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The Flaviviridae is a family of about 70 mostly arthropod-borne viruses many of which are major
public health problems with members being present in most continents.  Among the most important are
yellow fever (YF), dengue with its four serotypes and Japanese encephalitis virus.  A live attenuated
virus is used as a cost effective, safe and efficacious vaccine against YF but no other live flavivirus
vaccines have been licensed.  The rise of recombinant DNA technology and its application to study
flavivirus genome structure and expression has opened new possibilities for flavivirus vaccine develop-
ment.  One new approach is the use of cDNAs encopassing the whole viral genome to generate infectious
RNA after in vitro transcription.  This methodology allows the genetic mapping of specific viral func-
tions and the design of viral mutants with considerable potential as new live attenuated viruses.  The use
of infectious cDNA as a carrier for heterologous antigens is gaining importance as chimeric viruses are
shown to be viable, immunogenic and less virulent as compared to the parental viruses.  The use of DNA
to overcome mutation rates intrinsic of RNA virus populations in conjunction with vaccine production in
cell culture should improve the reliability and lower the cost for production of live attenuated vaccines.
The YF virus despite a long period ignored by researchers probably due to the effectiveness of the
vaccine has made a come back, both in nature as human populations grow and reach endemic areas as
well as in the laboratory being a suitable model to understand the biology of flaviviruses in general and
providing new alternatives for vaccine development through the use of the 17D vaccine strain.
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The Flavivirus genus consists of about 70 vi-
ruses mostly arthropod-borne, being transmitted to
vertebrates by mosquitoes or ticks.  These viruses
can be divided into eight serological subgroups
based on cross neutralization tests and members
of these groups exist in most continents being re-
sponsible for significant human disease in these
areas.  The most important flaviviruses are yellow
fever (YF) in the Americas and Africa (Monath
1999) dengue (DEN) virus with its four serotypes
and its spreading throughout the tropics with in-
creasing frequency of the more severe forms of
this disease (dengue hemorrhagic fever and den-
gue shock syndrome, Halstead 1988) as well as
Japanese encephalitis (JE) with its epidemic and
endemic profile in Asia (Monath 1988).  Control
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of flavivirus transmission has been accomplished
mainly by vector control measures and vaccina-
tion.  Approved vaccines are available only for YF
using the attenuated live 17D virus (Theiler &
Smith 1937a,b), tick-borne encephalitis (TBE) and
JE both as inactivated virus.  For DEN and JE vi-
ruses candidate vaccines have been developed us-
ing serial passages in cultured vertebrate cells and
tested in humans (Bhamarapravati & Yoksan 2000)
but so far none has been licensed.

YF VACCINE DEVELOPMENT

In 1927 the Asibi strain (Stokes et al. 1928) of
wild YF virus was isolated from a young African
named Asibi by passage in Rhesus monkey
(Macaca mulatta).  In 1935 the Asibi strain was
adapted to growth in mouse embryonic tissue
(Lloyd et al. 1936).  After 17 passages the virus,
named 17D, was further cultivated until passage
58 in whole chicken embryonic tissue and thereaf-
ter until passage 114 in denervated chicken em-
bryonic tissue only.  At this stage Theiler and Smith
(1937a) showed the marked reduction in viral
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viscero and neurotropism when inoculated intrac-
erebrally in monkeys.  This virus was further sub-
cultured until passages 227 and 229 and these vac-
cines without human immune serum were used to
immunize eight human volunteers (Theiler &
Smith 1937b). With satisfactory results, as shown
by the absence of adverse reactions and serocon-
version for YF in two weeks, larger scale immuni-
zation was carried out in Brazil (Smith et al. 1938).

The YF 17D virus is one of the most success-
ful vaccines developed to date.  It has a well-de-
fined  and efficient production methodology, there
is strict quality control including monkey
neurovirulence testing, it induces long lasting im-
munity, it is cheap and  single dose.  Its use has
been estimated use to be over 200 million doses
with an excellent record of safety.  Here, only 21
cases of post-vaccinal encephalitis have been re-
corded after seed lot system implementation in
1945 with incidence on very young infants (< 9
months; rate of 0.5-4/1000 and ≥ 9 months, 1/8
million; WHO 1993, Monath 1999).

With such characteristics it was appealing to
attempt to use of 17D as vector for the expression
of heterologous antigens what might lead to the
development of new live vaccines.

YELLOW FEVER VIRUS GENOME STRUCTURE AND
EXPRESSION

The flaviviruses are spherical viruses with 40-
60 nm in diameter with an icosahedral  capsid
which contains a single positive-stranded RNA
molecule.  Its replication is entirely cytoplasmic
and budding in general occurs into the lumen of
the rough endoplasmic reticulum cisternae.  With
the development of recombinant DNA technology,
novel approaches to understanding RNA virus ge-
nome structure and expression were possible.  For
flaviviruses the first studies appeared in the mid
80’s and included the complete genome sequences
of YF 17D (Rice et al. 1985) and West Nile vi-
ruses (WN; Wengler et al. 1985).  Nucleotide and
protein sequence data were subsequently obtained
by several laboratories and are the basis for our
current knowledge of genome structure and expres-
sion.

