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Malaria is a major human parasitic disease. Ac-
cording to the World Malaria Report (WHO 2008), 3.3 
billion people live at risk for malaria infection. About 
247 million episodes are reported every year, leading 
to 881,000 deaths, of which 85% are children under 
five years old.

Malaria is caused by parasites from the Plasmo-
dium genus. There are 156 different species that infect 
vertebrates, four of which infect humans: Plasmodium 
falciparum, Plasmodium vivax, Plasmodium ovale and 
Plasmodium malariae (Warrell & Gilles 2002). Re-
cently, Plasmodium knowlesi, which causes malaria in 
monkeys, was detected in many cases of human malaria 
in Asia using molecular techniques (Singh et al. 2004). 

P. vivax, P. ovale and P. malariae cause infections 
that are seldom deadly, known as benign tertian ma-
laria (P. vivax and P. ovale) and quartan malaria (P. 
malariae). These names refer to the periodicity of the 
fever attacks, which occur at the end of the intraeryth-
rocytic cycle when infected erythrocytes break up (ev-
ery 48 h in the case of P. vivax and P. ovale or every 
72 h for P. malariae) and this event releases merozoites 
and stimulates the secretion of inflammatory cytokines 
by the host (Clark et al. 2006). P. falciparum causes 
infections that can lead to death if they are not treated 
appropriately. Because it has an intraerythrocytic cycle 

of 48 h and thus results in fever every three days, P. 
falciparum infection is known as malignant tertian ma-
laria. Malaria caused by P. knowlesi infection is fatal in 
about one in 10 patients (Daneshvar et al. 2009).

The life cycle of Plasmodium parasites alternates 
between a definitive host (a mosquito from the genus 
Anopheles), in which sexual reproduction takes plac, 
and an intermediary host (a vertebrate), in which para-
site reproduction is asexual. Plasmodium species that 
infect humans (P. falciparum, P. vivax, P. ovale, P. ma-
lariae and P. knowlesi) have similar life cycles with 
slight variations. 

The Plasmodium life cycle begins in humans af-
ter an infected Anopheles female draws blood from 
the human during the blood meal and the mosquito 
injects saliva with sporozoites into the skin (Sinnis & 
Zavala 2008). A few hours after infection, the sporo-
zoites reach the liver by traversing the Kupffer cells, 
where they begin to invade hepatocytes (Vaughan et 
al. 2008, Ejigiri & Sinnis 2009). This phase is known 
as the first asexual reproduction phase, or exoeryth-
rocytic schizogony. This phase of the cycle varies be-
tween species: P. falciparum and P. malariae begin 
asexual replication immediately while P. vivax and P. 
ovale experience a dormant period inside hepatocytes. 
This latent stage is called the hypnozoite stage (Kro-
toski et al. 1982) and this stage can persist for long pe-
riods of time before the parasites undergo asexual rep-
lication to cause a primary infection. Hypnozoites are 
responsible for malaria relapses (Krotoski 1989) and 
they have not been detected in P. knowlesi infections 
in monkeys (Krotoski & Collins 1982). The asexual 
hepatic schizogony is a phase of significant parasite 
growth and division, during which hepatic schizonts 
are observed. These hepatic schizonts contain millions 
of merozoites, which are released into the blood stream 
and invade erythrocytes.
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Human malignant malaria is caused by Plasmodium falciparum and accounts for almost 900,000 deaths per 
year, the majority of which are children and pregnant women in developing countries. There has been significant 
effort to understand the biology of P. falciparum and its interactions with the host. However, these studies are 
hindered because several aspects of parasite biology remain controversial, such as N- and O-glycosylation. This 
review describes work that has been done to elucidate protein glycosylation in P. falciparum and it focuses on de-
scribing biochemical evidence for N- and O-glycosylation. Although there has been significant work in this field, 
these aspects of parasite biochemistry need to be explored further.
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These merozoites begin the intraerythrocytic 
schizogony phase of the cycle, during which symptoms 
of the malaria infection are presented. Giemsa staining 
has been used to detect infected erythrocytes in thick 
and thin blood smears of infected patients and blood 
smear microscopy is still the standard method for ma-
laria diagnosis (Ndao 2009). After invasion, the mero-
zoite undergoes differentiation into early trophozoite 
(0-20 h), known as the ring stage due to its morphol-
ogy. Within 20-40 h, the mature trophozoite develops 
and exhibits an increased metabolism, during which 
erythrocyte cytoplasm is ingested and haemoglobin is 
digested. The toxic free haem moieties that are released 
are inactivated by the parasite through polymerization, 
giving rise to hemozoin, also called malarial pigment 
(Pisciotta & Sullivan 2008). After these events, nuclear 
division takes place to give rise to the schizont. Fol-
lowing maturation (40-48 h), schizonts rupture leading 
to the release merozoites into the blood stream. Newly 
released merozoites will either invade other erythro-
cytes, thereby beginning a new cycle of infection (Ban-
nister & Mitchell 2009), or they will differentiate into 
sexual forms called gametocytes, which are either mac-
rogametocytes (female) or microgametocytes (male) 
(Alano 2007). In the case of P. falciparum, merozoites 
appear 7-15 days after the onset of the intraerythrocyt-
ic cycle and they may circulate in the blood anywhere 
from 2 days-4 weeks (Talman et al. 2004). 

