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Abstract: In this article, we analyse the ontological im-
port of adding classes to set theories. We assume that this
increment is well represented by going from ZF system to
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NBG. We thus consider the standard techniques of reduc-
ing one system to the other. Novak proved that from a
model of ZF we can build a model of NBG (and vice versa),
while Shoenfield have shown that from a proof in NBG of
a set-sentence we can generate a proof in ZF of the same
formula. We argue that the first makes use of a too strong
metatheory. Although meaningful, this symmetrical reduc-
tion does not equate the ontological content of the theories.
The strong metatheory levels the two theories. Moreover,
we will modernize Shoenfield’s proof, emphasizing its rela-
tion to Herbrand’s theorem and that it can only be seen as
a partial type of reduction. In contrast with symmetrical
reductions, we believe that asymmetrical relations are pow-
erful tools for comparing ontological content. In virtue of
this, we prove that there is no interpretation of NBG in ZF,
while NBG trivially interprets ZF. This challenges the stan-
dard view that the two systems have the same ontological
content.

1 How can we compare the ontological content
of different theories?

Within the context of a formal theory, an assertion is
ontologically committing if it expresses a closure prop-
erty of the intended models. For example, the power
set and the union axioms express closure properties in
set theories. If X and Y are elements in our set theory
model, then the axioms guarantee that their union and
ther power sets are also in the model. This property
represents how an axiom generates ontological import.
A detailed analysis of this conception leads to an un-
derstanding of existential aspects in formal theories
(see [4]). But it is of no help if we want to compare
different theories regarding ontology. We propose a
different approach for this kind of comparison: If T1
and T2 are formal theories and T2 can reduce T1 but T1
cannot reduce T2 using a natural method of ontological
reduction given in a metatheory, then the ontological
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content of T2 is greater than that of T1.
Now, what is a natural method of ontological re-

duction? We expect that if T1 reduces T2, then the
consistency of T1 can be proved from the consistency
of T2 in the corresponding metatheory. This and other
related questions are dealt with in [1], which is the
source of the main results in this paper. Nevertheless,
we will not be concerned with this question in its full
generality here, as we will concentrate on methods of
interpretations between first-order theories in a fini-
tary metatheory. More precisely, using the method of
interpretations and the above conception of ontologi-
cal comparison, we prove that the ontological content
of NBG is greater than the ontological content of ZF.
This result goes against the received view according to
which those theories are equivalent.

We will analyze the received view and point out its
insufficiencies. It is based on the folklore conservativ-
ity result: NBG is conservative with respect to ZF. A
detailed finitary proof of this result will be provided,
as there is basically no modern proof for this in the lit-
erature. We will argue that the ontological reduction
operating here is not conclusive, for the corresponding
reduction method is partial. Hence, it is not clear if
it gives a right transposition of the ontology. Also,
it is always possible to strengthen the metatheory and
weaken the reduction method in order to trivialize the
comparison.

Therefore, for the equivalence claim, it is not enough
to have one mutual comparison according to some re-
duction method in some metatheory. In the opposite
direction, it is very significant to have an asymmetric
comparison by a standard method of reduction, and
this result will be proved subsequently, together with
other related results. The absence of interpretation
from NBG to ZF thus understood is a strong evidence
for the thesis that the ontological content of the former
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surpasses that of the latter.

2 Novak’s model-theoretic reduction of NBG to
ZF

From every model of ZF, a model of NBG can be ob-
tained by the addition of definable proper classes. This
construction has the important feature that the result-
ing model has the same sets as the original model.
Therefore, the following reduction of NBG to ZF is
obtained: Assume that α is a ZF-sentence and that
NBG ` α. Let M be a model of ZF, and let N be
the model of NBG obtained from M by the addition
of the definable proper classes. Since NBG ` α, it fol-
lows that N |= α. However, if N |= α, then M |= α,
for α is a ZF-sentence – it is about sets only – andM
and N have the same sets. Now, the completeness the-
orem gives that ZF ` α, forM is an arbitrary model
of ZF.

The above reduction gives, in particular, a model-
theoretic proof that if ZF is consistent, so is NBG.
However, a bolder philosophical conclusion from this is
that the ontological content of NBG is already present
in ZF, as it can be easily fulfilled by the definable
classes lurking in models of ZF. We claim that the
bolder conclusion is unwarranted. The problem is that
the metatheory in which the reduction takes place is
too strong and the difference may be obliterated by
its excessive strength. To make the point clear, as-
sume that we were interested in comparing theories T1
and T2 in a metatheory which happens to be strong
enough to prove the consistency of both theories. The
equivalence between the consistency of T1 and that of
T2 is, therefore, valid in such a metatheory, but no
ontological comparison can be drawn.

