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Abstract: Counterfactuals have become an important area 
of interdisciplinary interest, especially in logic, philosophy of 
language, epistemology, metaphysics, psychology, decision 
theory, and even artificial intelligence. In this study, we 
propose a new form of analysis for counterfactuals: analysis 
by algorithmic complexity. Inspired by Lewis-Stalnaker's 
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Possible Worlds Semantics, the proposed method allows for 
a new interpretation of the debate between David Lewis and 
Robert Stalnaker regarding the Limit and Singularity 
assumptions. Besides other results, we offer a new way to 
answer the problems raised by Goodman and Quine 
regarding vagueness, context-dependence, and the non-
monotonicity of counterfactuals. Engaging in a dialogue with 
literature, this study will seek to bring new insights and tools 
to this debate. We hope our method of analysis can make 
counterfactuals more understandable in an intuitively 
plausible way, and a philosophically justifiable manner, 
aligned with the way we usually think about counterfactual 
propositions and our imaginative reasoning.  
 
 
1. Introduction 
 
A counterfactual expresses something contrary to the fact, 
that is, something that is not the case. Something that didn't 
happen. This linguistic artifact involves our intuitive notion 
that the human mind is capable of conjecturing alternatives 
contrary to what happened. Our imaginative reasoning is 
constantly employed to evaluate what could have happened 
differently (‘If it were this A, then it would be this B’). For 
example, “if I had come home that way, it would have taken 
me less time.” Counterfactuals have been of interest to 
philosophers since the time of Leibniz in the 17th century, 
where the German philosopher proposed the possibility of 
an infinite number of alternative realities [Griffin 1999], that 
is, infinite possible ways in which real-world events could 
have evolved differently.  
In modern literature, counterfactuality is an object of interest 
in several areas:  
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 in social psychology, counterfactual thinking is 
theorized to serve as a behavioral regulator [Epstude 
and Roese 2008];  

 in the cognitive sciences, the imagination of 
alternative realities (rational imagination) is believed 
to be intrinsically linked to rational thinking, the 
formation of rational intentions, and human 
reasoning in general [Byrne 2008; 2016];  

 in the study of decision making, an extremely 
interdisciplinary area of research, various proposals 
of Decision Theory correspond to different ways of 
formalizing counterfactual reasoning [Roese 1999];  

 research in artificial intelligence has a great interest 
in these objects, being important for formalizing 
how autonomous agents can make their decisions 
optimally [Ginsberg 1985; Pearl 1995; Costello and 
McCarthy 1999; Bottou et al 2013]. 
 

Similarly, the literature involving formal semantics, 
philosophy of language, logic, epistemology, and 
metaphysics has various interpretations of how 
counterfactuals should be understood and analyzed, 
something that makes these objects a great source of curious 
questions, with many possible interpretations. After all: 
 

 How can we express, in a way that satisfies our 
intuitions, the form we reason and conjecture about 
counterfactual possibilities? 

 
In an attempt to answer this question, we would like to 
propose a different way of thinking about counterfactuals 
and introduce new tools to analyze these objects. This study 
aims at formalizing a similarity function between possible 
worlds to extend the work of David Lewis [1973a], Robert 
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Stalnaker [1968], and Todd William [1964], and their 
Possible Worlds Semantics. We hope to bring in a new 
perspective and thus a new vision for old problems and 
disputes.  
 
 
2. Goodman's problems 
 
The term counterfactual, coined by Nelson Goodman 
[1947], is a more succinct way of expressing a condition contrary 
to facts, popularized by Roderick Chisholm. Counterfactuals, 
within the study of formal language, are a class of conditional 
sentences that allow their speakers to discuss about 
possibilities, such as ‘If it weren't raining now, I would be on 
the beach.’ In this way, we can define counterfactuals as 
necessarily having a false antecedent, as opposed to 
indicative conditionals which may have false or true 
antecedents [Kaufmann 2005]. From this realization, we 
arrive at our first problem, i.e., the vagueness that these 
objects express. 
When dealing with conditional natural language1, statements 

like ‘if 𝑃 then 𝑄’ are true whenever the antecedent 𝑃 is false. 
Since counterfactual statements have precedents that are by 
necessity false, this would imply that all counterfactual 
statements are true, or vaguely true. This impossibility of 
expressing counterfactuals within classical logic has 
prompted philosophers such as Willard van Orman Quine 
[1960; 1982] to claim that counterfactuals are not logical, and 
therefore make neither false nor true statements about the 
real world.  

                                                      
1 Even though conditional natural language statements do not 
necessarily imply a material implication. 
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Goodman [1947] illustrates this point using two well-known 
examples, where both, no matter how much they state 
opposing propositions, would be equally true: 
 

a) If that piece of butter had been heated to 150 , 
it would have melted. 

b) If this piece of butter had been heated to 150 , 
it would not have melted. 

 
The second problem involves the context-dependence of 
counterfactuals. Quine [1960; 1982] states that of the 
following two statements, it is impossible to determine 
which would be truer than the other (reiterating that both 
could not be true at the same time): 
 

c) If Caesar had been in command of Korea, he 
would have used the atomic bomb. 

d) If Caesar had been in command of Korea, he 
would have used catapults. 