The Anopheles mosquito ingests circulating game-
tocytes with the blood meal. Inside the mosquito, game-
tocytes undergo a temperature drop (from 37-32ºC) as 
well as pH changes (from 7.4-8.2). These factors, to-
gether with exposure to xanthurenic acid, a gametocyte-
activating factor present in the mosquito (Billiker et al. 
1998, Hirai et al. 2001, Kuehn & Pradel 2010), induce 
gametogenesis, the sexual phase of the Plasmodium life 
cycle. The male and female gametes are formed during 
this stage: the microgamete (male) is formed through 
a process known as exflagellation and it fertilises the 
macrogamete (female) to form a zygote (Alano 2007). 
After zygote development, the resulting ookinete will 
migrate through gut epithelial cells (Baton & Ranford-
Cartwright 2005) where it forms an oocyst, which then 
undergoes multiple asexual replications to form sporo-
zoites. The sporozoites are released by oocyst rupture 
into the body cavity of the mosquito and migrate to and 
infect the salivary glands (Matuschewski 2006). Thus, 
sporozoites are able to invade two different target cell 
types: liver cells in the vertebrate host and salivary gland 
cells in the mosquito vector. When the infected mosquito 
bites another vertebrate host, the infection is spread. 

P. falciparum remains the best studied Plasmodium 
species due to the establishment of adequate culture 
methods (Trager & Jensen 1976). Although genome se-
quencing (Gardner et al. 2002) together with investiga-
tions of the biochemistry, molecular biology, cell biology 
and host-parasite interactions have been published for P. 
falciparum, protein glycosylation remains controversial 
because there is little information about the function of 
P. falciparum glycosylated molecules and because the 

few studies that are available are inconsistent due to dif-
fering methodologies. This review mainly focuses on 
N- and O-glycosylation in P. falciparum because glyco-
sylphosphatidylinositol (GPI) anchors are already well 
established in this parasite (Gerold et al. 1994, 1996a, 
Hoessli et al. 1996, Davidson & Gowda 2001, Guha-
Niyogi et al. 2001, Mendonça-Previato et al. 2005, von 
Itzstein et al. 2008, Chung et al. 2009, Shams-Eldin et al. 
2009a, b, Debierre-Grockiego & Schwarz 2010).