From a proof of equiconsistency in some metathe-
ory, one cannot conclude ontological equivalence. How-
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ever, there is another reduction of NBG to ZF pro-
viding a finitary equiconsistency result due to Shoen-
field. Although the above argument does not apply
to Shoenfield’s reduction, which takes place in a fini-
tary metatheory, we still claim that the bolder con-
clusion that the ontological content of NBG is already
present in ZF is unwarranted. The problem is within
the reduction method itself: It does not provide a re-
duction of the quantification over class variables, which
gives NBG its extra ontological content, but rather just
shows that the quantificational reasoning with class
variables in NBG is dispensable and can be avoided
in proofs of ZF-sentences. Therefore, there is no real
reduction taking place here, there is no transposition
of ontology, and the ontological equivalence does not
follow. Shoenfield’s proof will be given in the next sec-
tion and meticulously analyzed to support our claim.

3 Shoenfield’s finitary reduction

The finitary proof of equiconsistency between NBG
and ZF was provided by Shoenfield in the article "A
relative consistency proof" ([9]). This article is written
in the language of Principia Mathematica by White-
head and Russell, and makes extensive use of the tech-
niques developed in Grundlagen der Mathematik by
Hilbert and Bernays. For this reason, we have de-
veloped this section by an excavation, a reverse en-
gineering, in which the tools used were unraveled by
the clues left in the article. In addition, changing the
axiomatic system (see [7]) poses several additional dif-
ficulties and, in many instances, the proof changes sig-
nificantly.

We will expose here the technique used for the equicon-
sistency proof. Before doing that, however, we need to
remember the finitary proof technique of Herbrand’s
theorem. For this, we will go through the necessary
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definitions, then we will enunciate Hilbert-Ackermann’s
theorem and, finally, the necessary part of the strategy
for establishing Herbrand’s theorem.

Definition 1 A formula α is open if all variables oc-
curring in the formula are free.

Definition 2 A theory T is open if all its axioms are
open formulas.

Definition 3 α is a quasi-tautology if, and only if, α
is tautological consequence of instances of identity and
equality axioms.

Theorem 4 (Hilbert-Ackermann) A open theory T is
inconsistent if, and only if, there is a quasi-tautology
α of the form ¬β1 ∨¬β2 ∨ . . .∨¬βk, such that βi is an
instance of some axiom in T for each i ≤ k.

The finitary proof of this theorem can be found in
[5, p. 48 - 52]. It is important to bear in mind this
theorem since it is equivalent to the existential case of
Herbrand’s theorem.

Definition 5 Let Q be a quantifier ∀ or ∃, then a
prenex formula is of the form:

Qx1Qx2 . . . Qxnθ,

being θ a open formula.
We call θ the matrix of Qx1Qx2 . . . Qxnθ.

We can write the prenex form, without loss in gen-
erality, with explicit quantifiers ∀ e ∃, instead of using
the Q. The general formula is of the form:

∃z1∀y1 . . . ∃zk∀yk θ[x, z1, y1, . . . , zk, yk],

being x the sequence of free variables in the matrix θ.
Using this notation will simplify the proof, since each
quantifier ∀ and ∃ is treated differently.
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Definition 6 A formula α is existential when α is a
prenex formula of the form ∃x1∃x2 . . . ∃xnθ, being θ an
open formula.

From prenex formulas, we have the following theo-
rem:

Theorem 7 For any formula α, there is a α′, such
that:

1. α′ is a prenex formula;

2. ` α↔ α′;

3. α′ is obtained by a primitive recursive procedure;

We call α′ the prenex form of α.

Next we will expose Herbrand’s normal form. It can
be understood as the representation of any formula by
an existential formula through a procedure of elimina-
tion of universal quantifiers. Such elimination is due
to the introduction of function symbols in language.

Definition 8 (Herbrand’s normal form) Let α be any
formula, we build αH through the following procedure:

1. α0 is the prenex form of α;

2. If αi is an existential formula, then αH is αi;

3. If αi if of the form ∃x1∃x2 . . . ∃xn∀yγ, we intro-
duce a function symbol f , such that:

αi+1 é ∃x1∃x2 . . . ∃xnγy(f(x1, x2, . . . , xn)).

If αi is of the form ∀yγ, we introduce a constant
symbol c, such that:

αi+1 é γy(c);

We can represent Herbrand’s normal form of a prenex
formula
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∃z1∀y1 . . . ∃zk∀yk θ[x, z1, y1, . . . , zk, yk],

for

∃z1 . . . ∃zk θ[x, z1, f1(z1), . . . , zk, fk(z1, . . . , zk)].

.

Theorem 9 (Herbrand) Let T be a theory without non
logical axioms in the language L. Then, for any prenex
formula α in L, it holds that:
T ` α in the language L ⇐⇒ there is a quasi-
tautology β1 ∨ β2 . . . ∨ βk, for which, for each i, βi
is an instance of the matrix αH .

Proof. (Detailed strategy) The procedure for prov-
ing Herbrand’s theorem follows the steps:

1. If α is an existential formula, the theorem is a
corollary of Hilbert-Ackermann’s theorem:

We suppose that α is of the form ∃x1∃x2 . . . ∃xnβ,
with β as an open formula. In this case, ¬α is
logically equivalent to ∀x1∀x2 . . . ∀xn¬β. Thus,
T ` ¬α↔ ¬β.

