ ( ) ( ) ( ) ( )]sin

( )sin
sinh (1 )

[ ][ ( ) ( ) ( ) ( )]sinh *
( )sinh ( )

sinh ( ) sin ( )
[ ][ ( ) ( ) (

n
i i

j p i i i i j
i

n n
i i i

p i i i i j
i i

j i j i
p i i i

x
V x G x V x k x V x x

n
x

G x V x k x V x x
n n

x x x x
G x V x k x

α λ
λ

λ λ γ λ
α γ α

γ
γ λ γ γ λ γ

γ λ
γ λ

=

= =

− ′′= − −
+

− ′′ − +
+ +

− −
′′− −

∑

∑ ∑

) ( )] ( )i j iV x U x x−

  (10) 
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  (11) 

Schwarz distribution theory was used for simplifying the partial derivative of Dirac function ( )xδ  in Eq(11), and 
corresponding theory was illustrated in Appendix B. Eq(10) and (11) can be denoted in matrix form. 

11 12 1( 1) 11 12 1( 1)1

21 22 2( 1) 21 22 2( 1)2

( 1)1 ( 1)2 ( 1)( 1) ( 1)1 ( 1)2 ( 1)( 1) 11
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Through introducing identity matrix [I] ,Eq(12) was simplified as, 

{ }{ } { }
{ } { }{ }

{ } { }0 1 n+1 0 1 n+1

ˆ[ ]+[I] [ ] 0

ˆ[ ] [ ]+[I] 0

ˆ[ ( ), ( ),..., ( )] , [ ( ), ( ),..., ( )]T T

C d D d

C d D d

d V x V x V x d V x V x V x

 + =


+ =

′′ ′′ ′′= =

    (13) 

Where 

}2 2

2 2
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( )

i i i i

i i
ij i j i j j i j i j i
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= − + − − − −   +    

 
= − − + − − +  
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  (14) 
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{ }

2 2
2 2

2 2
2 2

( )
sin sinh sinh ( ) sin ( ) ( )
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α
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 (15) 

Eq.(13) was defined as stiffness equation. According to classical theory of structural dynamics[16], stiffness equation 
of transverse free vibration was a single equation. However, Eq(13) was an equation set because second-order partial 
derivative term of ( )V x′′  appeared in Eq(3). The term of ( )V x′′  was ingeniously handled in new proposed method and 
it could be extended to solve ordinary differential equations with first or third-order partial derivative terms. Therefore 
the method could be generalized to solve more complicated problems. This point should be treated as a great advantage. 

In Eq(13), { }d̂  should be eliminated by the elimination method, then 

{ }[ ] 0,[ ] [ ]+[I] [ ]

[ ]= ([ ]+[I]),[ ]=[ ][ ],[ ]=[ ][ ]
z

o t o z t

H d H C D

D inv D D D C D D D

= = −


  (16) 

([ ]+[I])inv D  represented inverse matrix of [ ]+[I]D , and its determinant was recognized not equal to 0. The above 
determinant H  was set as 0 for obtaining natural frequency of a finite-length Euler–Bernoulli beam with pre-axial 
pressure resting on variable Pasternak elastic foundation with consideration of axial force and bending. The key of new 
proposed method was to find structural natural frequency. In Chapter 3, an example would be chosen to illustrate the 
whole process of new proposed method. Then each-order natural frequency was respectively substituted into Eq (16) 
for corresponding mode of transverse free vibration { }d . 

2.5. Undetermined coefficients and Matrices corresponded to solution of structural natural frequency and mode 
under arbitrary boundary conditions 

In many practical problems, there always exists various boundary conditions. Therefore In the section, for the case 
of arbitrary boundary conditions, undetermined coefficients mB  and corresponding matrices ijC , ijD , ijC , ijD  have 
been deduced and provided for engineers and researchers. The derivation process was similar as Pinned-Pinned beam 
and was not described once more. 6 specified boundary conditions were taken into consideration and divided into 
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symmetrical and asymmetrical conditions. Clamped-Clamped(C-C), Pinned-Pinned(P-P), Free-Free(F-F) were recognized 
as symmetrical, while Clamped-Free(C-F), Pinned-Free(P-F), Pinned-Clamp(P-C) asymmetrical. 