Glycosylated proteins in P. falciparum 

The first studies on glycosylation of Plasmodium 
proteins started with work by Trigg et al. (1977). These 
authors reported labelling of P. knowlesi-infected eryth-
rocytes with galactose oxidase and tritiated sodium boro-
hydride, which specifically label terminal galactose and 
galactosamine residues in glycolipids and glycoproteins 
(Gahmberg & Hakomori 1973). Infected erythrocytes 
exhibited lower levels of labelled glycoproteins than un-
infected erythrocytes, possibly as a result of infection-as-
sociation changes in the host-derived components of the 
erythrocyte membrane. Galactose oxidase binds to termi-
nal and penultimate galactose residues in sialoglycopro-
teins and since Plasmodium organisms do not synthesise 
sialic acids (Schauer et al. 1984), they probably lack the 
structures that are typically labelled by this method.

The presence of glycoproteins in P. falciparum 
has been demonstrated in several studies. Kilejian and  
Olson (1979) demonstrated the presence of P. falciparum 
proteins that were able to bind concanavalin A (Con A), 
which suggested the presence of mannosylated glycans. 
Later, Kilejian (1980) demonstrated the presence of gly-
coproteins, mainly in the late trophozoite and schizont 
stages, by radioactive labelling with glucosamine. Gly-
coproteins were also observed in merozoites in this 
study. There were 12 labelled proteins observed in the 
schizont stage; of those proteins, five remained in the 
merozoites and one was identified on the infected eryth-
rocyte surface. Udeinya and Van Dyke (1980) treated 
P. falciparum-infected erythrocytes with radioactive 
sugars (glucosamine, fucose and mannose) to identify 
glycoproteins in these samples. In agreement with Kile-
jian (1980), the incorporation of radioactive glucosamine 
was stronger for erythrocytes infected with parasites in 
later stages (trophozoites and schizonts). A more detailed 
study identified eight labelled glycoproteins, ranging 
from 19-90 kDa, that were incorporated into the mem-
brane (Udeinya & Van Dyke 1981a). These results might 
reflect the biosynthesis of GPI anchors, which are known 
to be upregulated in trophozoites and schizonts (Schmidt 
et al. 1998). In the same year, David et al. (1981) demon-
strated that erythrocytes infected with later stages of P. 
falciparum preferentially bound to agarose beads coated 
with lectins (Con A, Ricinus communis lectin, soybean 
lectin and peanut agglutinin), which was in contrast with 
ring-infected and uninfected erythrocytes. These ob-
servations suggested that P. falciparum infection might 
result in increased mannosyl and/or glucosyl residues as 
well as increased galactosyl residues on the erythrocyte 
membrane. This observation could be a result of glyco-
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protein production by the parasite or infection-induced 
modifications of erythrocyte proteins. Ramasamy (1987) 
later confirmed the presence of P. falciparum glycopro-
teins that could bind to Con A, wheat germ agglutinin 
(WGA), R. communis lectin 120 and Bandeirea simplici-
folia lectin (BS). Binding to WGA exhibited the high-
est affinity, thereby suggesting the presence of N-acetyl 
glucosamine (GlcNAc) residues. 

Perkins (1982) investigated the incorporation of ra-
dioactive methionine, glucosamine and mannose into 
the surface of schizont-infected erythrocytes as well as 
in the merozoite stage by adding proteolytic (trypsin and 
pronase) and glycolytic (neuraminidase) enzymes. In this 
study, glycoproteins were released from schizont-infected 
cells upon pronase treatment but not after neuraminidase 
treatment, suggesting the absence of sialic acids in P. fal-
ciparum. In contrast to the conclusions of Kilejian (1980), 
this study did not identify glycoproteins in merozoites. 

