Latin American Journal of Solids and Structures, Volume: 12, Issue: 4, Published: 2015
  • A benchmark study on intelligent sampling techniques in Monte Carlo simulation Articles

    Santos, K.R.M. dos; Beck, A.T.

    Abstract in English:

    In recent years, new, intelligent and efficient sampling techniques for Monte Carlo simulation have been developed. However, when such new techniques are introduced, they are compared to one or two existing techniques, and their performance is evaluated over two or three problems. A literature survey shows that benchmark studies, comparing the performance of several techniques over several problems, are rarely found. This article presents a benchmark study, comparing Simple or Crude Monte Carlo with four modern sampling techniques: Importance Sampling Monte Carlo, Asymptotic Sampling, Enhanced Sampling and Subset Simulation; which are studied over six problems. Moreover, these techniques are combined with three schemes for generating the underlying samples: Simple Sampling, Latin Hypercube Sampling and Antithetic Variates Sampling. Hence, a total of fifteen sampling strategy combinations are explored herein. Due to space constrains, results are presented for only three of the six problems studied; conclusions, however, cover all problems studied. Results show that Importance Sampling using design points is extremely efficient for evaluating small failure probabilities; however, finding the design point can be an issue for some problems. Subset Simulation presented very good performance for all problems studied herein. Although similar, Enhanced Sampling performed better than Asymptotic Sampling for the problems considered: this is explained by the fact that in Enhanced Sampling the same set of samples is used for all support points; hence a larger number of support points can be employed without increasing the computational cost. Finally, the performance of all the above techniques was improved when combined with Latin Hypercube Sampling, in comparison to Simple or Antithetic Variates sampling.
  • Influence of slab length on dynamic characteristics of subway train-steel spring floating slab track-tunnel coupled system Articles

    Xu, Qing-yuan; Yan, Bin; Lou, Ping; Zhou, Xiao-lin

    Abstract in English:

    A subway train-steel spring floating slab track-tunnel coupling dynamic model, considering short and middle-long wavelength random track irregularities, and longitudinal connection between adjacent slabs of steel spring floating slab track, was developed. And the influence of slab length on dynamic characteristics of the system under different track conditions and train speeds are theoretically studied. The calculated results show: (1) In general, the acceleration of each component of the coupled system decreases with the increase of slab length under the perfectly smooth track condition; (2) Slab length has different influence laws on acceleration of each component of subway train-steel spring floating slab track-tunnel coupled system under random irregularity of track condition. The lower the dominant frequency distribution of vibration acceleration is, the higher influence slab length has; (3) With the increase of slab length, the force of rail, fastener and steel spring also decreases significantly, which helps to lengthen the service life of these components; (4) With the increase of slab length, the longitudinal bending moment of slab increases sharply at first, then it begins to drop slightly. When slab length exceeds the distance between two bogies of a vehicle, the longitudinal bending moment of slab changes little; (5) Slab length has significant influence on the dynamic force and displacement of the coupled system when train speed is higher.
  • Experimental study on granite and the determination of its true strain-rate effect Articles

    Cai, Yong; Yu, Shuisheng; Lu, Yubin

    Abstract in English:

    To accurately determine the true strain-rate effect of granite in split Hopkinson pressure bar (SHPB) tests, systematic experimental studies from quasi-static to dynamic loading on the same batch of granite samples is required. Therefore, firstly, splitting, uniaxial and triaxial compression tests were used to study the mechanical response of granite under different static stress conditions with the MTS rock mechanics test system, and the impact compression tests were performed at different strain-rates by the split Hopkinson pressure bar (SHPB). The test results show that the compressive strength increases with the increase of confinement, but the increase rate decreases as the confinement gets larger. The axial failure strain also increases with the increase of confinement. Failure is related to the composition and structure of granite, as well as the stress state. With increasing confinement, the sample is more constrained, the elastic limit strain becomes smaller, and the elastic modulus becomes larger accordingly. In addition, shear slip failure takes place under triaxial compression. In the dynamic compression tests, the strain-rate affects not only the strength of granite, but also the degree of fragmentation and the breaking pattern. Also, it has been found that the dynamic compressive strength enhancement of rocks under impact loading is due to the combined effects of the material strain-rate, lateral inertia and end friction; however, in SHPB tests they are coupled together and could not be separated from each other. To determine the material strain-rate effect of rocks in the SHPB tests, the dynamic compressive strength enhancement caused by the lateral inertial effect and end friction effect needs to be removed. Assuming that the effect of the material strain-rate, lateral inertia and end friction is uncoupled, the numerical simulation method has been employed to simulate the SHPB tests on granite. The true strain-rate effect of granite in SHPB tests is thus determined.
  • Constitutive behaviour of quasi-brittle materials with anisotropic friction Articles