 
For Quine, the fact that one cannot define which of the 
propositions would be the true one shows that 
counterfactuals are not connected to real-world states but 
rather to the imagination and purpose of the speaker.  
Finally, counterfactuals are non-monotonic, insofar as their 
truth value can be changed as we add extra material to their 
background. Natural language conditioners cannot possess 
this property, known as the principle of Antecedent 
Strengthening. Goodman [1947] was one of the first to 
report that the non-monotonicity of counterfactuals can turn 
a true counterfactual proposition into a false one, like in this 
example: 
 

e) If I had struck this match, it would have lit. 
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f) If I had struck this match and done so in a room 
without oxygen, it would have lit. 

 
Examples (e) and (f) show that the truth condition of a 
counterfactual depends on assumed facts (presence of 
oxygen), which makes the first example true, and the second 
false. Goodman argues that it is quite difficult to specify all 
the details since numerous factors can be added (wind, rain, 
fake matches, an invisible entity who keeps blowing off the 
flame produced by the speaker). One could say that ‘truer’ 
counterfactuals are those that respect the laws of physics of 
our universe (or the universe of the speaker). For Goodman, 
to adequately specify all the background factors, together 
with all relevant physical laws, would be quite complex in 
non-counterfactual semantic terms. 
However, instead of thinking of these points as problems, 
we can define them as the very characteristics that define 
counterfactuals: 
 

 Vagueness: counterfactuals are not apt for true 
statements, being at most vaguely true; 

 Context-Dependence: Counterfactuals have context-
sensitive truth conditions; 

 Non-monotonicity: Counterfactuals must be 
interpreted in a non-monotonic way. 

Thus, any theory that seeks to analyze and formalize these 
objects must cope with such demands. A popular theory that 
seeks such formalization, however, not without its critics, is 
the Possible world semantics. 
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3. Possible world semantics 
 
The use of modal logic and Kripke's notation allowed 
counterfactuals to be understood within an appropriate 
formal language. However, the use of modal logic to express 
counterfactual conditionals has led to different theories and 
interpretations within the academic community. Currently, 
theorists are divided on how best to formalize and 
understand counterfactuals within the Possible world 
semantics framework. And as we will see, there are still those 
who invalidate it as a method of analysis. 
The Possible world semantics, also known as similarity 
analysis, tries to analyze in a logically valid way counterfactual 
propositions respecting their characteristics, such as 
vagueness, context-dependence, and non-monotonicity. 
One of the main concepts of this method is the concept of 

a possible world. We define as a possible world (𝑤), a way in 
which the real world could have been, being part of a set of 

possible worlds  𝑤 ∈ 𝑊. It is the proximity relation of a 
possible world to the real world that attributes the truth 

condition to a counterfactual statement (𝜙), where 𝜙 can be 

considered true in a possible world  𝑤, provided that certain 
conditions of similarity between the real/present world and 
the possible world are satisfied [Kripke, 1963]. Lewis [1973b] 
proposes that the non-monotonic characteristic of 
counterfactuals can be formalized within the similarity 
analysis through a system of possible worlds nested by 
similarity. Think of a sphere, with several other concentric 

spheres around it, the central one (𝑤𝑜) being a singleton 
containing the actual/real world. As possible worlds distance 
themselves from this singleton, we transit to spheres that 
may contain many other possible worlds. Worlds where a 
counterfactual can have a different truth value. 
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Thus, possible worlds (𝑤𝑖) are ordered by their similarity to 

the real world, 𝑤𝑜, where the most similar to 𝑤𝑜, where the 

antecedent (ϕ) is true, are possible worlds where the 
consequent (ψ) is also true. We can formalize this method as 
follows:  
 

 there is a similarity function 𝑓, which takes as its 

input a 𝑤-world, a ϕ -world (expressed by a 

proposition ϕ), and returns the set of ψ -worlds 

most similar to 𝑤-worlds. Thus, 𝜙 > 𝜓, where ‘>’ 
is the logical connective, is then said to be true when 

the 𝜙-worlds most similar to 𝑤𝑜 are 𝜓-worlds. 
 
Within the formalism suggested by the similarity analysis, 
there are divergent interpretations of what is known as the 
Limit Assumption and the Singularity Assumption. For Stalnaker, 
there is a continuous chain of possible worlds, each one 
closer to the real world (Limit Assumption). However, there 
is only one possible world that is closer to the real world 

(Singularity Assumption). That is to say, 𝜙-worlds don't 

become indefinitely more similar to 𝑤𝑜 [Lewis 1973b: 77 - 
83]. The Limit Assumption also states that this chain has 
minimal elements, '<' being the predicate that defines a 

chain. A chain where there is at least one 𝑤𝑖 such that there 

is no 𝑤𝑗 with 𝑤𝑗 < 𝑤𝑖. The singularity assumption, then, 

states that 𝑤𝑖 is unique. 
Lewis rejects the Limit and Singularity assumptions, arguing 
in favor of the idea that there may be possible worlds that 
come closer and closer to the real world, continuously and 
without limit.  
Stalnaker [1980], in defence of the Singularity assumption, 
proposes the Law of excluded middle, which dictates that all 

instances of formulas (𝜙 > 𝜓) ∨ (𝜙 > ¬𝜓) are true. 
According to the Singularity assumption, for each antecedent 



   Counterfactual Analysis by Algorithmic Complexity 9 

Manuscrito – Rev. Int. Fil. Campinas, v. 45, n. 4, pp. 1-35, Oct.-Dec. 2022. 