Because of that, T ` α ⇐⇒ the theory {¬β} is
inconsistent. By the Hilbert-Ackermann’s theo-
rem, for {¬β} is a open theory,

{¬β} is inconsistent ⇐⇒ there is a quasi-
tautology ¬(¬β1) ∨ ¬(¬β2) ∨ . . . ∨ ¬(¬β1), with
βi an instance of β for all i.

But this is equivalent to β1 ∨ β2 ∨ . . .∨ β1, final-
izing the proof.

2. We take, for the general case, a prenex formula
α in the language L

∃z1∀y1 . . . ∃zk∀yk θ[x, z1, y1, . . . , zk, yk].
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3. Let LH be the language L extended with func-
tions used to built αH and TH the theory with-
out logical axioms in the language LH , we should
prove that:

T ` α ⇐⇒ TH ` αH .

4. Since αH is an existential formula, we obtain a
quasi-tautology for the extended language LH.
Hence,

T ` α ⇐⇒ TH ` αH if, and only if,
there is a quasi-tautology with instances of αH .

For this reason, the proof of item 3 finish the
proof.

5. To prove item 3, we only show the strategy for
the converse implication, that is, T ` α⇐ T ′ `
αH , since the direct proof is relatively simple.

6. Let Tc be the Henkin extension of T , defined in
[5, p. 46], and Tc+eq be the addition of equiva-
lence axioms1 of Herbrand [5, p. 52] in Tc, we
show that:

(a) Tc is a conservative extension of T .
(b) Tc+eq is a conservative extension of Tc

These two fact will be important to the following
steps.

7. We suppose that there is a quasi-tautology β1 ∨
β2 . . .∨βq in LH, with βi being a instance of the
matrix αH . We now do a procedure of replace-
ment of functions introduced for αH by constants
in Lc. More specifically, if αH is of the form

1If c1 and c2 are special constant for the formulas ∃xα1(x)
and ∃xα2(x), then the equivalence axiom for these constants is
∀x(α1(x) ↔ α2(x)) → c1 = c2.
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θ[x, z1, f1(z1), . . . , zk, fk(z1, . . . , zk)]

and βi if of the form

θ[t, u1, f1(u1), . . . , uk, fk(u1, . . . , uk)],

we define the sequence of special constants d(u1),
d(u1, u2), . . . , d(u1, . . . , uk) for eliminating the
functions in the following manner:

Notation 10 .

(a) z i→ is a sequence of terms of the sequence
z from the index i onward;

(b) z i→j is a sequence of terms of z from the
index i up to the index j;

(c) (z)i is the i’th term in the sequence z;

The constant (d(u1))i is a special constant for
the formula

∃(y1)i(¬∀y1
(i+1)→∃z2∀y2 . . . ∃zk∀yk

θ[t, u1,d(u1)
1→(i−1)

, f1(z1)
i→
, ∗]), (1)

begin ∗ a abbreviation that indicates the remain-
ing sequence
u2, f2(u1), . . . , uk, fk(u1, . . . , uk).

And, generally, (d(u1, u2, . . . , ui))j is a special
constant for the formula

∃(yi)j(¬∀yi
(j+1)→∃zi+1∀yi+1 . . . ∃zk∀yk

θ[t, ∗,d(u1, . . . , ui)
1→(j−1)

, f1(zi)
j→

, ∗]).
(2)

By successively applying the substitution axiom
and modus ponens, we have that, se β′i is the
formula
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θ[t, u1, d1(u1), . . . , uk, dk(u1, . . . , uk)],

then `Tc+eq β
′
i → α.

8. Note that variables can occur in u. However, to
ensure the use of the equivalence axiom proper-
ties in Tc+eq, we need all variables to be replaced
by special constants. This will be necessary for
the completion of the proof.

So we make a second transformation in the quasi-
tautology. Here equivalence axioms play an im-
portant role: they ensure that any two equiva-
lent formulas refer to a single constant 2. With
the addition of only the special axioms, we do
not have this guarantee, since we could have two
distinct elements satisfying the same formula of
the form ∃xα.
We introduce distinct special constants for each
variable in u, obtaining u′. Subsequently, we
prove, using the special equivalence axioms, that

`Tc+equ1 = u1
′ → d(u1) = d(u1′)

`Tc+equ1 = u1
′ ∧ u2 = u2

′ → d(u1, u2) = d(u1′, u2′)

...
`Tc+equ1 = u1

′ ∧ uk = uk
′ →

d(u1, . . . , uk) = d(u1′, . . . , uk
′)

9. We use a similar procedure as in [5, p. 55] to
obtain a formula β′′1 ∨ β′′2 . . . ∨ β′′q , being β′′i the

2Realizing this characteristic was instrumental in establish-
ing the relationship between the techniques used in [9] and the
techniques presented in the book Grundlagen der Mathematik
[10]. In this paper, prior to his textbook of mathematical logic
[5], Shoenfield makes use of epsilon Hilbert’s calculus as a way
of guaranteeing the uniqueness of the special constants. Mod-
ern techniques make the conservative introduction of equivalence
axioms.
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replacement of the functions and variables in-
troduced by the special constants shown above.
Recall that the second transformation ensure us
that `Tc+eq β

′′
i → α by the same procedure as in

item 7.

