Latin American Journal of Solids and Structures, Volume: 18, Issue: 3, Published: 2021
  • Influence of Trapezoidal Shapes and Cutout Sizes on the Buckling Behaviour of Composite Laminates Under Thermally Induced Loads ORGINAL ARTICLE

    Maharudra,; Rajanna, T.; Arya, Bheemsha

    Abstract in English:

    Abstract Trapezoidal laminated plates with cutouts are commonly found in many engineering field, especially in aerospace structures. In many cases these plates are subjected to various harsh environmental conditions during its service life. Thermally induced load is the one which seriously affect the buckling characteristics of the structural components. The study presents the effect of rise in temperature on the thermal buckling characteristics of trapezoidal laminated composite plates with and without cutouts by using finite element technique. In order to model the plate, a 9-noded heterosis plate element has been used by incorporating the effect of shear deformation. By correlating present findings with the available literature, the effectiveness of the present formulation is verified. The computer program FORTRAN language has been developed to investigate the effect of different parameters such as trapezoidal shapes, cutout offsets, plate aspect ratio, ply-orientations, different thickness and plate edge conditions. The influence of each parameter on the thermal buckling behavior is well investigated through this work.
Associação Brasileira de Ciências Mecânicas Av. Rio Branco, 124/14º andar, 20040-001 Rio de Janeiro RJ Brasil, Tel.: (55 21) 2221 0438 - Rio de Janeiro - RJ - Brazil