The YF virus RNA genome consists of 10,862
nucleotides in length with short 5' (118 nucleotides)
and 3' (511 nucleotides) untranslated regions, a 5'
cap structure and a nonpolyadenylated 3' end.
Conserved RNA sequences and secondary struc-
tures which may be important for flavivirus repli-
cation and/or packaging have been identified
(Chambers et al. 1990a).  This single RNA is also
the viral message and its translation in the infected
cell results in the synthesis of a polyprotein pre-
cursor which undergoes postranslational, but pos-

sibly also cotranslational, proteolytic processing to
generate ten virus-specific polypeptides.  From the
5' terminus the order of the encoded proteins is the
following: C-prM/M; E, NS1, NS2A, NS2B, NS3,
NS4A, NS4B, NS5 (Rice et al, 1985; see Fig. 1).

Fig. 1: schematic of the flavivirus genome structure expres-
sion.  The top represents the whole flavivirus genome with the
structural and nonstructural protein coding regions.  The boxes
below the genome represent precursors and the mature viral
proteins generated by proteolytic processing.  Shaded boxes
represent the structural proteins and open boxes the
nonstructural proteins.  Black bars represent the stretches of
hydrophobic amino acids and asterisks the N-linked
glycosylation sites.  Asterisks represent cleavage by cellular
signalase; solid arrows, cleavage by the viral NS2B-NS3 com-
plex, including the cleavage of the anchored form of the capsid
protein; the open arrow at the NS1/2A cleavage is a novel still
unknown proteolytic activity.

The first three proteins constitute the structural
proteins, that is, form the virus together with the
packaged RNA molecule and were named capsid
(C, 12-14kDa), membrane (M, and its precursor
prM, 18-22 kDa) and envelope (E,52-54 kDa) all
being encoded in the first quarter of the genome.
The remainder of the genome codes for the
nostructural proteins (NS) numbered in the order
of synthesis from 1 through 5.  Three large
nonstructural proteins have highly conserved se-
quences among flaviviruses, NS1 (38-41 kDa),
NS3 (68-70 kDa) and NS5 (100-103 kDa).  A role
in the replication of the negative strand RNA has
been assigned to NS1 (Muylaert et al. 1996, 1997,
Lindenbach & Rice 1997, 1999).  NS3 has been
shown to be bifunctional with a protease activity
needed for the processing of the polyprotein at sites
where the cellular proteases will not (Chambers et
al. 1990b, Falgout et al. 1991, Yamshikov &
Compans 1995, Yamshchikov et al. 1997, Stocks
& Lobigs 1998) and nucleotide triphosphatase/
helicase activities (Gorbalenya et al. 1989, Wengler
& Wengler 1993) being therefore also associated
with viral RNA replication.  NS5, the largest and
most conserved viral protein, contains several se-
quence motifs believed to be common to viral RNA
polymerases (Chambers et al. 1990a, O´Reilly &
Kao 1998) and exhibits RNA-dependent RNA
polymerase activity (Steffens et al. 1999).  A num-
ber of cis and trans acting elements in flavivirus
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RNA replication have been identified (Kromykh
et al. 2000).

The four small proteins NS2A, NS2B, NS4A
and NS4B are poorly conserved in their amino acid
sequences but not in their pattern of multiple hy-
drophobic stretches.  NS2A has been shown to be
required for proper processing of NS1 (Falgout et
al. 1989) whereas NS2B has been shown to asso-
ciate with NS3 to constitute the active viral pro-
tease complex (Falgout et al. 1991, Chambers et
al. 1993, Jan et al. 1995).  NS4A has been sug-
gested to interact with NS1 integrating it into the
cytoplasmic process of RNA replication
(Lindenbach & Rice 1999).  Since viral RNA syn-
thesis takes place in the cytosol in association with
RER membranes it has been postulated that these
hydrophobic proteins would be embebded in mem-
branes and through protein-protein interactions
participate in viral replication complexes together
with NS3 and NS5 (Rice 1996).

Among the possibilities to apply molecular
techniques to the development of new vaccines our
capability of recovering virus from cloned DNA
in which genetic modifications are made is of ut-
most importance and described below.

