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Schistosomiasis mansoni is not just a physical disease, but is related to social and behavioural factors as well. 
Snails of the Biomphalaria genus are an intermediate host for Schistosoma mansoni and infect humans through water. 
The objective of this study is to classify the risk of schistosomiasis in the state of Minas Gerais (MG). We focus on socio-
economic and demographic features, basic sanitation features, the presence of accumulated water bodies, dense veg-
etation in the summer and winter seasons and related terrain characteristics. We draw on the decision tree approach 
to infection risk modelling and mapping. The model robustness was properly verified. The main variables that were 
selected by the procedure included the terrain’s water accumulation capacity, temperature extremes and the Human 
Development Index. In addition, the model was used to generate two maps, one that included risk classification for the 
entire of MG and another that included classification errors. The resulting map was 62.9% accurate. 
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Schistosomiasis is caused by the trematoda Schistoso-
ma mansoni, whose main intermediate hosts in Brazil are 
snails of the genus Biomphalaria (Biomphalaria glabrata, 
Biomphalaria tenagophila and Biomphalaria straminea). 
The disease is related to social and behavioural factors, 
particularly inadequate public and environmental sani-
tation and a low level of education about health in the 
populations involved (Doumenge et al. 1987).

Once schistosomiasis risk is identified by both en-
vironmental and social factors, new computerised ana-
lytical tools, known as Geographic Information Systems 
and Remote Sensing Data Analysis, have been used to 
map epidemiological data or analyse satellite images 
(Bavia et al. 2001, Freitas et al. 2006).

In Brazil, geo-processing tools have been used in 
the study of schistosomiasis in the states of Bahia (BA) 
and Minas Gerais (MG). These studies have provided 
risk maps for schistosomiasis infection on a munici-
pality basis by using multiple regression analyses that 
include environmental features, a priori disease prev-
alence data and other spatial data (Bavia et al. 1999, 
2001, Freitas et al. 2006, Guimarães et al. 2006, 2008,  
2009, Martins-Bedê et al. 2009).

In the present paper, a standard data-mining technique, 
the decision tree, was used to identify the severity of dis-
ease prevalence. This technique is based on a recursive 
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partitioning of predictor variables in which knowledge of 
the problem is represented by a decision rules structure. 

Predictive models are used to classify different sam-
ples whose values or labels are not known. In this paper, 
a decision tree model is used to classify the schistosomi-
asis prevalence risk for the whole state. Remote sensing 
data and spatial sociological indicators are used to map 
potential risk areas which are not covered by the  schis-
tosomiasis control program. This map of potential risk 
areas can be used by a decision maker to evaluate mu-
nicipalities outside of the program that have similar en-
vironmental and social conditions to the municipalities 
covered by the program. Moreover, the map can serve as 
a guide for future disease-control efforts in the state.

MATERIALS AND METHODS

Study area - The study area was MG, Brazil. MG is 
590,000 square kilometres in size and is politically divided 
into 853 cities; the area has a tropical climate and includes 
approximately 18 million inhabitants (IBGE 2008).

The distribution of schistosomiasis in MG is irregu-
lar. The state has areas with a high prevalence and areas 
where transmission is low or non-existent. The disease 
is endemic in the northern, eastern and central regions of 
the state, but is not endemic in the Triângulo Mineiro re-
gion or the northwestern and southern parts of the state. 
The greatest rates of infection are found in the northeast-
ern and eastern regions of the state in the Mucuri, Rio 
Doce and Mata zones (Pellon & Teixeira 1950, Katz et 
al. 1978, Carvalho et al. 1987, 2005).

Included variables - Disease prevalence data have 
been provided by the Health Secretary of MG. The prev-
alence is known for 197 out of 853 municipalities in the 
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state (Fig. 1). These data have been used to construct a 
decision tree to classify schistosomiasis risk in all of the 
municipalities in MG.