We suppose C1, C2, . . . , Cm to be the proof se-
quence for the quasi-tautology that uses only
identity and equality in T . Thus we prove that
the transformation that have led β1 ∨ β2 . . .∨ βk
to become β′′1 ∨ β′′2 . . . ∨ β′′k preserves tautologi-
cally the sequence. Therefore, β′′1 ∨ β′′2 . . .∨ β′′k is
tautological consequence of C ′′1 , C ′′2 , . . . , C ′′m.

It remains to prove that each C ′′i is a theorem of
Tc+eq, when Ci is an axiom of T . This will result
in the proof of β′′1 ∨ β′′2 . . . ∨ β′′k in Tc+eq. Each
Ci is an axiom of identity, equality, an instance
of identity or an instance of equality. We note
that, when we get C ′′i , we have transformed Ci
into axioms of identity or equality, unless Ci is
an instance of identity. This last case, though,
is easily proved in Tc+eq from the propositions
shown in the end of last item.

10. As Tc+eq ` β′′1 ∨ β′′2 . . . ∨ β′′k and Tc+eq ` β′′i → α
for each i, then Tc+eq ` α.

11. Since Tc+eq is a conservative extension of the
logic in L, we lastly obtain that T ` α.

�

3.1 Finitary proof of equiconsistency

In order to understand the finitary proof, it is impor-
tant to consider procedures 7 and 8 of the previous
section. In them, syntactic transformations are per-
formed to provide the formulas β′′i , eliminating the
functions introduced to obtain the Herbrand’s normal
formula.
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Each introduction of a function to eliminate a uni-
versal quantification is performed independently of the
other introductions. In this sense, we can restrict
the elimination procedure to certain universal quan-
tifications. In fact, we can eliminate one, some or all
functions introduced to obtain the Herbrand’s normal
form.

For the proof of the equiconsistency theorem, we
will use the direct part of Herbrand’s theorem to obtain
the quasi-tautology. Subsequently, we will make the
procedure of the converse proof of Herbrand’s theorem
restricted to the variables limited to sets.

Before performing this procedure, we will eliminate
all universal quantifications that are not restricted to
sets in the NBG axioms. We will therefore prove that
unrestricted universal quantifications are easily elimi-
nated from the axiomatization presented.

Proposition 11 (Extensionality)

` (∀z ∈ V (z ∈ x↔ z ∈ y)→ x = y)↔

(∀x∀y(∀z(z ∈ x↔ z ∈ y)→ x = y)).

Proof. By substitution, we have

Σ =def ∀x∀y(∀z(z ∈ x↔ z ∈ y)→ x = y)

{Σ} ` ∀z(z ∈ x↔ z ∈ y)→ x = y.

And, by generalization,

Π =def ∀z(z ∈ x↔ z ∈ y)→ x = y

{Π} ` ∀x∀y(∀z(z ∈ x↔ z ∈ y)→ x = y)

We should now prove that

` Π↔ (∀z ∈ V (z ∈ x↔ z ∈ y)→ x = y),

We know that (α→ β∧¬α→ β)→ θ is tautologically
equivalent to β → θ. Thus, ∀z(z ∈ x↔ z ∈ y)→ x =

Manuscrito – Rev. Int. Fil. Campinas, v. 42, n. 2, pp.
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y is tautologically equivalent to (∀z ∈ V (z ∈ x↔ z ∈
y) ∧ ∀z /∈ V (z ∈ x ↔ z ∈ y)) → x = y. Nevertheless,
since we know that, by definition, z ∈ V ↔ ∃w(z ∈ w),
then z /∈ V is equivalent to ∀w(z /∈ w). From this, we
have that ∀z /∈ V (z ∈ x ↔ z ∈ y) is a tautology. We
thus obtain:

∀z(z ∈ x↔ z ∈ y)→ x = y

If, and only if,

(∀z ∈ V (z ∈ x↔ z ∈ y)∧∀z /∈ V (z ∈ x↔ z ∈ y))→ x = y

If, and only if,

∀z ∈ V (z ∈ x↔ z ∈ y)→ x = y

�
Note that we can use a similar procedure to limit

other quantifications to sets, whenever we have a uni-
versal quantifier ∀z for a formula in which z ∈ x oc-
curs. Although this technique does not work in all
cases, for the axiomatization of NBG used in this arti-
cle the procedure is effective. We will not expose here
the corresponding proof for each axiom, for they are
all very similar. In this sense, we have the following
theorem:

Theorem 12 Let α be an axiom of NBG, then there is
a formula α′ such that α′ is the elimination or restric-
tion (to V ) of all universal quantifications occurring in
α and ` α′ ↔ α.

