Characterization of protective and non-protective surface membrane carbohydrate epitopes of Schistosoma mansoni

Albert I. Ko Donald A. Harn About the authors

Abstract

We have produced a number of monoclonal antibodies, protective and non-protective, which recognize a complex of schistosomula antigens, including the 38 kDa antigen. Eight different protective and non-protective monoclonal antibodies, varying in isotypes, were used in the binding assays. Lectin inhibition studies suggested that the monoclonal antibodies probably recognized carbohydrate epitopes on the antigen(s). Immunoprecipitation studies showed that at least two of the monoclonal antibodies recognized different epitopes on the same molecule. Additionally, we tested for monoclonal antibody binding after the antigens were treated with; 1) proteases, 2) periodate, 3) various exo- and endoglycosidases, 4) mild acid hydrolysis. We also tested for binding of the antibodies to keyhole limpet hemocyanin (KLH). Using the 8 monoclonal antibodies as probes, we were able to define at least 4 different carbohydrate epitopes related to the protective monoclonal antibodies, and at least one epitope which is seen by the non-protective antibodies. The epitope seen by the non-protective antibodies was shown to be cross-reactive with epitopes on KLH. These results demonstrate the importance of epitope mapping studies for any defined vaccine.


ABSTRACT

Characterization of protective and non-protective surface membrane carbohydrate epitopes of Schistosoma mansoni

Albert I. Ko1

Donald A. Harn1

Harvard School of Public Health, Department of Tropical Public Health, Boston, USA

We have produced a number of monoclonal antibodies, protective and non-protective, which recognize a complex of schistosomula antigens, including the 38 kDa antigen. Eight different protective and non-protective monoclonal antibodies, varying in isotypes, were used in the binding assays. Lectin inhibition studies suggested that the monoclonal antibodies probably recognized carbohydrate epitopes on the antigen(s). Immunoprecipitation studies showed that at least two of the monoclonal antibodies recognized different epitopes on the same molecule. Additionally, we tested for monoclonal antibody binding after the antigens were treated with; 1) proteases, 2) periodate, 3) various exo- and endoglycosidases, 4) mild acid hydrolysis. We also tested for binding of the antibodies to keyhole limpet hemocyanin (KLH). Using the 8 monoclonal antibodies as probes, we were able to define at least 4 different carbohydrate epitopes related to the protective monoclonal antibodies, and at least one epitope which is seen by the non-protective antibodies. The epitope seen by the non-protective antibodies was shown to be cross-reactive with epitopes on KLH. These results demonstrate the importance of epitope mapping studies for any defined vaccine.

Full text available only in PDF format.

Texto completo disponível apenas em PDF.

Publication Dates

  • Publication in this collection
    26 June 2009
  • Date of issue
    1987
Instituto Oswaldo Cruz, Ministério da Saúde Av. Brasil, 4365 - Pavilhão Mourisco, Manguinhos, 21040-900 Rio de Janeiro RJ Brazil, Tel.: (55 21) 2562-1222, Fax: (55 21) 2562 1220 - Rio de Janeiro - RJ - Brazil
E-mail: memorias@fiocruz.br