Sixty-two variables were used. Of these, 22 were de-
rived from both MODIS (Moderate Resolution Imaging 
Spectroradiometer) and SRTM (Shuttle Radar Topog-
raphy Mission) information, six were related to climate 
conditions and 34 emerged from socioeconomic data.

The data were pre-processed so the variables would fit 
the tool’s format. In addition, the classification algorithm 
required that a nominal variable type be predicted. Dis-
ease prevalence data were therefore classified into three 
categories according to the standards of the Secretary of 
Health: low (0-5%), average (> 5-15%) and high (> 15%).

The 62 variables were allocated into six groups rel-
evant to the study of schistosomiasis: socioeconomic 
and demographic data, basic sanitation, presence of wa-
ter bodies accumulation and dense vegetation during the 
summer, presence of water accumulation and dense veg-
etation during the winter, climate and variables related 
to the terrain. Supplementary data presents a description 
of the variables included in each group.

Data on socioeconomic, demographic and sanitation 
variables (Groups 1 and 2) were provided by the Sistema 
Nacional de Indicadores Urbanos (SNIU 2005); some of 
the human development indices were previously used by 
Guimarães et al. (2006). These variables range from 0-1 
and are sometimes expressed as percentages.

Other variable groups (such as the presence of wa-
ter and dense vegetation during the summer and winter) 
were determined by Guimarães et al. (2008) using four 
images (h14v10, h14v11, h13v10, h13v11). These images 
were provided by MODIS sensor and reflect two dates: 
one during the summer and another during the winter 
(17 January 2002 and 28 July 2002). The eight images 
were reprojected using the MODIS Reprojection Tool. 
Further processing was performed using Spatial Plan-
ning for Regions in Growing Economies, Environment 
for Visualizing Images and ArcGis. Further information 
about this data is available in Guimarães et al. (2008). 
The blue band in the summer, blue band in the winter, 

RedS (red band in the summer), RedW (red band in the 
winter), near infrared band in the summer, near infrared 
band in the winter, middle infrared band in the summer 
and middle infrared band in the winter variables are 
each expressed as reflectance (%). The variables gener-
ated using the linear mixture model [RedS, RedW, soil 
in the summer, soil in the winter, shade in the summer 
and ShadeW (shade in the winter)] are also expressed as 
percentages and the EVIS (enhanced vegetation index in 
the summer), EVIW (enhanced vegetation index in the 
winter), normalized difference vegetation index in the 
summer and normalized difference vegetation index in 
the winter variables vary from -0.2-1.

The climate group variables were collected by Guima-
rães et al. (2006) with data collection platforms obtained 
from Centro de Previsão de Tempo e Estudos Climáticos-
Instituto Nacional de Pesquisas Espaciais for both the 
summer (from 17 January - 17 February 2002) and winter 
(from 28 July - 12 August 2002) seasons. The tempera-
ture variables [average of daily maximum temperature in 
the winter, TmaxS (average of daily maximum tempera-
ture in the summer), TminW (average of daily minimum 
temperature in the winter) and average of daily minimum 
temperature in the summer] are expressed in oC and the 
precipitation variables are expressed in mm.

The terrain group variables [Dem (digital eleva-
tion model of terrain) and Dec (slope declivity)] were 
obtained from SRTM Dem obtained during an 11-day 
mission in February 2000. Topographic data of the 
earth’s surface were gathered using orbital Synthetic 
Aperture Radar Interferometry according to the meth-
od described by Guimarães et al. (2008). The Dem var-
iable is given in metres and the Dec variable is given in 
degrees. The other two variables of this group, average 
of accumulated water������������������������������ and m������������������������edian of accumulated wa-
ter, were obtained using the water accumulation area 
map generated from the SRTM Dem. This map meas-
ures the number of possible pathways water can run to 
reach a particular site in a hydrographic basin and the 
resulting values vary from 0-80,000.