2.5.1.Undetermined coefficients mB  

Pinned-Clamped, 

( ) ( ) ( 0) 0, ( ) ( ) ( 1) 0V x V x x V x V x x′′ ′= = = = = =  (17) 

2 4

1

1 22 2 0

1

3 2 2 0
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∫

∫
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3. Numerical discussion 

For continuous variable Winkler elastic foundation, some analytical solutions have been proposed for certain 
specific situations. However, for most of cases or piece-wise homogeneous elastic foundation, the most commonly used 
solution was finite element method (FEM). There existed many corresponding studies. The following section was mainly 
aimed to demonstrate the whole process of new proposed method to solve structural natural frequency and 
corresponding mode under arbitrary boundary conditions. 

A finite-length Euler–Bernoulli beam was taken into consideration, structural material was steel, and the values of 
parameters were denoted in Table 1, where all symbols were in accordance with previous definition. 

Table 1.Geometry and material parameters of Euler–Bernoulli beam and variable Pasternak elastic foundation 

=18L m  =201GpaE  

40.0000611zI m=  100F kN=  

37860 /kg mρ =  20.01538A m=  

2.5 , 2.5 (0 0.5)pk Mpa G Mpa x= = ≤ ≤  5 , 5 (0.5 1)pk Mpa G Mpa x= = < ≤  

3.1. The whole process of new proposed method 

In finite element method (FEM), structural natural frequency and corresponding mode can finally be determined by 
solving the eigenvalues and eigenvectors of structural global stiffness matrix and mass matrix. In present paper, new 
proposed method was different from FEM. 

The first step of new proposed method was to determine the range of structural natural frequency corresponded 
to minimum and maximum coefficients of Pasternak elastic foundation by comparison with analytical solution of natural 
frequency. The values in the range was defined as possible values. Then these possible values were substituted into 
Eq.(16) by small-step increment to find the structural natural frequency point corresponded to determinant 0H = . In 
Fig.2 the curve was the values change of H  in the whole process of seeking from 1st to 4th order structural natural 
frequency under P-F boundary condition. It was shown that the value of H  should be increased and decreased 
repeatedly. When the value of H  decreased to 0, the corresponding abscissa was structural natural frequency. The 
following notes should be paid attention in calculation process of new proposed method: 1) 0 was a small quantity that 
may be positive or negative, and it was generally taken as the absolute value. 2) For various-order natural frequencies, 
the magnitude of a small quantity was different (4 marked points as shown in Fig.2), therefore a constant small quantity 
cannot be set. 3) The value of determinant H  may be very large (between marked points 3 and 4 in Fig.2) or very small 
(between marked points 2 and 3) in the calculation process, but it did not affect the use of new proposed method, there 
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definitely exist structural natural frequency points corresponded to 0H =  in case that values of determinant H  
increased and decreased repeatedly. 4) In Fig.2 there existed a breakpoint between the 3rd and 4th -order natural 
frequency, please noted that ordinate of the breakpoint hadn’t been drawn because of a large value at the breakpoint 
compared to other points. 

 

Figure 2. Change of H  in the whole process of seeking from 1st to 4th structural natural frequency by new proposed method(P-F) 

3.2. The comparison between FEM and new proposed method 

The comparison of 1st to 6th structural natural frequency obtained by FEM and new proposed method under 
specified symmetrical and asymmetrical boundary conditions was shown in Table 2-5. At the end of each table’s 
title, symbols in bracket represented values of various parameters. Such as, from ( pG , k  and 50F ) 50F  
indicated that 50 times axis pressure. In present paper maximum difference ratio κ was introduced to 
demonstrate difference ratio of structural natural frequency obtained by FEM and new proposed method. For 
example, for the case of C-C boundary condition in Table 2, 205.72 / 200. 4. 18 09%κ = = − , and corresponding set 
of data has been marked in bold font. 