We modify NBG yet one more time. The unre-
stricted existential quantifiers can be eliminated from
instances of the scheme axiom for classes. We add, for
each instance ∀v ∈ V ∃z∀x(x ∈ z ↔ (x ∈ V ∧α(x, v))),
the constant cα and replace the axiom for ∀v ∈ V ∀x ∈
V (x ∈ cα ↔ (x ∈ V ∧ α(x, v))). Subsequently, we re-
place all other axiom of NBG by the version obtained
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by the successive application of the theorem 12. We
call the resulting theory U .

We should prove the following theorem:

Theorem 13 For every formula γ, if NBG ` γ, then
U ` γ.

Proof. In order to proof this theorem, we should
just treat the case in which γ is the scheme axiom for
classes. From this and from theorem 12, we obtain
easily that U proves all other axioms of NBG.

We take a formula α with n free variables and in
which all quantifications are bouded to V . We then
prove that

U ` ∀v ∈ V ∃z∀x(x ∈ z ↔ (x ∈ V ∧ α(x, v))) (3)

(We call this formula θ).
By replacement and generalization, we can elimi-

nate the universal quantifications from the scheme ax-
iom for classes. Thus we have U ` θ if, and only if,

U ` (v ∈ V )→ ∃z∀x(x ∈ z ↔ (x ∈ V ∧α(x, v))). (4)

Since x and z do not occur in the left side of the im-
plication, then U ` θ if, and only if,

U ` ∃z∀x((v ∈ V )

→ (x ∈ z ↔ (x ∈ V ∧ α(x, v)))).
(5)

Let θ′ be the formula

∀v ∈ V ∀x ∈ V (x ∈ cα ↔ (x ∈ V ∧ α(x, v))).

We now eliminate the quantifiers of θ′, obtaining

U ` ∀x((v ∈ V )→ (x ∈ cα ↔ (x ∈ V ∧ α(x, v)))).

Thus, by replacement and modus ponens,

U ` ∃z∀x((v ∈ V )→ (x ∈ z ↔ (x ∈ V ∧ α(x, v)))).

Manuscrito – Rev. Int. Fil. Campinas, v. 42, n. 2, pp.
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Therefore, U ` θ. �
We continue by proving the lemma:

Lemma 14 Let α be a sentence without variables for
classes.
If α is a theorem of U , then there is a proof of α in U
that is free of unrestricted quantifications.

Proof.
By hypothesis, we have a proof of α in U . Let γ [x]

be the conjunction of axioms used in the given proof,
in which x is the sequence of variables for classes that
occur in the axioms. In this case, be the reduction
theorem [5, p. 42]:

T ` ∀xγ[x]→ α,

or, equivalently,

T ` ∃x(γ[x]→ α), for x does not occur in α,

in which T is the theory without non logical axioms in
the language of U .

Let θ[x] be a prenex form of γ[x]→ α. The formula
θ[x] is of the form

∃z1∀y1...∃zk∀ykβ[x, z1, y1, ..., zk, yk].

From Herbrand’s theorem provability equivalence,

T ` ∃xθ[x]

if, and only if,

TH ` ∃x∃z1...∃zkβ[x, z1, f1(x, z1), ..., zk, fk(x, z1, ..., zk)],

in which TH is the theory obtained by the addition of
function symbols in T , according to Herbrand’s normal
form ∃xθ[x].

Let β′ be a open formula

β[x, z1, f1(x, z1), ..., zk, fk(x, z1, ..., zk)].

Manuscrito – Rev. Int. Fil. Campinas, v. 42, n. 2, pp.
85-112, Abr.-Jun. 2019.



The Ontological Import of Adding Proper Classes 101

By Herbrand’s theorem, there is a quasi-tautology
β′1 ∨ ... ∨ β′m, in which each β′i is an instance of β′ in
the language of TH .

Let’s build the appropriate proof of α in Uc+eq, ob-
tained from U by the addition of special constants,
special axioms and special axioms of equivalence.

From start, we replace each free variaable in β′1∨...∨
β′m for special constants. The result is a disjunction of
m sentences that are quasi-tautological in Uc+eq. This
quasi-tautology is the starting point of the proof of α
in Uc+eq.

Subsequently, we replace the occurences of f1(a, b1),
. . . , fk(a, b1, ..., bk) for sequences of appropriate special
constants. For this, we follow the items 7 and 8 in the
proof of Herbrand’s theorem.

The result is the disjunction β′1c ∨ ... ∨ β′mc, tauto-
logical consequence of instances of identity, equality,
special axioms and special equivalence axioms, having
quantifications only for the variables z1, y1, ..., zk, yk.

Let θic be the formula

∃z1∀y1...∃zk∀ykβ[ti, z1, y1, ..., zk, yk],

obtained from βic by the restating the quantifications
∃z1∀y1...∃zk∀yk. The closed terms in ti are in Uc+eq.

Each disjunction θic implies the corresponding β′ic
in Uc+eq, as we have seen in the first paragraph of item
9 in Herbrand’s theorem proof. To show this, we use
only simple properties of implication, of the quantifiers
∃z1...∃zk and the special axioms used in the replace-
ment of the occurrences f1(a, b1),...,fk(a, b1, ..., bk) de-
scribed above. From what we have exposed, it follows
that

Uc+eq ` θ1c ∨ ... ∨ θmc,

without using quantifications over classes.
However, since θ[x] is a prenex form of γ[x] → α,

we have
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Uc+eq ` θ[x]↔ (γ[x]→ α),

using only variations of quantifications that occur in
γ[x] → α. Therefore, no quantification for class vari-
ables. On the other hand, by the rule of substitution,

Uc+eq ` θ[ti]↔ (γ[ti]→ α).