Variable selection - The variables under study are 
highly correlated and were preselected; this process 
reduced the total of 62 variables to 12 (2 variables for 
each of the 6 groups). First, three variables from each 
group that are most correlated with the disease were se-
lected. Next, the two least-correlated variables were de-
termined; this process ensured, as much as possible, the 
use of the most informative variables. For each variable, 
the ratio between its correlation with prevalence and its 
correlation with the remaining 15 variables was calcu-
lated; the two variables in each group with the highest 
ratios were ultimately selected.

Software - Waikato Environment for Knowledge 
Analysis (Weka), a public domain software program from 
the University of Waikato, New Zealand, was used to 
perform the pattern recognition analyses. From the avail-
able resources, the well known decision tree algorithm 
C4.5, developed by Quinlan (1993) and implemented as 
the J4.8 procedure inside the Weka software, was used to 
estimate the decision trees (Witten & Frank 2005).

Fig. 1: schistosomiasis prevalence. Source: Health Secretary of the 
state of Minas Gerais.
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Decision trees - The decision tree is a pattern recog-
nition technique and a practical model used in inductive 
inferences. These trees are constructed according to a 
previously classified sample set and, afterwards, other 
unlabelled samples are classified according to this same 
tree. Decision trees are frequently used in applied fields 
like finance, marketing, engineering, health and remote 
sensing (Mitchell 1997, Witten & Frank 2005). The al-
gorithms ID3, ASSISTANT and C4.5 (Quinlan 1993) 
are examples of algorithms used for building these trees. 
These algorithms generally rely on the expected distri-
bution of values for each variable or on the independent 
relationships among variables; the C4.5 algorithm is 
based on the entropy concept.

Decision trees consist of a hierarchy of internal nodes 
and leaves that are connected by edges (branches). Inte-
rior nodes correspond to one of the input variables. Each 
leaf represents a value of the target variable given ranges 
of values of the input variables represented by the path 
from the root to the leaf.

In these structures, the leaves represent classifica-
tions and are associated with a label or a value. Decision 
makers can employ decision trees to identify the best 
strategy to reach an objective (Mitchell 1997, Witten & 
Frank 2005, Theodoridis & Koutroumbas 2006).

This method performs both classification and predic-
tive functions simultaneously. Decision trees use a se-
quence of questions and rules to classify an object or an 
incident within predetermined classes based on attribute 
values. A decision is reached by seeking a path in the tree 
based on a comparison of the value of each input variable 
with the value of its corresponding node; the chosen di-
rection depends on whether the variable’s value is bigger 
than, smaller than or equal to the node value.

The rationale behind any decision tree-based algo-
rithm is to break down a problem into sub-problems 
through a successive division of the feature space; ulti-
mately, a solution for each smaller problem can be found. 
Under this principle, the classifiers based on decision 
trees seek to find ways to successively split the universe 
into several subsets by creating nodes that include the 
respective tests. This process continues until each of the 
nodes becomes a unique class or until one of the classes 
demonstrates a clear dominance that precludes further 
divisions (generating, in this case, 1 leaf that contains 
the majority class). Classification entails following a path 
determined by the successive tests placed along the tree 
until a classification leaf is found (Mitchell 1997, Witten 
& Frank 2005, Theodoridis & Koutroumbas 2006).

During the tree-building process, called the training 
phase (Mitchell 1997, Witten & Frank 2005, Theodo-
ridis & Koutroumbas 2006), it is possible to establish a 
minimum number of training samples to be considered 
in each leaf. The decision tree can be analysed by an 
expert and, if necessary, it can be modified according to 
rules underlying the system’s rationale.