𝜙, there is only one possible world closer to where 𝜙 is true.  
In turn, the Law of the excluded middle dictates that any 

consequent 𝜓 is true, or false, in that singular world where 

𝜙 is true. For example: 
 

a) If the fair coin had been tossed, it would have 
resulted in heads. 

b) If the fair coin had been tossed, it would have 
resulted in tails. 

 

For Stalnaker, there is only one possible world closer to 𝑤𝑜 
where the coin falls either head or tails, making (a) true and 
(b) false, or (a) false and (b) true. Lewis [1973b], on the other 
hand, maintains that both (a) and (b) are false, for there are 
no nearest possible worlds where the coin falls either heads 
or tails. 
Possible worlds semantics, or another form of similarity 
analysis, depends on the restrictions imposed on the 

similarity function 𝑓. As we can see above, the functions of 
Stalnaker and Lewis differ on points related to the Limit and 
Singularity assumptions. For Lewis (Lewis 1973b: 91 - 96), 

𝜙 > 𝜓 is vaguely true if, and only if: 
 

 there are no worlds where 𝜙 is true (𝜙 is 
metaphysically impossible). 

And not vaguely true if, and only if: 

 between the worlds where 𝜙 is true, and some 

worlds where 𝜓 is true are closer to the real world  
 

than any possible world where 𝜓 is false, or 𝜙 >  𝜓 
is false otherwise.  
 

However, one of the most frequent criticisms made to both 
Stalnaker and Lewis' similarity analysis is the vagueness with 
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which the authors define the similarity function. In the 

words of Lewis [1973: 92], the similarity function 𝑓 is 
described as: "[...] our familiar and intuitive concept of comparative 
global similarity [...]". This is not a very strict (or formal) notion 
for expressing a similarity function. But Lewis is clear in his 
work, stating that his notion of proximity is only an intuitive 
notion and not a metric of proximity. Lewis [1979] sought to 
further formalize his similarity function by establishing the 
following weight system, which would define rules for 
establishing the similarity between possible worlds: 
 

 Avoid great miracles, that is, violations of 
physical laws that characterize the real world;  

 Maximize the entire space-time region in which 
the perfect combination of particular facts 
prevails; 

 Maximize the period during which similar 
worlds coincide in matters of facts; 

 Avoid even small miracles; 

 Facts that occur after the private facts involved 
need not be kept fixed. 

 
Nevertheless, the informality as such a weight system 
presented makes the similarity analysis, at best, an 
incomplete analysis. Probably there are a large number of 
possible similarity functions. If the similarity analysis is to be 
expanded to a more complete theory we need to answer 
more rigorously the following question:  
 

 On what basis do speakers determine that some 
possible worlds are closer than others?  

 Can we express a similarity function more formally? 
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4. Critiques to Possible Worlds Semantics 
 
First of all, we would like to point out that the literature on 
counterfactuals is extremely extensive. It is not possible to make 
a fair review of all the existing theories and proposals in a 
single article. However, other methods of analysis do exist, 
with their particular tools. For example, Strict Analysis 
[Warmbrōd 1981a; 1981b; Gillies 2007], Conditional 
Probability Analysis [Adams 1976; Edginton 2003; 2014], 
and Structural Equations/Causal Models [Pearl 2013]. 
Several authors, such as Schulz [2007], Kvart [1986; 1992], 
McGee [1989], Bennett [2003], Bradley [2002], come to 
prefer probabilistic analysis, inspired by Adams' pioneering 
work [1976], while some are openly critical of the possible 
worlds semantics. 
Hannes Leitgeb [2012a, 2012b], another theoretician in favor 
of probabilistic analysis, states that possible worlds 
semantics, unlike probabilistic analysis, is not capable of 
corresponding to any form of magnitude of probability that 
represents a consistent order of similarity. This is an opinion 
shared by other critics of the similarity analysis model, such 
as Hájek and Edgington. In the words of Hájek:  
 

I have long argued against such similarity 
accounts. Worlds in which the plate is dropped 
and falls to the floor may well be more similar 
to ours than worlds in which it is dropped and 
does something else. But that doesn’t make it 
true that if the plate were dropped, it would fall 
to the floor. That counterfactual is undermined 
by the fact that if the plate were dropped, it 
would have a positive chance of not falling to 
the floor [...] This chance is indifferent to how 
similar is a world where this happens [2014: 
250]. 
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Hájek even goes so far as to criticize Lewis' weight system as 
non-scientific:  ‘Science has no truck with a notion of similarity; nor 
does Lewis’s [1979] ordering of what matters to similarity have a basis 
in science [2014: 250]’. Morreau [2010] also argues that the 
similarity analysis proposed by Lewis [1979] would not be 
enough to assess all the differences between possible worlds:  
 

The trouble comes to light when we ask just 
how to combine similarities and differences in 
various respects. In fact, no one has had any 
real idea! There are only metaphors, however 
promising these might seem. [...] We cannot 
add up similarities or weigh them against 
differences. Nor can we combine them in any 
other way. Goodman was right to be skeptical. 
No useful comparisons of overall similarity will 
result [Morreau 2010: 471].  

 
We argue that there is a way to strengthen the possible 
worlds semantics, and similarity analysis in general, 
providing a similarity function that can (2) formalize a 
distance between possible worlds, (2) proposes a solution to 
the divergences between Lewis and Stalnaker's 
interpretations, and (3) that can meet the demands and 
problems raised by Goodman.  
 