Further studies demonstrated the importance of glyco-
sylated proteins in the immunogenicity of P. falciparum.  
Ramasamy and Reese (1985) observed that treating P. 
falciparum antigens (obtained from schizont-infected 
erythrocytes) with mixed glycosidases from Charonia 
lampas (sea snail) decreased their affinity to antibod-
ies from infected hosts, such as owl monkeys that were 
immunised with P. falciparum and Nigerian subjects 
living in malaria endemic areas. Specifically, two para-
site proteins at 65 and 100 kDa exhibited decreased re-
activity after enzyme treatment, and the carbohydrate 
modification of the epitopes was confirmed by their in-
sensitivity to protease activity and their heat stability. 
Endoglycosidase F (PNGase F) treatment had little ef-
fect on the reactivity of the antibodies, which suggested 
that N-linked glycans exhibit little contribution to this 
effect. A more detailed study (Ramasamy & Reese 
1986) demonstrated that antibody binding was abol-
ished by treatment with α-galactosidase obtained from 
Aspergillus niger and green coffee beans. A mixture of 
α-galactosidase, fucosidase, mannosidase and N-acetyl 
hexosaminidase also abolished antibody binding. Sev-
eral antigens were not recognised by the antibodies after 
treatment with these enzymes, particularly, antigens at 
185, 135, 120 and 75 kDa. Notably, the enzyme mixture 
was ineffective without α-galactosidase, suggesting an 
important role for terminal α-galactosyl residues in the 
antigenicity of P. falciparum glycoproteins. Supporting 
these results, a fluorescent derivative of BS that specifi-
cally binds to α-galactosidase demonstrated binding to 
acetone-fixed parasites (Jakobsen et al. 1987). In addi-
tion, antibody reactivity to soluble P. falciparum mol-
ecules was sensitive to α-galactosidase treatment. Later, 
Ravindran et al. (1988) reported that sera from subjects 
living in endemic areas, as well as from patients with 
acute P. falciparum infection, exhibited high titres of 
antibodies specific for α-galactose, which was in con-
trast to sera from patients with acute cerebral malaria. 
Panton et al. (1989) demonstrated that the histidine-rich 
protein II (HRP-II) from P. falciparum, an extracellu-
lar protein found in sera from infected patients and in 
the supernatant of cultured parasites, could be labelled 

with radioactive galactose. However, intracellular HRP-
II was not labelled, suggesting that glycosylation might 
act as a signal for secretion. In 1990, Jackobsen et al. 
described a soluble 60 kDa glycoprotein that was pres-
ent on the surface of trophozoites and schizonts, but not 
merozoites, and this protein was able to bind to Eryth-
rina christagalli agglutinin, but not to Con A or Griffonia 
simplicifolia agglutinin, suggesting the presence of β-D-
galactose(1-4)-D-N-acetylglucosamine. This protein was  
recognised by human sera from different endemic re-
gions, as well as by lymphocytes from malaria-immune 
individuals. Other studies on P. falciparum immuno-
genic proteins, specifically the merozoite surface pro-
tein (MSP), demonstrated that both MSP-1 (195 kDa) 
and MSP-2 (43 kDa) could be galactosylated after meta-
bolic labelling with tritiated N-acetylglucosamine, and 
both proteins were digested with α and β-galactosidases. 
However, the incorporation of galactose into the GPI 
moiety of this protein could not be ruled out (Qazi et al. 
1994). Furthermore, Klabunde et al. (2002) identified P. 
falciparum glycoproteins that bound to mannan-binding 
protein during innate immunity.

The nature and structure of the glycans were not 
specifically addressed in these early studies, but later 
studies verified the presence of N- and O-glycosylation 
in P. falciparum. 