As θ[ti] é θic, we conclude, using tautological con-
sequence, that

Uc+eq ` γ[t1] ∧ ... ∧ γ[tm]→ α,

without using quantification for class variables.
On the other hand, γ[x] is the conjunction of axioms

in Uc+eq. Each γ[t1] can be proved in Uc+eq using only
tautological consequences and instances of the substi-
tution rule. Therefore,

Uc+eq ` α,

without using quantification for class variables.
Finally, we observe that any proof of α of U in

Uc+eq can be transformed in a proof in U of the same
α, and that this transformation introduces only quan-
tifications directly related to the special axioms used
[5, p. 52]. Since we haven’t used special axioms for
class variables, the result follows.

�
From this result, we prove by finitary means the

equiconsistency result:

Theorem 15 Let α be a sentence with all its quanti-
fiers bounded to sets and such that NBG ` α. Then,
ZF ` α.

Proof. Let α be a sentence with all its quantifiers
bounded to sets and such that NBG ` α. Thus, by
lemma 14, there is a proof in U in which no unbounded
quantifications occur. We call this proof sequence Seq.
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We make transformations in this proof sequence
that preserve tautological consequences, do not affect
α and such that the transformed axioms are theorems
of ZF.

Let x1, x2, . . . , xk be the free variables that occur in
Seq. We add the following initial segment to the proof
sequence x1 ∈ V, x2 ∈ V, . . . , xk ∈ V , obtaining Seq∗1 .

Next, we apply the transformation ∗ZF in the for-
mulas in Seq∗1 .

Every occurrence

1. cθ = cα, are replaced by ∀y ∈ V (y ∈ cθ ↔ y ∈
cα)

2. cθ ∈ x, are replaced by ∃y ∈ V (y = cθ ∧ y ∈ x)

3. cθ ∈ cα, are replaced by ∃y ∈ V (y = cθ ∧ y ∈ cα)

4. x = cα, are replaced by ∀y ∈ V (y ∈ x↔ y ∈ cα)

5. x ∈ cθ, are replaced by θ(x)

The successive application of this transformation
to Seq∗1 eliminate all occurrences of cθ, forming the
sequence Seq∗2 .

Recall that, for each logical axiom Axiomj in Seq∗1 ,
we should verify whether Axiom∗ZF

j is also a logical
axiom or a consequence of ZF together with formulas
x1 ∈ V, x2 ∈ V, . . . , xk ∈ V . In the second case, we
replace each axiom Axiom∗ZF

j in Seq∗2 by the proof
sequence of Axiom∗ZF

j . Hence, we obtain Seq∗3 .
We know the following proposition about functors

[5, p. 30]:

Proposition 16 A functor ∗ of formulas to formulas
satisfies for every formula α and β:

1. (¬α)∗ é ¬α∗

2. (α ∨ β)∗ é α∗ ∨ β∗
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Thus, if δ is tautological consequence of γ1, γ2, . . . , γn,
then δ∗ is tautological consequence of γ∗1 , γ

∗
2 , . . . , γ

∗
n.

Therefore, all transformations described above do
not affect the proof tautologically. However, some in-
stances of the logical axioms may not be logical axioms
after the transformation. We now investigate what
happen with logical axioms in which constants of U
occur.

1. Substitution axiom

There is no instance of the substitution θx(c)→
∃xθ in Seq∗1 since unrestricted quantifications
do not occur in the initial proof in U .

2. Identity axiom

Note that (cα = cα)∗
ZF is ∀y ∈ V (α(y)↔ α(y)).

And this last one is a tautology.

3. Equality axiom

(a) If the axiom is of the form x1 = cα ∧ x2 =
y2 → x1 ∈ x2 ↔ cα ∈ y2, then, after the
transformation:

(∀z ∈ V (z ∈ x1 ↔ α(z)) ∧ x2 = y2)→
(x1 ∈ x2 ↔
∃w ∈ V (∀z ∈ V (z ∈ w ↔ α(z)) ∧ w ∈ y2))

We show that this formula is theorem of ZF
and of the formulas x1 ∈ V, x2 ∈ V, . . . , xk ∈
V .
If we have that ∀z ∈ V (z ∈ x1 ↔ α(z)) ∧
x2 = y2 and we suppose that x1 ∈ x2, the,
by corollary 2 of the identity theorem in [5,
p. 36], we obtain

∀z ∈ V (z ∈ x1 ↔ α(z)) ∧ x1 ∈ y2.
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Then, by the substitution axiom in e x1 ∈
V ,

∃x1 ∈ V (∀z ∈ V (z ∈ x1 ↔ α(z))∧x1 ∈ y2).