Results assessment - To evaluate the accuracy and 
robustness of the decision rules, the 197 samples were 
randomly allocated into three sets of 132 samples each; 
one third of the samples were always set apart to test each 
estimated decision tree. Decision trees were built for each 

set, compared, and a final decision tree was constructed 
with all 197 samples. All known samples used for build-
ing the tree or for testing were classified; the results were 
summarised in a classification matrix, in which the refer-
ence samples are placed on the rows (Table I). From this 
matrix, the global accuracy (AC) and user accuracy were 
calculated; the AC is the ratio of the number of correctly 
classified samples to the total number of samples and the 
user accuracy is the relative number of correctly classi-
fied samples in a particular class compared to the total 
number of samples in that class. The samples that were 
not initially included in the training set but were used as a 
test set were used to evaluate the generalisation potential 
of the classification method.

RESULTS
 

The 12 selected variables included: HDI-91 (Human 
Development Index in year 1991) and HDIE-91 (Educa-
tion Human Development Index in year 1991) from the so-
cioeconomic and demographic group; % of residence with 
access to water supply by means of wells and % of resi-
dence with sewage connected to rudimentary cesspit from 
the sanitation group; EVIS and vegetation in the summer 
from the group concerning the presence of water and dense 
vegetation during the summer; EVIW and ShadeW from 
the group concerning the presence of water and dense veg-
etation during the winter; TmaxS and TminW from the 
climate group; and AWater2 (median of the accumulated 
water area) and Dec from the terrain group. These varia-
bles, together with the prevalence data, were used to build 
the decision tree based on all 197 samples.

A minimum of 12 samples per leaf was set as a pa-
rameter for the estimation process. This parameter lim-
its the depth of the estimated tree and results, in general, 
in a three-level tree; this depth is a good compromise 
between accuracy over the training samples and gener-
alisation power (i.e., good accuracy over test samples). 
The decision rules generated by the J4.8 Weka algo-
rithm, with 62.9% AC, are shown in Fig. 2.

The total number of classified samples, as well as those 
incorrectly classified, is displayed in parentheses for each 
leaf in Fig. 2 according to each classification rule. 

The variable showing the highest amount of informa-
tion AWater2 is placed at the root of the decision tree. 

TABLE I
Confusion matrix for the tree with 197 samples

Global accuracy (62.9%)

Class (n) Classification

Low 
n (%)

Median
n (%)

High
n (%)

Low (46) 31 (67.4) 8 (17.4) 7 (15.2)
Median (73) 8 (10.9) 29 (39.7) 36 (49.3)
High (78) 2 (2.6) 12 (15.4) 64 (82.1)
User accuracy (%) 75.6 59.2 59.8
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Increasingly homogeneous sets are formed in each tree 
node. When values of this variable are greater than 1.386, 
the samples are classified into median or low prevalence 
depending on the HDIE-91 value: HDIE-91 values less 
than or equal to 0.561 reflect median prevalence and 
other samples are classified as low prevalence. The clas-
sification of samples with AWater2 values less than or 
equal to 1.38 will depend on both temperature (TmaxS 
and TminW) and HDI variables.

When TmaxS values are less than or equal to 30.75oC, 
the samples can be classified as either low prevalence (if 
TminW values are less than or equal to 14.08oC) or high 
prevalence (if TminW values are greater than 14.08oC). 
This classification can be considered coherent since 
studies performed in BA by Bavia et al. (2001) and in 
Ethiopia by Malone et al. (2001) showed that the tem-
perature was a good predictor of the disease.

When TmaxS values are greater than 30.75oC and 
HDI-91 values are less than or equal to 0.607 the samples 
are classified as high prevalence; when HDI-91 values 
are greater than 0.607 the samples are classified as me-
dian prevalence. These variables were also selected by 
Guimarães et al. (2006) as predictor variables.

The selected variables are related to the ideal habitat 
for snails and to people’s life conditions, both of which are 
important factors for disease occurrence. Fig. 3 depicts 
the thematic map obtained by applying the classification 
rules of the decision tree for the whole MG (Fig. 3A) and 
the classification errors for the 197 samples (Fig. 3B).