 
5. Defining a Similarity Function: Algorithmic 
Information and Complexity   
 
In his article ‘Why Philosophers Should Care About Computational 
Complexity’, Aaronson [2013] brings up arguments on how 
Complexity Theory can aid philosophical investigations 
involving the nature of knowledge, the problem of logical 
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omniscience, Hume's induction problem, issues involving 
rationality, among several others. In other areas, complexity 
theory has already been used in problems involving 
sequences of random numbers [Kolmogorov 1998], in the 
definition of methods for inductive inference [Solomonoff 
1964], in general, artificial intelligence models [Shane and 
Hutter 2007], and even to model biological evolution 
[Chaitin 1991; 2006]. Inspired by this type of 
interdisciplinary research, which invites the philosopher to 
study other areas, in the same form that we invite other fields 
to study philosophy, we propose a new method of similarity 
analysis using algorithmic complexity as a tool. 
Two of the key concepts that will be fundamental to 
formalize this method are information and complexity. Both 
concepts are the focus of Algorithmic Information Theory, 
and it will be through them that we intend to propose a 
metric between possible worlds. The main insight of 
algorithmic complexity is that information and complexity 
are two related concepts. This idea can be understood in the 
following way:  
 

A gas takes a large program to say where all its 
atoms are, but a crystal doesn't take as big a 
program, because of its regular structure. 
Entropy and program-size complexity are 
closely related [...] [Chaitin 2007: 119].  

 
In other words, the information contained within a system, 
and the complexity of this system, are closely related. The 
more ordered a system is, the less complex the algorithm 
needed to produce it will be. To better formalize the idea of 
Lewis and Stalnaker, more specifically the similarity function 

𝑓, we first need to define two other concepts, the first being 
digitalization.  
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Digitalization is the process of converting analog 
information into a digital format, converting analog source 
information into a sequence (string) of numbers. Digital 
representations have useful properties, allowing information 
of all types and in all formats to be transported and 
processed in a single language, such as the binary alphabet 
[McQuail 2000: 16 - 34]. 
In principle, all information can be represented in binary 
sequences. In our case of interest, we need the environment 

(𝑤0) of the speaker (agent) to be represented in a digital 
format. Any amount of information can be represented by a 
sequence of 0's and 1's, as long as this information is finite. 
The size of the sequence or the multiplicity of information 
contained by the environment is irrelevant from a theoretical 
point of view. Multiple sequences can be concatenated one 
after the other so that given the correct adjustment in the 
processing of the sequence, the results will be the same.   
A digital image, your voice recorded in a microphone, a 
video, weather conditions, all can be converted into binary 
representations of reality. This idea is not new. Leibniz was 
one of the precursors of binary notation, emphasizing the 
inexhaustible combinatory potential of 0 and 1 [Bell 2000: 
517]. Given enough information, such representations may 
be enough to capture the general concept of a specific world-
state. With world-state, we mean a possible world, limited by 
the causal relationships affecting the agent. For example: 
when modeling the counterfactual possibility of a local 
event, we do not need to digitalize  Alpha Centauri, Mars, or 
the other side of the city. 
The second necessary concept is that of a Turing Machine. A 
Turing Machine is an abstract mathematical object, and 
through its mechanism, any algorithm can be computed 
[Turing, 1936]. Turing machines can perform any 
computable process, and a Universal Turing machine can 
perform any process that any Turing machine can. We start 
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from the physical and metaphysical assumption that the 
environment can be represented by a Turing machine, 
known as digital physics/metaphysics [Fredkin 2003; 
Steinhart, 1998]. Thus, the environment (world-state) can be 
considered as a Turing machine, where the environment has 
its internal dynamics (program = the laws of physics), which 
reads the inputs made available by the agent (actions), and 
according to the input and its internal state, produces the 

next world-state. Thus, a world-state is a binary sequence 𝑥, 

produced by an environment 𝑤 ∈ 𝑊, where 𝑊 is the set of 
all computable environments.   
We now have a formal way of talking about the environment 
and world-states. To define a similarity function between 
world-states, as proposed by Lewis and Stalnaker, we need 

to compare the current world-state 𝑥 and a possible 

counterfactual world-state 𝑥′. So, in terms of counterfactual 
analysis from an agent's point of view, we want to know:  
 

 if the agent had executed the action 𝑎, which would 

generate the counterfactual the world-state 𝑥′, what 

is the difference between 𝑥 and 𝑥′? How similar are 
both states? And how likely are they to be generated 

by the same environment 𝑤 ∈ 𝑊? 
 
To answer this question, we used a tool of Algorithmic 
Information Theory, algorithmic complexity [Solomonof 
1964; Kolgomorov 1998; Chaitin 2007]. The algorithmic 
complexity, also known as Solomonoff-Kolmogorov-
Chaitin complexity, of a world-state, or any finite binary 

sequence 𝑥, is the length of the shorter Turing machine (a 
program), in this case representing the environment, than it 

would produce 𝑥. The insight of this method is that the 

simplest Turing machine which would produce 𝑥′, is the 
environment that produces the closest counterfactual world-
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state to the real world-state.  Informally, we can explain the 
concept of algorithmic complexity as follows: 
Given the two sequences of 60 symbols: 

 
Which has the greatest complexity?  
 