Using the variant theorem [5, p. 35],

∃w ∈ V (∀z ∈ V (z ∈ w ↔ α(z)) ∧ w ∈ y2).

On the other hand, if we suppose that ∃w ∈
V (∀z ∈ V (z ∈ w ↔ α(z)) ∧ w ∈ y2), then,
since ∀z ∈ V (z ∈ x1 ↔ α(z)) and by exten-
sionality in ZF, we prove that ∃w ∈ V (w =
x1∧w ∈ y2). Hence, we obtain that x1 ∈ y2.
As, from hypothesis, x2 = y2, we conclude
that x1 ∈ x2, finalizing the proof.

(b) x1 = y1 ∧ cα = y2 → x1 ∈ cα ↔ y1 ∈ y2.
The strategy for item b is similar to item a.

(c) x1 = y1 ∧ cα = cβ → x1 ∈ cα ↔ y1 ∈ cβ .
For this case, we obtain from the transfor-
mation:
x1 = y1∧∀z ∈ V (α(z)↔ β(z))→ α(x1)↔
β(y1).
As x1 and y1 are free variables in the for-
mula, the transformed formula is tautolog-
ical consequence of ∀x1 ∈ V ∀x2 ∈ V and
instances of identity axioms.

(d) cβ = cα ∧ cγ = y2 → cβ ∈ cγ ↔ cα ∈ y2.
(e) cβ = cα ∧ x2 = y2 → cβ ∈ x2 ↔ cα ∈ y2.
(f) cβ = cα ∧ cγ = cψ → cβ ∈ cγ ↔ cα ∈ cψ.

We prove items d, e and f by a simple combina-
tion of the strategies used in a and c.

Let’s now evaluate what occur to the aximos in U
after the transformation ∗ZF :

The instances of extensionality, scheme for classes,
replacement for classes and foundations are the only
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ones we affect by applying ∗ZF (only in those axioms
constants of U occur).

1. Extensionality. We evaluate two cases:

∀y ∈ V (y ∈ x↔ y ∈ cθ)→ x = cθ.

∀y ∈ V (y ∈ cα ↔ y ∈ cθ)→ cα = cθ.

After ∗ZF , we have respectively

∀y ∈ V (y ∈ x↔ θ(x))→ ∀y ∈ V (y ∈ x↔ θ(x))

∀y ∈ V (α(x)↔ θ(x))→ ∀y ∈ V (α(x)↔ θ(x)).

Both are tautologies.

2. Scheme for classes. Let v1, v2, . . . , vn be free
variables occurring in θ

∀v1v2 . . . vn ∈ V ∀y ∈ V (y ∈ cθ ↔ θ(y))

After ∗ZF , we have

∀v1v2 . . . vn ∈ V ∀y ∈ V (θ(y)↔ θ(y))

And this is a tautology.

3. Replacement for classes.

∀x ∈ V (func(cθ) → ∃y ∈ V ∀w(w ∈ y ↔ ∃v ∈
x((v, w) ∈ cθ)))
becomes

∀x ∈ V (∀v1v2v3 ∈ V (θ(v1, v2)∧ θ(v1, v3)→ v2 =
v3)→ ∃y ∈ V ∀w1(w1 ∈ y ↔ ∃w2 ∈ x(θ(w2, w1))))

Which is precisely the replacement axiom for ZF.

4. Foundation.

(cθ 6= ∅ → ∃y ∈ V (y ∈ cθ → cθ ∩ y = ∅))
becomes

∃x ∈ V θ(x) → ∃y ∈ V (θ(y) → ∀w(w /∈ y ∨
¬θ(w)));

We suppose ∃x ∈ V θ(x). Then ` ∃x(x ∈ Va ∧
θ(x)), for some ordinal a. Let A = {x|x ∈ Va ∧
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θ(x)}, it follows that ZF ` A 6= ∅. By the axiom
of foundation, ∃y(y ∈ A→ A ∩ y = ∅).
This is equivalent to

∃y(θ(y)∧y ∈ Va → ∀w¬(w ∈ y∧θ(w)∧w ∈ Va))
(as w ∈ y → w ∈ Va)

∃y(θ(y) ∧ y ∈ Va → ∀w¬(w ∈ y ∧ θ(w)))

That is, the formula is a theorem of ZF.

When axioms of U occur without constants, they
can be understood as axioms of ZF, since we have
added the formulas xi ∈ V .

1. Extensionality ∀y ∈ V (y ∈ x ↔ y ∈ z) → x =
z, since we have x ∈ V and z ∈ V , represents
extensionality in ZF.

2. The same is true for the axiom of replacement
and foundation.

3. The axiom scheme for classes do not occur with-
out constants in U .

Therefore, in the sequence Seq∗3 , we have:

1. formulas of the form x ∈ V ,

2. logical axioms,

3. axioms of ZF,

4. and all others are consequence of logical infer-
ences from previous formulas in the sequence.

This is a proof in ZF. Since no transformation affect
α, we have proved that ZF ` α.

�
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Corollary 17 If there is α such that NBG ` α∧¬α,
then there is a procedure that generate β such that
ZF ` β ∧ ¬β.