INFECTIOUS CLONE TECHNOLOGY

In order to manipulate RNA genomes, comple-
mentary DNAs corresponding to the complete ge-
nome must be available to allow introducing ge-
netic modifications at any particular site of the vi-
ral genome.  The pioneer study of Racaniello and
Baltimore (1981)  first showed the feasibility to
generate poliovirus from cloned cDNA.  With the
development of in vitro transcription systems it
became possible to synthesize in vitro full length
viral RNA with a much higher efficiency as com-
pared to cDNA transcription in the cell.  The de-
velopment of more efficient transfection method-
ologies such as cationic liposomes and elec-
troporation improved the efficiency of RNA trans-
fection of cultured cells.  The basic methodology
for what is known today as infectious clone tech-
nology was set.  For a number of positive stranded
viruses, infectious cDNA has been obtained and
can be used to understand the molecular basis of
several biological phenomena such as: virulence/
attenuation, cell penetration, replication, host range,
conditional mutants and the design of mutants in
genome regions for which no function is known.
Conceivably development of new live vaccine vi-
ruses could or should include mutations in differ-
ent areas as to render reversion less likely and af-
fect one or more of the traits above.  The Table
shows a list of infectious clones presently avail-
able and some of the studies which have been car-
ried out using this technology.

THE USE OF YF 17D VIRUS FOR THE EXPRESSION
OF HETEROLOGOUS FLAVIVIRUS PROTEINS

Characteristics of YF17D viruses recovered
from cDNA -  The first aspect that has to be con-
sidered when using a given flavivirus cDNA back-
bone for the expression of heterologous proteins
is whether one can indeed recover virus with the
same phenotypic markers as originally present in
the virus population that gave rise to the cDNA
library.  For YF 17D these analyses would be im-
portant to set the precedent for infectious clones
derived vaccines given the well known safety and
efficacy of YF 17D vaccine.  It would also be im-
portant to show that indeed attenuated virus can
be recovered from the cDNA which is to be used
as a vector for heterologous antigens such as den-
gue.  However, the virus recovered from the first
version of the infectious clone based on 17D-204
virus (see Fig. 2) gave rise to virus with a slightly
higher clinical score in a monkey neurovirulence
test (Marchevsky et al. 1995).  Although these re-
sults showed the virus was not ideally attenuated
for YF 17D vaccine it was the first demonstration
for a flavivirus that it was possible to develop from
a few micrograms of DNA template a whole seed
lot under good manufacturing practices (GMP) us-
ing current methodology for the production of YF
vaccine.

Galler et al. (unpublished) have approached the
recovery of fully attenuated virus from YF cDNA
by engineering a number of mutations into the
original 17D-204 cDNA (Rice et al. 1989) based
on the sequence of the 17DD substrain (Duarte dos
Santos et al. 1995).  This substrain has been used
in Brazil for YF vaccine production since the late
30’s with excellent records of efficacy and safety.
Here, virus was recovered from the genetically-
modified cDNA template through the transfection
of certified CEF cells under GMP.  Altogether three
transfection lots were derived which gave rise to
two primary and three secondary seed lots all in
by further passaging in CEF cells with all the rel-
evant quality controls as established for measles
vaccine production using this cell system.  Aver-
age titer of formulated virus was 6.7 log10PFU/
ml.  Further analysis of viral genetic stability was
carried out by: serial passaging in CEF cultures
and studying several parameters such as plaque
size, mouse neurovirulence and nucleotide se-
quence determination with satisfactory  results.
The final phenotypic analysis that requires the in-
ternationally accepted monkey neurovirulence test-
ing is ongoing.

It follows below the presentation of some
progress towards the development of new live
flavivirus vaccines using YF 17D virus.  The ex-
amples include the creation of chimeric viruses
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TABLE

Flavivirus infectious clones and applications

YELLOW FEVER
E: changes in domains I, II, III. Vaccine (Galler et al. unpublished) and Asibi-related (C Rice, pers. commun.)
NS1: N-linked glycosylation mutants, charged-to-alanine mutants (Muylaert et al. 1996, 1997)
NS2A/2B: mutagenesis of cleavage site (Nestorowicz et al. 1994)
NS2B: changes in variable hydrophobic and conserved hydrophilic domains (Chambers et al. 1993)
NS3: mutagenesis at the catalytic triad of protease domain (Chambers et al. 1990b).
NS4A/4B: mutagenesis at the signalase cleavage site (Lin et al. 1994)
NS5: vaccine (Galler et al. unpublished) and Asibi-related (C. Rice, pers. commun.)
Construction of chimeric viruses: JE (Chambers et al. 1999, Guirakhoo et al. 1999, 2000, Monath et al. 1999,
2000). DEN-2 (Lindenbach & Rice 1999, Galler et al. in preparation)

DENGUE TYPE 2
Strains: New Guinea C (Kapoor et al. 1995), PDK53/16881 (Kinney et al. 1997), NGC/PUO218 (Gualano et
al. 1998)
E: reversion to virulence in mice (Gualano et al. 1998, Bray et al. 1998)
NS1: protein secretion and dimer formation (Pryor et al. 1998)
NS3: temperature-sensitive mutant (Kinney et al. 1997)
Construction of chimeric viruses: DEN-2/1 (Huang et al. 2000)
Mapping attenuation determinants (Butrapet et al. 2000)