N-glycosylation in P. falciparum 

Early studies of N-glycosylation in P. falciparum 
made use of inhibitors, namely, tunicamycin and 2-de-
oxyglucose (Udeinya & Van Dyke 1980, 1981b, c). Both 
compounds arrested parasite development in a dose-
dependent manner and both inhibited the incorporation 
of radiolabeled glucosamine into glycolipids, but not the 
incorporation of isoleucine into proteins. These findings 
suggested the specific inhibition of N-glycosylation, 
but the incorporation of glucosamine into O-glycans or 
GPI anchors was not considered. Tunicamycin blocks N-
glycosylation by inhibiting UDP-GlcNAc:dolichol-py-
rophosphate N-acetylglucosaminyltransferase (Schwarz 
& Datema 1982, McDowell & Schwarz 1988). However, 
tunicamycin also blocks ganglioside biosynthesis in 
the Golgi apparatus of rat liver (Yusuf et al. 1983a, b). 
Alternatively, 2-deoxyglucose blocks N-glycosylation 
through the formation of dolichyl-PP-(GlcNAc)2-2-
deoxyglucose, thereby preventing the elongation of the 
mannose chain (Schwarz & Datema 1982, Elbein 1987, 
McDowell & Schwarz 1988). Notably, 2-deoxyglucose 
exhibits broader effects on P. falciparum metabolism 
and it blocks both glycolysis (van Schalkwyk et al. 2008) 
and GPI biosynthesis (Udeinya & Van Dyke 1981c, 
Dieckmann-Schuppert et al. 1992a, Santos de Macedo et 
al. 2001, de Macedo et al. 2003). Therefore, the arrest in 
parasite development that was observed after tunicamy-
cin or 2-deoxyglucose treatment cannot be completely 
attributed to the inhibition of N-glycosylation.

Dieckmann-Schuppert et al. (1992a, b) reported that 
tunicamycin could not inhibit P. falciparum growth in 
the first life cycle (48 h). However, when parasites were 
subsequently treated with tunicamycin at concentra-
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tions that would not affect protein biosynthesis (12 µM), 
parasites underwent arrested development, resulting in 
death. These observations were confirmed by Kimura 
et al. (1996). Furthermore, Dieckmann-Schuppert et 
al. (1992b, 1996) reported that lower concentrations of 
tunicamycin reduced the incorporation of radioactive 
methionine by 30% after 30 min of treatment, which 
was not observed by Kimura et al. (1996). Therefore, 
the exact biochemical effects of tunicamycin on P. fal-
ciparum metabolism remain unclear.

The first attempts to study N-glycosylation in P. fal-
ciparum protein investigated the sensitivity of the para-
site proteins to peptide N-glycosidase F (also known as 
PNGase F and N-glycanase®), but these initial studies 
gave negative results (Ramasamy 1987, Dayal-Drager 
et al. 1991). Using metabolic labelling, Dieckmann-
Schuppert et al. (1992a) demonstrated that PNGase-F 
treatment led to the release of a small percentage of 
tritiated glucosamine (7-12%) from proteins. While 
this finding supported the presence of some protein 
N-glycosylation, it was considered to be negligible at 
the time. Furthermore, dolichol-PP-linked intermedi-
ates, which would be indicative of dolichol-cycle in-
termediates, were not found in this study. In addition, 
P. falciparum lysates did not catalyse the transfer of 
radiolabeled sugars from dolichyl-pyrophosphoryl-ol-
igosaccharides [Dol-PP-(GlcNAc)2, Dol-PP-(GlcNAc)2-
Man9 or Dol-PP-(GlcNAc)2Man9Glc] to peptide accep-
tors of N-glycosylation.

In contrast, after radiolabeling with radioactive me-
thionine for 18 h, Kimura et al. (1996) identified pro-
teins that bound to Con A-Sepharose that were absent 
when parasites were pretreated with tunicamycin for 52 
h before labelling. The same proteins lost their affinity 
to Con A-Sepharose after PNGase F treatment, which 
indicates that these proteins were N-glycosylated. Gly-
cans released from these parasites were analysed by thin 
layer chromatography to identify oligosaccharides that 
migrated between GlcNAc2, Man3GlcNAc2 and Man9 
GlcNAc2 standards. Because tunicamycin inhibited the 
transition of late trophozoites into schizonts and because 
N-glycosylated proteins were not observed in parasites 
that exhibited arrested development, these N-glycosylat-
ed proteins could play a role in the development of the 
intraerythrocytic stages of P. falciparum.