    Gesualdo, Antonio; Monaco, Michelina

    Abstract in English:

    This paper presents an approach to a constitutive model for anisotropic quasi-brittle materials, developed in the framework of rate independent softening plasticity, involving a yield criterion in which an anisotropic friction tensor is involved. It turns out to be useful for materials characterized by ultimate behaviour which varies according to the direction, such as composite materials, anisotropic rocks, textiles, masonry. A geometrical representation of the limit domain in the case of plane stress, together with the results of laboratory tests is presented and discussed.
  • Transient heat conduction in multiwall carbon nanotubes Articles

    Tahani, M.; Abolbashari, M.H.; Talebian, S.T.; Mehrafrooz, B.; Nik, H. Saberi

    Abstract in English:

    In this paper, theoretical investigation is performed on two-dimensional transient heat conduction in multiwall carbon nanotubes (MWCNTs) by using a continuum model. Temperature, size and direction dependencies of thermal properties are considered. Both Fourier and non-Fourier heat conduction approaches are used and finite element models are developed to solve the nonlinear equations for MWCNTs. The presented solutions are verified by comparing the results with those reported in the literature. Three types of thick and thin MWCNTs are considered and thermal shock is applied to their cylindrical surfaces or end cross sectional areas. Temperature distributions resulted from both approaches are obtained and compared together. Interesting results are found especially in MWCNTs that are exposed to extreme temperature gradient.
  • Dynamic compressive and splitting tensile tests on mortar using split Hopkinson pressure bar technique Articles

    Yang, Fei; Ma, Hongwei; Jing, Lin; Zhao, Longmao; Wang, Zhihua

    Abstract in English:

    Dynamic compressive and tensile properties of mortar under impact loading were investigated experimentally by using a split Hopkinson pressure bar (SHPB) apparatus with pulse shaping technique. Firstly, the basic principle, experimental limitations and some feasible improvements/modifications of SHPB technique used for dynamic tests on concrete-like materials were summarized briefly. And then the dynamic compressive strength, stress versus strain response, and failure modes of mortar were discussed and analyzed. Finally, a dynamic Brazilian disc test was conducted to obtain the splitting tensile property of mortar, and some typical experimental results were presented. Both compressive and splitting tensile results show that mortar is a strain-rate sensitive material. Either compressive or tensile strength enhances with the increase of strain rate, especially when the strain rate is greater than the transition strain rate, which is around 20 s-1 for the dynamic compression and 2.0 s-1 for the splitting tension, respectively. These findings are helpful to guide the design and application of concrete structures.
  • Closed-form elasticity solution for three-dimensional deformation of functionally graded micro/nano plates on elastic foundation Articles

    Salehipour, H.; Nahvi, H.; Shahidi, A.R.

    Abstract in English:

    This paper addresses the static deformation of simply supported rectangular micro/nano plates made of functionally graded (FG) materials based on the three-dimensional nonlocal elasticity theory of Eringen. The plates are assumed to be simply supported and rested on a Winkler-Pasternak elastic foundation. Elasticity modulus is assumed to obey an exponential law along the thickness direction of the micro/nano plate. Using the Fourier series, a displacement field is defined that satisfies simply supported boundary condition and reduces three elasticity equations to two independent equations. The closed-form bending response is achieved by exerting boundary conditions of the lateral surfaces. Numerical results are presented to investigate the influences of the gradient index of the material properties, nonlocal parameter and stiffness of elastic foundation on the mechanical behavior of the plates.
  • Evaluation and comparison of behavior of corrugated steel plate shear walls Articles

    Yadollahi, Y.; Pakar, I.; Bayat, M.