In Fig. 3B, the light and dark orange areas are munic-
ipalities where classification is underestimated by either 
two prevalence classes or one prevalence class, respec-
tively. That is, the two cities in orange were classified as 
low prevalence class, but they actually belong to the high 
prevalence class. The light and dark blue colours highlight  
municipalities where the classification is overestimated 
by either two or one prevalence class, respectively. Pink-
coloured municipalities were correctly classified.

Table I displays the confusion matrix generated by the 
decision tree. Low prevalence classes presented a user 
accuracy of 75.6%; this means that 75.6% of the samples 
that were classified as low actually belong to the low 
prevalence class.  Similarly, the user classification accu-
racy was about 60% for both high and median prevalence 
classes. These results indicate that there was a significant 
improvement in predictive power when using the clas-
sification procedure (52.3%, 22.1% and 20.2% for low, 
median and high prevalence classes, respectively), when 
compared with the a priori probability of class occur-
rences (calculated as the ratio of the number of a priori 
samples of each class to the total number of samples). The 
improvements are particularly important for median and 
high prevalence classes (from approximately 20-60%). 

Decision tree robustness evaluation - Using the three 
sets with 132 training samples, three decision trees (A, B 

Fig. 2: graphical representation of the decision tree. Temperature in 
oC. Human Development Index (HDI) is defined between 0-1. The 
median of the accumulated water area (AWater2) is a dimensionless 
counting. HDI-91: Human Development Index in year 1991; HDIE-91: 
Education Human Development Index in year 1991; TmaxS: average 
of daily maximum temperature in the summer; TminW: average of 
daily minimum temperature in the winter.

Fig. 3: A: schistosomiasis prevalence classified by the decision tree; 
B: classification errors.
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and C) were generated; these trees used the same input 
parameter as the previously built tree, which included 
at least 12 samples per leaf. Fig. 4 displays the graphi-
cal representation of decision trees A, B and C. These 
trees reached AC values of 65.2%, 62.1% and 65.9%, re-
spectively. These values are similar to the value reached 
(62.9%) by the general tree built with all 197 samples. 
In addition, with the exception of tree A (Fig. 4A), the 
estimated trees presented approximately the same topol-
ogy as the global tree. These findings allow us to infer 
a relative robustness of these procedures; the change in 
initial conditions did not result in major instabilities to 
the tree generation. 

For a better visualisation, Table II shows the vari-
ables and groups selected by the general decision tree 
and by the three other trees (A, B and C).

Note that tree A is quite different from the other two 
trees. While all of the trees used different variables, sev-
eral of the variables belonged to the same groups: vari-
ables EVIW and ShadeW, for example, were from “the 

presence of water and dense vegetation during the win-
ter group”, and variables Dec and AWater2 were from 
the “terrain” group.

There are additional similarities among these three 
trees: variables EVIW and AWater2, selected for the 
first division of the trees, do not belong to the same vari-
able group, but are highly (0.47) inversely correlated; 
variables TmaxS and TminW also do not belong to the 
same groups as variables HDI-91 and HDIE-91, but are 
highly (0.53 and 0.91) inversely correlated.

Of the six groups of variables, only the variables from 
the “sanitation” and “presence of water and dense vegeta-
tion during the summer” groups were not selected in any 
of the four trees (Table II). Most likely, these variables 
were not excluded because they are unimportant, but 
because they are highly correlated with variables from 
other groups that better explain the disease.

Comparisons among the three sub-trees (Fig. 4) and 
the general tree (Fig. 2) show that tree B (Fig. 4B) and 
tree C (Fig. 4C) are very similar to the general tree. It 

Fig. 4: graphical representation of decision trees A (A), B (B) and C (C). Temperature in oC. The median of the accumulated water area (AWater2) 
is a dimensionless counting. Slope declivity (Dec) is given in degrees. The shade in the winter (ShadeW) is given in percentage (%) between 
0-100. Human Development Index (HDI) is defined between 0-1. EVIW: ���������������������������������������������������������������enhanced vegetation index in the winter; HDI-91: Human Develop-
ment Index in year 1991; HDIE-91: Education Human Development Index in year 1991; TmaxS: average of daily maximum temperature in the 
summer; TminW: average of daily minimum temperature in the winter.