By comparing Table 2 and 3, it was indicated that axial pressure could suppress structural free vibration; By comparing 
Table 2 and 4 it was indicated that the second-parameter of Pasternak elastic foundation could increase structural natural 
frequency. It was concluded that axial pressure and second-parameter of Pasternak elastic foundation should be considered 
in structural dynamic analysis. By comparing Table 2 and 5 it was indicated that structural natural frequency became smaller 
as stiffness of elastic foundation decreases. In Table 2-5 structural natural frequency was respectively calculated under two 
specified symmetrical (C-C and P-P) and asymmetrical boundary conditions(P-F and C-F). It was clearly demonstrated that 
maximum difference ratio κ  was a small quantity under specified symmetrical boundary conditions, and in this case 
structural natural frequency obtained by FEM agreed with new proposed method. In contrast, for the case of asymmetrical 
boundary conditions, maximum difference ratio κ  has reached to 12.09% with consideration of smaller axial pressure and 
larger foundation stiffness. It should be paid more attention that for the case of asymmetrical boundary conditions, there 
existed a certain difference between two methods. The comment can’t be made on which method was more accurate. It was 
mentioned that high-order structural natural frequency of slender beam obtained by FEM had a large error with theoretical 
solution[17]. In present article another solution was put forward. 
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Table 2. From 1st to 6th orders structural natural frequency obtained by FEM or new proposed method under symmetrical and 
asymmetrical boundary conditions( pG , k  and F ) 

Natural Frequency(rad/s) 

Symmetrical boundary conditions Asymmetrical boundary conditions 

C-C P-P P-F C-F 

New 

method 
FEM 

New 

method 
FEM 

New 

method 
FEM 

New 

method 
FEM 

1th order 159.02 160.09 154.00 154.81 154.00 154.81 159.02 160.09 

2nd order 205.72 204.09 195.28 194.66 195.38 194.53 203.26 201.87 

3rd order 234.14 235.13 220.88 221.44 203.52 208.11 205.98 211.85 

4th order 295.80 294.29 268.80 267.04 226.94 238.21 234.30 246.84 

5th order 376.52 376.96 335.88 336.54 280.84 290.13 295.96 305.95 

6th order 484.86 484.18 432.76 431.91 354.12 366.66 376.66 388.32 

Maximum difference ratio

κ  
0.80% 0.66% 4.97% 5.35% 

Table 3. From 1st to 6th orders structural natural frequency obtained by FEM or new proposed method under symmetrical and 
asymmetrical boundary conditions ( pG , k  and 50F ) 

Natural Frequency(rad/s) 

Symmetrical boundary conditions Asymmetrical boundary conditions 

C-C P-P C-C P-P 

New 

method 
FEM 

New 

method 
FEM 

New 

method 
FEM 

New 

method 
FEM 

1th order 147.63 148.79 142.25 142.78 142.24 142.78 147.62 148.78 

2nd order 184.70 184.25 168.71 170.00 168.71 169.99 184.64 184.16 

3rd order 213.63 213.81 206.26 205.60 203.32 203.37 203.44 203.60 

4th order 258.55 256.45 231.58 229.32 209.81 208.59 213.64 213.68 

5th order 329.96 330.68 286.76 287.82 242.62 240.58 258.70 256.43 

6th order 433.90 433.01 378.41 377.23 306.50 307.70 330.10 330.68 

Maximum difference ratioκ  0.82% 0.99% 0.85% 0.89% 
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Table 4. From 1st to 6th orders structural natural frequency obtained by FEM or new proposed method under symmetrical and 
asymmetrical boundary conditions ( 5 pG , k  and F ) 

Natural Frequency(rad/s) 