Sequence 1 has a predictable structure (1 and 0 repeatedly). 
However, sequence 2 is random, and it is its own minor 
description. Therefore, the complexity of 1 < 2. Thus, to 
evaluate the complexity of world-states we use the function 

𝐾(. ), which takes as input a binary sequence 𝑥, 𝐾(𝑥), and 

results in the shortest program that would produce 𝑥: 
 

𝐾(𝑥) ≔  𝑚𝑖𝑛𝑝{𝑙(𝑝): 𝑈(𝑝) = 𝑥} 

 

Where 𝑝 is a binary sequence that we call a program, 𝑙(𝑝) is 

the length of this sequence in bits, and 𝑈 is a prefix of the 
universal Turing machine called the reference machine. The 
algorithmic complexity, in this case, is used as a metric to 
quantify the similarity between finite sequences of 
information, in the proposed context, the similarity between 

world-states 𝑥 and 𝑥′. Solomonoff [1964] showed that there 

is always a machine capable of computing 𝑥 with the 
following property:  
 

𝐾(𝑥)  ≤ 𝑘 +  1 for all binary sequences 𝑥 of length 𝑘. 
 
Since if there is no efficient way to calculate a random binary 

sequence 𝑥, we can always include the binary sequence as a 
table in the program, so we only need to add one bit to the 
sequence to get a program to perform its calculation, where, 
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for example, 𝐾 produces the sequence 𝑥 when given the 
entry ‘0’. This definition of complexity also allows us to 
formalize the concept of randomness. A numerical sequence 
is random if there is no way to compress it to an algorithm 
smaller than its original length, being no law (algorithm) to 
describe it. 

Using the 𝐾(. ) function to measure the algorithmic 

complexity of 𝑥 and 𝑥′, we can achieve a measure of 
universal similarity through the conditional algorithmic 
complexity [Chaitin 2007]. Intuitively, two world-states can 

be considered similar if little effort is needed to transform 𝑥 

into 𝑥′. Thus, using the same assumption that world-states 
can be modeled as outputs of a Turing machine, conditional 
algorithmic complexity measures the complexity of one 

binary sequence (𝑥) given another binary sequence (𝑥′). 
Thus: 
 

𝑆(𝑥|𝑥′) ≔
𝑚𝑎𝑥{𝐾(𝑥|𝑥′) , 𝐾(𝑥′|𝑥)}

𝑚𝑎𝑥{𝐾(𝑥), 𝐾(𝑥′)}
 

 
Given the assumption that there is no effort to make a 

world-state in itself, 𝐾(𝑥| 𝑥)  ≈  0, therefore, 𝑆(𝑥| 𝑥)  ≈  0. 

If there is no similarity between 𝑥 e  𝑥′, then 𝐾(𝑥| 𝑥′)  ≈

 𝐾(𝑥) and (𝑥′| 𝑥)  ≈  𝐾(𝑥′), then, 𝑆(𝑥|𝑥′)  ≈
𝐾(𝑥)

𝐾(𝑥)
=

𝐾(𝑥′)

𝐾(𝑥′)
≈ 1. As the similarity between 𝑥 and 𝑥′ is closer to 

zero, more similar both world-states are. We can define that 

the output of our similarity function 𝑆(. ), should be 
expressed as a Real number between 0 and 1. Thus, let us 
imagine that we are cogitating three counterfactual world-
states, and we want to transform the distance of these 

possible worlds (𝑥′, 𝑥′′, 𝑥′′′) defined by 𝑆(. ), into 
probabilities, to use these values as a prior for Bayesian 
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updating2. Let's say that the values of 𝑥′, 𝑥′′ e 𝑥′′′ are 
respectively:  

1) 0.81893085;  

2) 0.54768653;  

3) 0.14973508. 
 
Each of the three numbers represents the distance assigned 

by 𝑆(. ) from the real world-state. Ideally, the world-state 
that has the highest distance should be converted to the 
world-state with the lowest probability (more distant = low 
probability = less vaguely true). To convert these numbers 
to probabilities, a CDF (Cumulative Distribution Function) 
can guarantee this result. We use an exponential function as 
an example below: 
 

𝑃(𝑥) = exp (−𝑥) 
 

This function gives us back the values 𝑃(𝑥′) =
0.44090279382, 𝑃(𝑥′′) = 0.5782861116 and 𝑃(𝑥′′′) =

                                                      
2 One of the limitations of the probabilistic method of 
counterfactual analysis is that there is no clear way to define 
probabilities of actions that an agent did not perform, and 
therefore has a 0 probability. When we use Bayes' theorem and try 
to condition the probability of an event (A) to an action (B) that 
did not occur, and therefore has zero probability, we end up with 

an indefinite result: Probability of P(A|B) =

 
P(B|A)P(A)

P(B)
, if P(B) = 0, then P(A|B) is undefined. Thus, in a 

way, the probabilistic analysis method, to be valid, requires the 
agent to be omniscient, something unrealistic. Thus, in principle, 
the method proposed above serves as a hyperprior for the 
stipulation of uncertain probabilities. 
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0.8609360253, if we divide each of the values by the sum 
of the three, we get a normalized probability 

distribution, 𝑃(𝑥′) = 0.23450718, 𝑃(𝑥′′) = 0.30757856 

and 𝑃(𝑥′′′) = 0.45791426, which when added together 
result in 1, satisfying Kolgomorov's 2nd axiom. Thus, 
besides serving as a metric between world-states, such a 
function provides conditional probabilities to the real world-
state of the agent. 