TABLE II
Selected variables

Trees Selected variables Groups

General AWater2, TmaxS, TminW, HDI-91, HDIE-91 Terrain, climate, socioeconomic
A EVIW, TmaxS, TminW, Dec Presence of water and dense vegetation during winter,  

climate, terrain
B AWater2, HDI-91, ShadeW, HDIE-91 Terrain, socioeconomic, presence of water and dense  

vegetation during winter
C AWater2, TminW, ShadeW, HDI-91 Terrain, climate, socioeconomic, presence of water and  

dense vegetation during winter

AWater2: median of accumulated water; Dec: slope declivity; EVIW: enhanced vegetation index in the winter; HDI-91: Human 
Development Index in year 1991; HDIE-91: Education Human Development Index in year 1991; ShadeW: shade in the winter; 
TmaxS: average of daily maximum temperature in the summer; TminW: average of daily minimum temperature in the winter. 
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is significant that the right branches of both the general 
tree and tree B are identical and that the central branches 
of the general tree and tree C differ only because of the 
presence of TmaxS in the former and TminW in the lat-
ter. Such comparisons allow us to demonstrate that, al-
though there are clear differences among the trees, strong 
similarities among variables can also be observed in each 
of them. These similarities are either because the vari-
ables belong to the same group or because variables from 
different groups are highly correlated. Table III shows the 
association of the confusion matrix to the classifications 
of the three sub-trees.

Similarities can be also observed when comparing 
the general confusion matrix (Table I) with the A, B and 
C confusion matrices (Table III). In particular, it is dif-
ficult to separate median and high classes.

Table III shows the user accuracy values for the low 
prevalence classification; tree B has the highest value 
while trees A and C have lower, but similar, values. The 
highest user accuracy value for the median prevalence 
classification is found in tree A. On the other hand, the 

samples classified as high prevalence showed approxi-
mately the same accuracy values in all trees; the highest 
value was found in tree C.

To evaluate the generalisation potential of trees A, 
B and C, the samples that were not initially included 
were classified using the decision rules of each tree. 
Table IV displays the confusion matrices of the test 
samples for trees A, B and C and the total confusion 
matrix that is the sum of the confusion matrices of all 
trees. As expected, these values are lower than those 
found in the training sets.

Table IV shows that the highest user accuracy value 
for the low prevalence classification was found in test 
matrix B; this finding is similar to that for training data 
(sub-tree B, Table III). The highest user accuracy value 
for the high prevalence classification was also found in 
test matrix B; this finding is different from the matrix of 
sub-tree B (Table III). Finally, the highest user accuracy 
value for the median prevalence classification was found 
in test matrix A (Table IV) and also occurs in the matrix 
of sub-tree A (Table III).

TABLE III
Confusion matrix of the sub-trees A, B and C

Tree A - Global accuracy (65.2%)

Class (n) Classification

Low
n (%)

Median
n (%)

High
n (%)

Low (28) 22 (78.57) 0 (0) 6 (21.43)
Median (48) 11 (22.92) 16 (33.33) 21 (43.75)
High (56) 2 (3.57) 6 (10.71) 48 (85.71)
User accuracy (%) 62.86 72.73 64

Tree B - Global accuracy (62.1%)

Class (n) Classification

Low
n (%)

Median
n (%)

High
n (%)

Low (31) 14 (45.16) 12 (38.71) 5 (16.13)
Median (54) 3 (5.56) 43 (79.63) 8 (14.81)
High (47) 0 (0) 22 (46.81) 25 (53.19)
User accuracy (%) 82.35 55.84 65.79