The inconsistent results obtained by Dieckmann-
Schuppert et al. (1992a) and Kimura et al. (1996) could be 
attributed to different experimental approaches. While 
Dieckmann-Schuppert et al. (1992a) analysed late tro-
phozoites, Kimura et al. (1996) used asynchronous cul-
tures that contained three different stages (ring, tropho-
zoite and schizont) after Percoll® gradient purification. 
In addition, Dieckmann-Schuppert et al. (1992a) used 
shorter pulse times (4 h) and glucose-free medium in 
their radiolabeling procedure. In contrast, Kimura et al. 
(1996) radiolabelled for both 8 h and 18 h and used glu-
cose and methionine-deficient media because glucose-
free medium had been reported to interfere with N-gly-
can biosynthesis in other systems (Elbein 1987). Gowda 
et al. (1997) confirmed the observations of Kimura et al. 

(1996) using similar radiolabeling conditions and they 
claimed to be the first to rule out GPI biosynthesis as 
an alternative explanation for the common experimental 
observations. A later study (Schmidt et al. 1998) demon-
strated that GPI biosynthesis increases by 21-fold during 
intraerythrocytic development from the ring stages (6 h) 
to the late schizont stages (46 h). These data suggests 
that GPI biosynthesis is incipient during stages that also 
exhibit N-glycosylation, thereby supporting earlier con-
clusions from Kimura et al. (1996). N-glycosylation was 
also analysed for other P. falciparum proteins, such as 
MSP-1 and MSP-2. Neither MSP-1 nor MSP-2 exhibited 
lectin affinity or sensitivity to PNGase F, suggesting ab-
sence of N-linked glycans despite the presence of several 
potential N-glycosylation sites in both proteins (Berhe et 
al. 2000). Notably, when MSP-1 was expressed in mam-
malian cells (Murphy et al. 1990, Burghaus et al. 1999, 
Yang et al. 1999) and in the baculovirus system (Kedees 
et al. 2000), the proteins do become N-glycosylated. 

The availability of the P. falciparum genome (Gardner 
et al. 2002) allowed for new studies on enzymes involved in 
N-glycosylation. P. falciparum lacks most of the enzymes 
involved in the assembly of N-glycans and phylogeny 
analyses suggested a secondary loss of Alg glycosyltrans-
ferases. The only two enzymes predicted to be present in 
P. falciparum were Alg7 and Alg14, which are responsible 
for the synthesis of Dol-PP-GlcNAc and Dol-PP-GlcNAc2, 
respectively, and STT3, which is responsible for the trans-
fer of the Dol-PP-oligosaccharide to the Asn residue in the 
N-X-T/S sequon (Templeton et al. 2004, Samuelson et al. 
2005, Anantharaman et al. 2007). Further biochemical 
studies confirmed that P. falciparum synthesises N-gly-
cans that are shorter than their mammalian counterparts, 
namely, Dol-PP-GlcNAc and Dol-PP-GlcNAc2. The type 
of N-glycan that is produced is stage-dependent: early 
ring stages synthesise mainly Dol-PP-GlcNAc whereas 
schizonts synthesise both Dol-PP-GlcNAc and Dol-PP-
GlcNAc2. These glycans are transferred to proteins, such 
as glucosamine-labelled parasite proteins, and they are 
recognised by the GlcNAc-binding G. simplicifolia lec-
tin (GSL-II). This recognition is attenuated by PNGase F 
treatment, which decreases lectin binding (Bushkin et al. 
2010). Although Kimura et al. (1996) did detect GlcNAc 
and GlcNAc2 among the glycans released by PNGase F 
treatment, their detection of larger glycans that were con-
sidered to be mannosylated is not fully understood. The N-
glycan biosynthetic limitations exhibited by Plasmodium 
could explain why Dieckmann-Schuppert et al. (1992a, 
1994) did not observe the transfer of radiolabeled Dol-PP-
(GlcNAc)2Man9 or Dol-PP-(GlcNAc)2Man9Glc to acceptors 
in a cell-free system because, in this system, the oligosac-
charyltransferase would not recognise these structures. 
However, when exogenous peptide acceptors were used, 
glycosylation by endogenous Dol-PP-GlcNAc or Dol-PP-
GlcNAc2 was also not observed (Dieckmann-Schuppert et 
al. 1992a, 1994), which may have resulted from the limited 
size of the internal pool of Dol-PP-GlcNAc and/or Dol-PP-
GlcNAc2, thus making the detection of the corresponding 
reaction products difficult. Bushkin et al. (2010) demon-
strated that fluorescent GSL-II stained the endoplasmic 
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reticulum, rhoptries and the parasite surface, but it did not 
stain the apicoplast, food vacuole, parasitophorous vacu-
ole or the infected erythrocyte. This staining pattern may 
have resulted from the inability of GSL-II to label proteins 
decorated only with GlcNAc. In any case, GSL-II label-
ling of some but not all Plasmodium organelles suggests 
that N-glycosylation may have a role in protein targeting, 
which will need to be analysed in more detail in future 
experiments (Figure, Table).