Now, we need to define whether 𝑥 and 𝑥′, the real and the 
counterfactual world-states, are produced by the same 

environment 𝑤. That is, we want to avoid cases of possible 
worlds that look extremely similar to the real world, and yet, are 
governed by totally different physical laws.  
For example, ‘what is the distance between the real world 
and the possible world where everything is the same, but I 

am a Wizard?’ 3 In this way, we do not want 𝑆(. ) to falsely 
attribute a low distance to this kind of possible world.  We 
again assume that the least complex environment, given the 

representation of the world-state 𝑥, is the one that produces 

𝑥. This principle can be defined as Ockham's razor, or in 
algorithmic and mathematical terms, Solomonoff's Universal 
distribution. Through this tool, we can find within the 
probability distribution of possible computable 

environments, 𝑊, the environment e most likely to produce 

the world-state 𝑥.  
The algorithmic probability distribution over possible 

environments is defined by 2−𝐾 (𝑤) . Thus, given a world-

state 𝑥, this algorithmic probability distribution will assign a 
high probability to simpler environments, which could 

produce 𝑥, because the simplicity of an algorithm is inversely 

                                                      
3 A wizard here meaning that the speaker could break the laws of 
physics at will. 
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proportional to the size of the program that computes it. 

Thus, to determine which is the simpler environment 𝑤 

would produce 𝑥, we use the following function: 
 

𝑆𝐼(𝑥) ≔ 𝑚𝑎𝑥
𝑤

∑ 2−𝐾(𝑤)

𝑤 𝜖 𝑊  

 

 

Where 𝑆𝐼(𝑥) is the environment most likely to compute 𝑥, 

the real/counterfactual world-state proposed, and 𝑊 is the 

set of all computable environments that would produce 𝑥, 

relative to the reference Turing machine 𝑈. Given the 

probability distribution 2−𝐾 (𝑤) summed overall 

environments 𝑤 𝜖 𝑊,  𝑚𝑎𝑥
𝑤

  will result in the environment 

𝑤 with the greatest probability, the simplest, of producing 

the sequence 𝑥. If the environment 𝑤 is the same that 

produced both 𝑥 and 𝑥′ sequences, then:  
 

∆𝑆𝐼(𝑥, 𝑥′) =  
𝑆𝐼(𝑥)

𝑆𝐼(𝑥′)
≈ 0 

 
Different environments where the intrinsic dynamics are 
different, even if they produce a counterfactual world-state 

𝑥′ conditionally similar to the real world-state 𝑥, would have 
a higher difference in the algorithmic probability distribution 

∆𝑆𝐼(. ). Thus, we arrive at two functions to estimate the 
similarity between possible worlds: 
 

 𝑆(𝑥|𝑥′) establishes the similarity between possible 
world-states; 

 ∆𝑆𝐼(𝑥, 𝑥′) measures the difference between the 
internal dynamics of the real world and the 
counterfactual world, prioritizing simplicity.  
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With these functions, we prioritize possible worlds that 
resemble more the real world, and at the same time, possible 
worlds that are governed by the same laws that govern our 
world. In case an environment cannot be compressed into a 
smaller algorithm than its complete description, then this 

particular 𝑤 will only generate stochastic world-states, and 
cannot be understood or predicted, being only ‘what it is’.  
We can understand the type of analysis suggested also in a 
heuristic way. Agents, when engaging in imaginative 
reasoning or counterfactual oratory, determine which 
propositions are more vaguely true (more similar to the real 
world) using two intuitive principles. The first is similarity, 
how similar the counterfactual scenario is to the real world-
state. The second is simplicity, how different the real world-
state should be for such a counterfactual world-state to be 
possible. The suggested idea is that counterfactual scenarios 
closer to the real world-state have less conditional 
algorithmic complexity, while more complex scenarios are 
more distant. This similarity can be measured by the 
algorithmic complexity of the world-state in question.  
 
 
6. A dialogue with the literature 
 
First, the restrictions of the proposed model are: 
 

 Strong Centralisation: the concept of similarity 

motivates the following idea. If 𝑤 is already a 𝜙-

world, then the 𝜙-world most similar to 𝑤 is 𝑤 
itself. There is no effort to make a world-state in 

itself, 𝐾(𝑥| 𝑥)  ≈  0; 

 Plurality: there is not always a single 𝜙-world closer 
when evaluating a possible counterfactual world-



 Nicholas Corrêa 22 

Manuscrito – Rev. Int. Fil. Campinas, v. 45, n. 4, pp. 1-35, Oct.-Dec. 2022. 

state 𝜙 > 𝜓, because when the differences between 
world-states are determined by random variables, no 
form of compression is possible, and world-states 
should have a uniform distance and probability 
distribution; 

 Limit Assumption: as you move into ϕ-worlds closer 

to the 𝑤0, you reach a limit determined by random 

variables, and you cannot reach a ϕ-world closer to 

𝑤0.  
 