Proof. If NBG ` α ∧ ¬α, then NBG proves
any formula. In particular, it proves a formula β¬β in
which all quantifications are bounded to sets. Thus,
by the theorem, ZF ` β ∧ ¬β. �

4 There is no interpretation of NBG in ZF

Before we prove there is no interpretation os NBG in
ZF, we show some definitions as propositions:

Definition 18 Let V be a model of ZF and M a class
V -definable, we say that the modelM = (M,∈V ) is a
V -natural model.

Definition 19 LetM be a model in the language LZF
(the only non logical symbol is membership) and an
interpretation I = 〈U, φ〉 of LZF in LZF (we write ∈I
for φ(∈)), then we define the model MI = (A,∈IM)
em L as

A = {x | M � U(x)} and

∈IM= {〈x, y〉 | M � U(x) ∧ U(y)→ x ∈I y}

From this definition, we can easily prove by induc-
tion that:

Proposition 20 Let M be a model in LZF and I =
〈U,∈I〉 be an interpretation of LZF in LZF , then, for
all sentences α

M � αI ⇐⇒ MI � α

The following proposition is a strengthening of a
result in [11]. They show that if the existence of a
transitive model of ZF is consistent with ZF, then there
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cannot be a set-interpretation of ZF in ZF. Here, we
replace that consistency condition for “ZF does not
prove the inconsistent sentence for ZF itself”.

Proposition 21 Let I = 〈U,∈I〉 be an interpretation
of ZF in ZF, if ZF ` {x | U(x)} is a set, then ZF `
¬Con(ZF ).

Proof. Take I as in the proposition and suppose
ZF ` {x | U(x)} is a set.

Let pαq be the Gödel number of the formula α rep-
resented in ZF. SinceMI is a set for everyM � ZF ,
we define recursively the set T for eachM � ZF :

Notation 22 a([k] = b) is the replacement of the k’th
element of the sequence a for b.

〈pαq, a〉 ∈ T if, and only if, a ∈M I and

(1) if α if atomic of the form xi ∈ xj , 〈ai, aj〉 ∈ (∈MI
)

(2) if α is of the form β ∧ γ : 〈pβq, a〉 ∈ T and 〈pγq, a〉 ∈ T
(3) if α is of the form ¬β : 〈pβq, a〉 /∈ T
(4) if α is of the form ¬∃xkβ : 〈pβq, a([k] = b)〉 ∈ T
for some b ∈M I

By finite induction over the formula complexity, we
prove that

M � 〈pϕq, a〉 ∈ T if, and only if,MI � ϕ(a)

Take PrZF (x, y) to be the provability predicate for
ZF defined in ZF and representing the statement “x
is the number of the proof y”. Then, we say that
Th(ZF ) = {y | ∃xPrZF (x, y)}. Hence, since MI �
ZF ,M � Th(ZF ) ⊆ T . AsMI 2 ∅ ∈ ∅, we have p∅ ∈
∅q /∈ T . From this, we obtainM � p∅ ∈ ∅q /∈ Th(ZF ).
Once M is arbitrary, by the completeness theorem,
if ZF has a model, then ZF ` p∅ ∈ ∅q /∈ Th(ZF ).
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This is an absurd by Gödel’s incompleteness theorem.
Thus, ZF ` ¬Con(ZF ).

�

Definition 23 Let V be a model of ZF and M a V -
natural model. We say that M reflect a formula ϕ(x)
if, and only if, for every a ∈M

V � ϕ(a) ⇐⇒ M � ϕ(a)

Theorem 24 [Reflection theorem] [6, p. 168] Let V
be a model of ZF e and φ1, φ2, . . . , φn any sequence of
formulas, then, there is an ordinal a such that M =
(Va,∈) reflect φi for i between 1 and n.

We show that the desired result is a consequence of
the reflection theorem and the fact that NBG is finitely
axiomatizable:

Theorem 25 There is no interpretation of NBG in
ZF.

Proof.
Suppose there is an interpretation I of NBG in ZF.
Since the number of axioms in NBG can be said to

be finite, there is a formula α that is equivalent to the
conjunction of all NBG’s axioms:

α is Axiom1 ∧Axiom2 ∧ . . . ∧Axiomn.

Thus, NBG ` α and, from the interpretation theorem
for first-order logic, ZF ` αI .

Suppose V � ZF , then V � αI . By the reflection
theorem, there is an ordinal a such that Va � αI . It
follows that V I

a � α.
Since Va is a set, we obtain that the domain in V I

a

is also a set.
We define the model V ∗ in LZF :

1. The domain D in V ∗ is such that D = {x | V I
a �

∃y(x ∈ y)}.
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2. The predicate ∈V ∗= {〈x, y〉 | V I
a � x ∈ y}.

Since NBG proves the restriction to sets of all ZF
axioms, we have that V ∗ � ZF . Since the domain
V I
a is a set, it follows that D is also a set. It means

that ZF ` Con(ZF ), absurd by the incompleteness
theorem.

�
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