Tree C - Global accuracy (65.9%)

Class (n) Classification

Low
n (%)

Median
n (%)

High
n (%)

Low (33) 20 (60.61) 5 (15.15) 8 (24.24)
Median (45) 7 (15.56) 25 (55.56) 13 (28.89)
High (54) 4 (7.41) 8 (14.81) 42 (77.78)
User accuracy (%) 64.52 65.79 66.67
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The user accuracy for the sum of test matrices A, 
B and C for the median and high prevalence classifi-
cations are approximately 20% different from the user 
accuracy shown in the main confusion matrix. On the 
other hand, the user accuracy of the low prevalence 
classification was 13.11%. This result was expected 
because of the difficulty of separating the median and 
high classes in all four trees.

The variables selected by this methodology are those 
that are normally accepted as important factors for the 

TABLE IV
Confusion matrices of the test set of the sub-trees A, B and C

Test sub-tree A - Global accuracy (38.5%)

Class (n) Classification

Low
n (%)

Median 
n (%)

High 
n (%)

Low (18) 6 (33.33) 2 (11.11) 10 (55.56)
Median (25) 2 (8) 5 (20) 18 (72)
High (22) 3 (13.64) 5 (22.73) 14 (63.64)
User accuracy (%) 54.55 41.67 33.33

Test sub-tree B - Global accuracy (50.8%)

Class (n) Classification

Low
n (%)

Median 
n (%)

High 
n (%)

Low (15) 10 (66.67) 4 (26.67) 1 (6.67)
Median (19) 1 (5.26) 14 (73.68) 4 (21.05)
High (31) 3 (9.68) 19 (61.29) 9 (29.03)
User accuracy (%) 71.43 37.84 64.29

Test sub-tree C - Global accuracy (40%)

Class (n) Classification

Low
n (%)

Median 
n (%)

High 
n (%)

Low (13) 9 (69.23) 1 (7.69) 3 (23.08)
Median (28) 5 (17.86) 4 (14.29) 19 (67.86)
High (24) 1 (4.17) 10 (41.67) 13 (54.17)
User accuracy (%) 60 26.67 37.14

Test A, B and C - Global accuracy (43.1%)

Class (n) Classification

Low
n (%)

Median 
n (%)

High 
n (%)

Low (46) 25 (54.35) 7 (15.22) 14 (30.43)
Median (72) 8 (11.11) 23 (31.94) 41 (56.94)
High (77) 7 (9.09) 34 (44.16) 36 (46.75)
User accuracy (%) 62.50 35.94 39.56

presence of schistosomiasis (i.e., the ideal habitat for the 
transmission host and human population life conditions). 
Some of the variables, such as the HDI, temperature and 
vegetation indices, were previously used in other inves-
tigations focused on using multiple regression analysis 
to predict the disease. This technique was fairly reliable 
and is consistent with other explanations of schistosomi-
asis prevalence. Furthermore, this classification method, 
expressed in terms of simple decision rules, is usually 
easy to understand. 
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DISCUSSION

The results demonstrate the difficulty of separating 
median and high classes of prevalence. Nevertheless, the 
improvement in user accuracy was significant, moving 
from a priori estimates of roughly 20% to a posteriori 
estimates of roughly 60% for these two classes. Approxi-
mately 63% of the samples were correctly classified with 
trees built from either all of the samples or two thirds of 
them. This indicates that, in spite of the rather low AC, 
the procedure is robust enough that the results do not 
change considerably when the training samples are var-
ied. This paper and others show that the generalisation 
of environmental variables at the municipal level has 
reached its limits. To improve the quality of predictive 
maps it will be necessary to improve the geo-localisation 
of training data. Public resources for combating the dis-
ease are scarce, but the use of decision rules, which are 
easy for public policy experts to understand, will allow 
limited resources to be put to more efficient use.
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