While we can say that both Stalnaker and Lewis agree on the 
principle of Strong Centralisation, their views differ on the 
Singularity and Limit assumptions. While Stalnaker [1968] 
endorses Singularity, Lewis [1973b] favours Plurality of 
possible worlds.  
According to the proposed model, random sequences 
cannot be compressed into a smaller algorithm than their 
description. After all, something that cannot be expressed by 
any pattern is the very definition of randomness. Thus, when 
possible world states differ by random variables, such as the 
playing of a fair coin, a lottery, the decay of a radioactive 
atomic nucleus, or quantum fluctuations, there is no point in 
questioning which world is the most similar. After all, to 
accomplish such a task we would need to be able to 
compress randomness, that is, to describe it in a form smaller 
than its total definition, and this leads us to a contradiction.  
Regarding the Limit Assumption, we can argue that a 
corollary result of our outcome regarding the Plurality 
assumption is that the limit of proximity between world-
states is also limited by random variables. Thus, when the 
differences between a possible counterfactual world, and the 
real world, are restricted to only matters represented by 
stochastic variables, this is the limit.  
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Again, for there to be a continuum of possible worlds ever 
closer together we would need a way of compressing more 
and more random sequences, which leads us to the same 
contradiction.  
For Stalnaker [1968], there should be a chain of possible 
worlds that leads to the closest possible world (Singularity). 
However, as we argue, this chain can lead to several equally 
close possible worlds (Plurality).  
Lewis [1973] argues that there is no limit so that possible 
worlds resemble the real world continuously and without 
limit. However, according to the argument just explained, 
this proposition also leads us to a contradiction. Another 
corollary result would be that the Law of excluded middle, 
as in the example of playing a fair coin used in Session 3, 
would not apply to counterfactuals involving random 
variables. In the case of a fair coin toss, both possible worlds 
(head and tails) are equally close to the real world. 
The algorithmic complexity analysis model is best 
understood when dealing with situations where the distance 
between possible worlds depends on a stochastic source 
component. Thus, we'll present an example involving 
lotteries to better illustrate the arguments just explained:  
 

 The Binary Lottery is a fair lottery that draws 
five random numbers from a sample of 256 
numbers. Ana has a lottery ticket with the 
numbers [01000111], [00101011], [01000010], 
[01010111] and [01100011]. Respectively, 71, 
43, 66, 87, and 99. However, the numbers 
drawn on lottery day were 71, 43, 66, 87, and 
100. How far from the real world is the possible 
world where everything is the same, but the 
only difference is the last winning lottery 
number. What if instead of raffling the number 
100, the number 99 had been raffled? 
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If the lottery is a fair one, then the result of the five numbers 
raffled is algorithmically incompressible. No algorithm can predict 
the next digit. Thus, in statistical terms, the raffle must have 
a uniform probability distribution between 0 and 256. The 

current world 𝑥, [71, 43, 66, 87, 100], is equally distant from 
all possible lottery results where the last number raffled is 
different. There are 252 possibilities, 252 possible worlds 

equally distant from 𝑤0, and in only one of them (𝑥′= [71, 
43, 66, 87, 100]) Ana is the lottery winner. If we evaluate each 
of the numbers raffled, through their binary representation 
using the same function that we showed in the previous 

session, 𝑃(𝑥) = 𝑒𝑥𝑝(−𝑥). 
After calculating the value of each of the numbers raffled we 
get the standardized results listed below: 
 

 P(01000111) =  0.990048734794 ≈ 20%     

 P(00101011) = 0.998990399989 ≈ 20%  

 P(01000010) = 0.990049734744 ≈ 20%  
 P(01010111) = 0.989949734871 ≈ 20%  
 P(01100011) = 0.989060169979 ≈ 20%  

 
The above result follows our intuitions, where a sequence of 
random numbers has a uniform probability distribution. If 
we had done the same procedure for all 252 numbers, the 

result would be the same for all numbers, 
1

252
 = 0.004%. This 

shows how in cases where we have algorithmically 
incompressible information, all possible counterfactual 
worlds are equally close. So even if the probability that Ana 
won the lottery is very low, all possible worlds are equally, 
incompressibly, distant. Perhaps the only way to counter this 
example would be to demonstrate a way to predict random 
numbers, which amounts to predicting lottery results! 
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In response to the criticisms made towards the similarity 
analysis method, reviewed in section 4 [Morreau, 2010, 
Hájek, 2014], we argue that there are formal notions of 
similarity used in science. Even though the description made 
by Lewis and Stalnaker is, in fact, informal, we can formalize 
the similarity analysis method using algorithmic complexity. 
As seen above, this type of analysis brings a new light to 
impasses concerning the Singularity and Limit assumptions, 
and as a bonus, even probabilistic priors can be estimated.  
Now, concerning Goodman's problems, vagueness, context-
dependence, and non-monotonicity, the method proposed 
resembles the semantics of possible worlds in trying to 
accommodate them. With vagueness, in the same way as 
similarity and probabilistic analysis, we argue that the truth 
condition of a counterfactual diminishes as it distances itself, 
in similarity and simplicity, from the real world. Thus, the 
propositions: 
 

a) If that piece of butter had been heated to 150º, it 
would have melted. 

b) If this piece of butter had been heated to 150º, it 
would not have melted. 

 

Are not equally true. The simplicity function  ∆𝑆𝐼 (. ) 
attributes a greater probability to possible worlds more 
similar to the present speaker's world, so that, by preserving 
the physical laws of our universe (let us suppose that the 
speaker lives in our universe), (a) is more vaguely true than 
(b). Now, concerning context-dependence, responding to 
the criticism of Quine [1960; 1982], who stated that it would 
be impossible to determine which proposals would be more 
true: 
 

c) If Caesar had been in command of Korea, he would 
have used the atomic bomb. 
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d) If Caesar had been in command of Korea, he would 
have used catapults. 