O-glycosylation in P. falciparum 

Dayal-Drager et al. (1991) investigated the nature 
of the sugar linkage to proteins in P. falciparum. En-
do-O-glucosidase (O-glycanase®) released sugars from 
parasite proteins labelled with tritiated mannose and 
glucosamine and the presence of hexosamines linked 
to serine residues was confirmed by β-elimination/
reduction. Nasir-ud-Din et al. (1992) obtained similar 
results for a 195 kDa merozoite glycoprotein, probably 
MSP-1, thereby confirming the presence of O-GlcNAc, 
O-GalNAc and galactose in this protein. Dieckmann-
Schuppert et al. (1992a) treated galactose, fucose and 
glucosamine-radiolabeled proteins with PNGase-F to re-
move possible N-glycans, purified the resulting material 
by gel filtration and subjected the void volume fraction 
to alkaline β-elimination. About half of the radioactiv-
ity was shifted to the monosaccharide volume, suggest-
ing the release of O-glycans. Dieckmann-Schuppert et 
al. (1993) characterised O-glycosylation reactions us-
ing exogenous galactosylation to identify O-GlcNAc 
in proteins. An analysis of the alditols released after 
β-elimination demonstrated the presence of both reduc-
ing terminal and nonterminal GlcNAc, which could be 
elongated. O-GlcNAc transferase activity in parasite 
lysates was confirmed using exogenous peptide accep-
tors with a Pro-Tyr-Thr-Val-Val sequence and activity 
was higher in the later parasite stages. In contrast to 
the results of Nasir-ud-Din et al. (1992), mucin-type O-
glycans were not detected in this study, which is consis-
tent with later findings reporting that this parasite does 
not possess GalNAc-decorated proteins and is unable 
to synthesise GalNAc. Radiolabeling with GalN dem-
onstrated that this precursor was mostly phosphorylated 
while GalNAc, GlcNAc and the corresponding sugar 
nucleotides were not detectable. These results are con-
sistent with previous data that suggested that Plasmo-
dium organisms are unable to epimerise GalN into GlcN 
and vice-versa, as shown by the absence of detectable 
GalN after labelling with GlcN (Dieckmann-Schuppert 
et al. 1992a, 1993, 1996). Kimura et al. (1996) confirmed 
the presence of O-linked glycoproteins that were most-
ly present in the schizont stage, which is in agreement 
with the identification of an O-GlcNAc modified protein 
in the same stage (Dieckmann-Schuppert et al. 1993). 
However, these authors suggested that the sensitivity 
to O-glycanase® could be attributed to the presence of 
Gal-GalNAc, which is in contrast to the observations of 
Dieckmann-Schuppert et al. (1992a, 1993). In contrast, 
Gowda et al. (1997) suggested that O-glycosylation does 
not take place in P. falciparum intraerythrocytic stages. 