Symmetrical boundary conditions Asymmetrical boundary conditions 

C-C P-P C-C P-P 

New 

method 
FEM 

New 

method 
FEM 

New 

method 
FEM 

New 

method 
FEM 

1th order 173.44 178.37 168.86 173.32 168.92 172.90 173.44 177.55 

2nd order 233.56 234.95 229.70 226.08 203.50 210.64 203.52 213.35 

3rd order 294.20 299.95 276.46 281.82 231.76 249.57 239.72 258.17 

4th order 388.16 382.89 360.98 355.80 282.98 316.11 294.36 329.94 

5th order 485.8 491.39 448.34 454.20 371.58 399.82 388.28 416.51 

6th order 614.2 610.06 567.22 562.84 463.74 501.95 485.92 525.48 

Maximum difference ratioκ  2.84% 2.64% 11.71% 12.09% 

Table 5. From 1st to 6th orders structural natural frequency obtained by FEM or new proposed method under symmetrical and 
asymmetrical boundary conditions ( 0.1* pG , 0.1*k  and F ) 

Natural Frequency(rad/s) 

Symmetric boundary conditions Asymmetric boundary conditions 

C-C P-P P-F C-F 

New 

method 
FEM 

New 

method 
FEM 

New 

method 
FEM 

New 

method 
FEM 

1th order 58.84 58.78 53.30 53.37 53.16 53.29 58.42 58.36 

2nd order 85.48 85.27 72.60 72.30 64.52 65.24 64.78 65.95 

3rd order 134.08 133.98 106.74 106.66 78.22 79.75 85.46 87.31 

4th order 207.34 207.31 168.48 168.44 119.14 121.03 134.08 135.67 

5th order 302.10 302.03 252.58 252.50 187.34 188.59 207.36 208.72 

6th order 417.16 417.16 357.46 357.45 276.46 277.73 302.12 303.20 

Maximum difference ratioκ  0.25% 0.41% 1.96% 2.16% 

3.3 Influence of variable foundation coefficient 0b  on mode of transverse free vibration 

In sections 3.1 and 3.2, piece-wise homogeneous foundation was assumed, in fact new proposed method was also 
applicable to transverse free vibration of Euler–Bernoulli beams resting on continuous variable elastic foundation. Elastic 
coefficients of Pasternak foundation was continuously variable abided by Eq.(27), where 0b  represented variable 
foundation coefficient. 

2 2
0 0 0 0 0 0( ) (1 ), 0.1 , ( ) (1 ), 0.2pk x k b x k Mpa G x G b x G Mpa= − = = − =   (27) 
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Figure 3. The shape change of 1st and 2nd-order modes of transverse free vibration under various variable foundation coefficient 0b  (C-F) 

 

Figure 4. The shape change of 1st and 2nd-order modes of transverse free vibration under various variable foundation coefficient 0b  (C-C) 

 

Figure 5. The shape change 1st and 2nd-order modes of transverse free vibration under various variable foundation coefficient 0b  (F-F) 

It was shown in Fig.3-5 that influence of variable foundation coefficient 0b  on 1th and 2nd-order modes of 
transverse free vibration under 3 specified boundary conditions(C-F, C-C, and F-F). For the case of C-F, it was indicated in 
Fig.3 that as elastic coefficients of Pasternak foundation gradually decreased along the longitudinal axis, right end of 
Euler–Bernoulli beam seemed to be subjected to a clockwise bending moment, meanwhile amplitude of mode was 
moving to the right direction because left end of Euler–Bernoulli beam was fixed; For the case of C-C, in Fig.4. it was 
clearly shown that shape change of mode was small because both ends of beam were fixed, but the amplitude of mode 
would shift toward the direction of foundation stiffness reduction. At this time, the mode should be treated as 
superposition of multiple sinusoidal and cosine functions rather than a single sinusoidal function; For the case of F-F, 
influence of variable foundation coefficient 0b  on modes of F-F was observed to be much greater than that of C-F and 
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C-C. It seemed to be subjected to simultaneous action of bending moments at both ends of beam. In summary variable 
elastic coefficients of Pasternak foundation was recognized as an indispensable part in the structural dynamic analysis. 