 
For Quine, the impossibility would arise from the fact that 
counterfactual world-states have no objective grounding, 
and are linked only to the imagination and purpose of the 
speaker.  
We agree that counterfactuals are, in fact, creations of an 
agent's imaginative reasoning. However, they can be 
grounded in objective real-world premises, and this is the 
assumption of Strong Centralization. The objective 
grounding provides a reference to the counterfactual, the 

current world of the speaker (𝑤0).  

In the proposed model, both the 𝑆(. ) function and ∆𝑆𝐼 (. ) 
formalize the idea that possible worlds more similar and 
simpler should be more vaguely true. What we have in the 
example of Quine would not be a dependence on context, 
but a lack of information. In other words, Quine does not 

give us the speaker's central point, his 𝑤0.  
If Caesar were in charge of Korea in 40 BC, then (d) is more 
vaguely true than (c) (assuming that a world where atomic 
weapons were invented before gunpowder would be very 
different from ours). While Caesar was in command of 
Korea between 2006 and 2009, then (c) is more vaguely true 
than (d) (assuming that the world most similar to ours is the 
one in which Caesar is a good military strategist, not a 
completely insane one). 
The last problem concerns the non-monotonicity of 
counterfactual statements:  
 

e) If I had struck this match, it would have lit. 
f) If I had struck this match and done so in a room 

without oxygen, it would have lit. 
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For Goodman, the main problem of non-monotonicity is 
that it is quite difficult to specify all the details and 
background factors, together with the physical laws in force, 
in non-counterfactual semantic terms. We agree with 
Goodman that counterfactuals should be by definition non-
monotonic and that a full semantic definition of the real 
world would be intractable.  
However, the proposed method does not use semantics to 
assess similarity and conditional probability between 
possible worlds but rather the information contained in the 
real and counterfactual world-states. The conversion of a 
real/possible world to a digital world-state, where we 
represent information by bits, allows a great simplification of 
the specification problem.  
For example, a complete definition of the laws of physics in 
semantic terms is much more complex than its algorithmic 
specification. We can specify such laws succinctly in 
algorithms, and that is what allows contemporary physics to 
work with computational simulations to explore phenomena 
that would be, on the contrary, unobservable.  
In more intuitive terms, an agent embedded in the 
environment, who knows the internal dynamics of the 
environment and is capable of counterfactual reasoning, can 
counterfactually perceive violations of these principles. What 
Solomonoff's universal distribution gives us is a way to 
assign a greater probability to possible worlds which are 
more similar to the real world. Worlds with the fewest 
possible violations. Thus, defining without the use of 
semantics, the intrinsic dynamic of the environment. 
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7. Limitations 
 

What are the limitations of the proposed method? 
First, our model allows for a notion of universal similarity 
between all possible computable worlds, and the first 
criticism that we'll point is that this is too general.  
In other words, we make the space of possibilities so great, 
so vast, that any kind of investigation (through all possible 
computable worlds) would be intractable. The only physical 
and metaphysical restriction made is that the laws of our 
universe must be preserved, in their simplest form, and that 
we delimit the metaphysical space to only computable 
worlds. However, is the reductionism of digital physicalism 
acceptable? Would physicality be anything other than 
computability? Whether the universe or the multiverse can 
be adequately modeled as a Turing machine remains an open 
question.     
Perhaps the greatest obstacle (in terms of practical 
implementation) is the fact that algorithmic complexity is in 
itself an incomputable function, meaning that there is no 
general algorithm that can attest to the algorithmic 

complexity for any finite sequence 𝑥. 
This may seem extremely intuitive. Otherwise, all the infinite 
(finite in length) sequences of possible bits, even the random 

ones, could be generated by a single finite program, 𝐾(. ),  

with a complexity smaller than 𝑥 bits. How could a program 

of length 𝑛 generate random sequences of length 𝑛 +  1? 
Another contradiction. 
Even so, the practical impossibility does not invalidate the 
theoretical insights acquired, especially the ones concerning 
how world-states differentiated by random variables should 
behave respecting principles like simplicity, complexity, and 
plurality. 
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8. Conclusion 
 
In this study, we would like to make clear two important 
points regarding two different methods of counterfactual 
analysis. While Lewis-Stalnaker's Possible worlds semantics 
fails to provide a more formal and rigorous similarity 
function for estimating the distance between possible 
worlds, Adams' probabilistic analysis model fails to deal with 
situations where the antecedent probability distribution is 
unknown. A well-known Achilles heel of the Bayesian 
paradigm. 
In this proposal, we sought to develop a similarity function 
for counterfactual analysis, inspired by the ideas of Lewis and 
Stalnaker and made possible by tools of Algorithmic 
Information Theory. At the same time, the model proposed 
provides an objective basis for the estimation of conditional 
probabilities, and it more rigorously formalizes the concept 
of similarity between possible worlds. Furthermore, using 
Solomonoff's universal distribution, we extend the concept 
of similarity to that of simplicity. We believe that these 
guiding principles are both intuitive and philosophically 
justifiable.  
Even provided the incomputability of algorithmic 
complexity, the proposed methodology was able to dialogue 
with the existing literature, shedding new light on the debate 
between Lewis and Stalnaker regarding the Singularity and 
Limit assumptions. Together, we sought to answer criticisms 
and questions raised by the literature against Possible world 
semantics and similarity analysis methods in general. As a 
final message, this study had as one of its main motivations 
to show how tools from other areas can come to assist in 
philosophical investigations. When an object of study 
becomes of interest to a large number of different fields of 
knowledge, interdisciplinary research must be sought. Who 
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knows what we may discover when we import tools from 
another box. 
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