Furthermore, in silico studies on O-glycosylation in P. 
falciparum suggested that this species lacks the genes 
that are necessary for the synthesis of mucin-type O-gly-
cans (Templeton et al. 2004), which supports the find-
ings from Dieckmann-Schuppert et al. (1992a, 1993). 

The presence of O-glycosylation in MSP from P. fal-
ciparum remains controversial. Nasir-ud-Din et al. (1992) 
observed that MSP-1 was modified by O-GlcNAc. Later, 
Khan et al. (1997) concluded that MSP-2 was O-glycosy-
lated using asynchronous P. falciparum cultures. These 
authors employed β-elimination, exogenous galactosyla-
tion assays, lectin binding assays and enzymatic treat-
ments to investigate O-glycosylation, and they observed 
that GlcNAcβ-Ser/Thr was the predominant structure 
whereas Gal-GalNAcα-Ser/Thr was also present to a 
minor degree. This second conclusion is incompatible 
with Dieckmann-Schuppert et al. (1992a, 1993), which 
reported the absence of GalNAc metabolism in P. falci-
parum. In contrast to the findings of Khan et al. (1997), 
Berhe et al. (2000) used a similar experimental approach 
to show that MSP-1 and MSP-2 obtained from merozoites 
were not modified with O-glycans because β-elimination 
caused no effect on the migration of glycopeptides in a 
Bio-Gel P4 column. These conclusions were further sup-
ported using galactosylation and lectin binding assays. 
Neither MSP-1 nor MSP-2 incorporated labelled galac-
tose or bound to the lectins in the assay, indicating that 
the sole post-translational modification of this protein 
was the GPI anchor (Gerold et al. 1996b). Hoessli et al. 
(2003) showed by immunoprecipitation that, in addition 
to the 19-kDa C-terminal fragment that contains the GPI 
anchor, MSP-1 fragments could be labelled with tritiated 
glucosamine. In addition, they also demonstrated that 
both N and C-terminal MSP-1 fragments, as well as the 
whole protein, could be exogalactosylated. Furthermore, 
five different MSP-1 sequences from various P. falcipar-
um strains contained β-GlcNAc (but not α-GlcNAc) sites 
that were predicted in silico. Regarding nucleocytosolic 
O-glycosylation, which is the addition of O-GlcNAc to 

Summary of structures of N- and O-linked glycans expressed by Plas-
modium falciparum. a: Bushkin et al. (2010); b: Kimura et al. (1996), 
Bushkin et al. (2010); c: Dieckmann-Schuppert et al. (1993).
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Ser/Thr residues, no O-linked N-acetylglucosami-
nyltransferase (OGT) related to other organisms was 
identified in the Plasmodium genome (Banerjee et al. 
2009). However, recently, the presence of OGT has 
been investigated using antibodies against OGT, and 
these studies have suggested the presence of O-GlcNA-
cylation in P. falciparum (Perez-Cervera et al. 2010), 
supporting previous observations of GlcNAcβ-Ser/Thr 
in MSP-2 (Khan et al. 1997).

Despite the progress made in elucidating the biol-
ogy of malaria parasites and in the discovery of effec-
tive drugs and anti-vector measures, malaria still re-
mains one of the most important diseases in the world. 
Treatment has become difficult due to the emergence 
of parasites that are resistant to chloroquine and py-
rimethamine. The need for new antimalarial drugs has 
encouraged research to investigate the basic biochem-
istry of the malaria parasites. In the light of the results 
summarised in this review, it is clear that both N- and 
O-glycosylation occur in P. falciparum. However, the 
identity of the proteins that carry these modifications, 
as well as their biological significance in the parasite 
life cycle and their interactions with its vertebrate and 
invertebrate hosts remains to be elucidated. 
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