4. Conclusion and prospect 

In present paper a new method was put forward for obtaining natural frequency and corresponding mode of a 
finite-length Euler–Bernoulli beam with pre-axial pressure resting on variable Pasternak elastic foundation. New 
proposed method was applicable for continuous variable foundation and piece-wise homogeneous foundation. The 
matrices and determinants corresponding to arbitrary boundary conditions have been deduced and provided. These 
formulas could provide guidance for engineers and researchers according to their own demand. 6 Boundary conditions 
was divided into symmetrical and asymmetrical. For the case of symmetrical boundary conditions, structural natural 
frequency obtained by new proposed method was highly consistent with FEM. In contrast, for the case of asymmetrical 
boundary conditions, structural natural frequency between two methods was different., and more attentions should be 
paid on the asymmetrical conditions. Variable elastic coefficients of Pasternak foundation had a great influence on the 
shape and amplitude of 1st and 2nd-order transverse free vibration mode under specified C-F, C-C, and F-F boundary 
conditions, especially for the case of F-F condition. The vibration modes of a finite-length Euler–Bernoulli beam resting 
on variable Pasternak elastic foundation were no longer a single trigonometric function, but superposition of multiple 
trigonometric and cosine functions. 

Compared with FEM, the new proposed method has many advantages. Firstly, FEM was on the basis of 
corresponding shape function, which may result in a huge deviation for slender beam[17]. In contrast, the shape function 
of new proposed method was obtained by variation of parameters. Secondly, for those who only concerned the lower-
order structural natural frequency and corresponding vibration mode, or even first-order[10], new proposed method 
was a good choice. For example, the critical speed of the train traveling on the track was often related to first-order 
natural frequency, and for the problem of a finite length Euler–Bernoulli beam with open edge cracks[18]. As we know, 
the cracks always decreased bending stiffness of beam, and were modeled as the sum of several Dirac functions in 
governing equation of a finite Euler–Bernoulli beam. New proposed method could be to treated as an analytical solution, 
because the number of cracks determined the size of determinant. For the case of Euler–Bernoulli beam with several 
open edge cracks, structural natural frequency could be directly solve as an equation of multiple degree with one 
unknown by MATLAB. Finally, in the new proposed method the treatment of second -order partial derivative term of 
shape function provided a reference for solving ordinary differential equations with several nonlinear partial derivatives 
of shape function. 

Author's Contributions: Writing - original draft, Y Xu and N Wang. 

Editor: Rogério José Marczak. 
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APPENDIX A. Variation of Parameters 

In case that general solution of a fourth-order ordinary differential equation is the combination of trigonometric 
and hyperbolic function, variation of parameters is commonly-used to solve its particular solution [19]. Firstly matrix 
Wronskian is introduced and expressed as, 

1 2 3 4
(1) (1) (1) (1)
1 2 3 4

(2) (2) (3) (4)
1 2 3 4

(3) (3) (3) (3)
1 2 3 4

( )

g g g g

g g g g

g g g g

g g g g

v v v v
v v v v

W x
v v v v
v v v v

 
 
  =
 
 
  

  (28) 

( )n
gnv 

 represents n th - order derivative of n th general solution component to x . For example, in Eq.(4) (3)
1gv  

corresponds to 3th-order derivative of sin xλ  to x . It is assumed that the value of determinant ( ) 0W x ≠ . 

Secondly mth column in Wronskian is replaced with column vector [0,0,0,1]T, and other columns are kept unchanged. 

The new determinant is expressed as ( )mW x . Then particular solution of non-homogeneous fourth-order ordinary 

differential equation can be obtained as, 

4

1 0

( )
( ) ( ) ( )

( )

x
m

p gm
m

W s
V x v x p s ds

W s=

= ∑ ∫   (29) 

APPENDIX B. Schwarz distribution theory [18] and property of function ( )xδ  

( )f x  is assumed as a continuously differentiable function, then 

[ ]
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