    Abstract in English:

    In this paper, the nonlinear behaviour of steel plate shear walls with corrugated plates under lateral pushover loading conditions in the models' top level has been analytically investigated by the finite element method. The one-storey frames have beams and columns as boundary elements. Steel plate shear walls are simulated using the finite element method, based on the available experimental models in the literature. After calibration of the analytical models, more parameters of steel shear walls with corrugated plates, such as the thickness of the corrugated plate, the stiffness of the boundary elements, the corrugation depth in the corrugated plates and the corrugation length of the infill of the corrugated plates, are investigated. The results of this study have demonstrated that in the wall with constant dimensions, the trapezoidal plates have higher energy dissipation, ductility and ultimate bearing than sinusoidal waves, while decreasing the steel material consumption.
  • Seismic performance of ductility classes medium RC beam-column connections with continuous rectangular spiral transverse reinforcements Articles

    Azimi, Mohammadamin; Adnan, Azlan Bin; Tahir, Mahmood Md.; Sam, Abdul Rahman Bin Mohd; Razak, Sk Muiz Bin Sk Abd

    Abstract in English:

    The seismic performance of RC columns can considerably be improved through the use of continuous spiral reinforcement in terms of ductility and energy dissipation capacity. Since the beam-column connections were subjected to brittle failure after earthquakes, the simultaneous application of this method in both beams and columns could greatly improve the seismic behaviour of such connections. In this investigation, a new proposed detail for beam to column connection introduced as "twisted opposing rectangular spiral" was investigated both experimentally and numerically and its seismic performance was verified through comparison with normal rectangular spiral and conventional shear reinforcement systems. In this research, three full scale beam to column connections were first designed according to Eurocode (EC8-04) for Medium ductility classes and then tested by quasi-static cyclic loading suggested by ACI Building Code (ACI 318-08). Finally, numerical methods were hired to validate the experimental results. The results indicated that the ultimate lateral resistance, ductility and energy dissipation capacity of the connection could be improved using the new proposed connection.
  • A new FEM procedure for transverse and longitudinal vibration analysis of thin rectangular plates subjected to a variable velocity moving load along an arbitrary trajectory Articles

    Esen, İsmail

    Abstract in English:

    A combined plate element is presented for the analysis of transverse and longitudinal vibrations of a thin plate which carries a load moving along an arbitrary trajectory with variable velocity. Depending on the acceleration of the point load on its trajectory on the plate surface, the combined element, which is a combination of the 24 DOF plate element and an equivalent mass element, represents transverse (z) inertia, Coriolis and centripetal and longitudinal (x, y) inertia effects of the moving load. In order to obtain the combined element, mass, damping and stiffness matrices of the equivalent mass element representing the mass are first derived by using the relations between nodal forces, nodal deflections and deflection-shape functions of the plate element and the inertia and other forces of the moving mass according to the global coordinates on the plate and local coordinates on the plate element. Then, the obtained property matrices of the equivalent mass element and property matrices of the plate element were added together in order to obtain the combined plate element. For verification, the suggested technique was applied on a simply supported beam-plate under a moving load, and agreements were obtained with existing literature. In addition, intensive analysis and simulations were conducted at different dimensionless mass rates (mass of the load/mass of the plate) and angular velocities for a circular motion on a CCCC plate, and the results are provided. Furthermore, analysis results are provided for moving force condition which neglects the inertia, Coriolis and centripetal effects of the load, and it was shown that the moving mass assumption generated very different results with moving load assumption especially at high mass ratio and velocity values. Analysis results made it clear that the dynamic behaviour of the plate was differently affected by an orbiting mass depending on its mass ratio, orbiting radius and angular velocity
Associação Brasileira de Ciências Mecânicas Av. Rio Branco, 124/14º andar, 20040-001 Rio de Janeiro RJ Brasil, Tel.: (55 21) 2221 0438 - Rio de Janeiro - RJ - Brazil
E-mail: abcm@abcm.org.br