DENGUE TYPE 4
E: virulence for mice (Bray et al. 1992)
NS1: N-linked glycosylation mutants (Pletnev et al. 1993)
5’ end: changes in conserved sequence (Cahour et al. 1995)
3’ end: deletions (Men et al. 1996)
Construction of chimeric viruses: Den1-2-3, TBE, Langat (Lai et al. 1998)

JAPANESE ENCEPHALITIS
E:  virulence in mice (Sumiyoshi et al. 1992)

OTHER FLAVIVIRUS INFECTIOUS CLONES
Den 1 cloned in yeast (Pur et al. 2000)
Kunjin (Kromykh & Westaway 1994)
TBE (Mandl et al. 1998)

through the exchange of prM/M/E genes (Fig. 3)
as first established for DEN-4 virus chimeras (Lai
et al. 1998).  This allows the removal of the major
immunogens of the vector thereby reducing the
criticism on previous immunity to the vector.  It
remains to be carefully established whether immu-
nity to NS1 and NS3 proteins may hamper repli-
cation of the virus and reduce its immunogenicity.

Construction of chimeric flaviviruses - The con-
struction of chimeric viruses as an alternative to
developing new vaccines based on the mapping of
virulence determinants has become a reality.  The
rationale behind this approach is to have cDNA
from a virus with well known vaccine properties
and to use this cDNA as a carrier for heterologous
antigens, once the virus recovered from it is also
shown to be attenuated.  The feasibility of this ap-
proach was first demonstrated for poliovirus (re-
viewed in Rose & Evans 1990).  The development

of infectious cDNA for dengue virus type 4 (Lai et
al. 1991) allowed the construction of new chimeric
dengue viruses (Bray & Lai 1991, Lai et al. 1998,
see Fig. 3).  The prM/M/E genes of dengue virus
serotypes 1, 2 and 3 were inserted into the dengue
4 infectious clone resulting in chimeric virus with
reduced virulence for mice and monkeys (Lai et
al. 1998).  The same type of construction was
made for TBE and Langat viruses (Pletnev et al.
1992, 1993, Pletnev & Men 1998) resulting in
virus attenuated for mice.  The main pitfall with
the development of such chimeras with dengue
type 4 virus infectious cDNA is the fact that the
DEN-4 backbone derives from a wild type virus.
On the other hand, having the YF 17D virus gen-
erated from infectious cDNA produced accord-
ing to GMP using current methodology for YF and
having shown its attenuation, it would be worth
trying to construct chimeric viruses having the 17D
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Fig. 2: passage history of the original yellow fever (YF) Asibi
strain and derivation of YF 17D vaccine strain and its
substrains. The YF virus Asibi strain was subcultured in em-
bryonic mouse tissue and minced whole chicken embryo with
or without nervous tissue. These passages yielded the parent
17D strain at passage level 180, 17DD at passage 195, and the
17D-204 at passage 204. 17DD was further subcultured until
passage 243 and underwent 43 additional passages in embryo-
nated chicken eggs until the passage 284 which is currently
the passage for vaccine batches in use for human vaccination.
The 17D-204 was further subcultured to produce Colombia
88 strain which, upon passage in embryonated chicken eggs,
gave rise to vaccine seed lots currently in use in France (I
Pasteur, at passage 235) and in the USA (Connaught, at pas-
sage 234). The 17D-213 strain was derived from 17D-204 when
the primary seed lot (S1 112-69) from the Federal Republic of
Germany (FRG 83-66) was used by the World Health Organi-
zation (WHO) to produce an avian leukosis virus-free 17D
seed (S1 213/77) at passage 237. This 213/77 seed was used
to prepare a primary seed at the Oswaldo Cruz Foundation
(Fiocruz S1) which was passed once more in cultured chicken
embryo fibroblasts to produce experimental vaccine batches
at passage 239.

backbone and prM/M/E genes of DEN viruses
fused in frame to it as to make up the complete
flavivirus genome and hopefully functional.  The
production and testing of such chimeric viruses
could be carried out as determined for YF virus.

Development of YF 17D/JE chimeric viruses -
Chambers et al. (1999) have described the first
chimeric virus developed with the YF 17D cDNA

from Rice et al. (1989) by the exchange of the prM/
M/E genes with cDNA derived from JE SA14-14-
2 and Nakayama strains of JE virus.  The former
corresponds to the live attenuated vaccine strain in
use nowadays in China.

Guirakhoo et al. (1999) and Monath et al. (1999,
2000) have brought it closer to vaccine develop-
ment.  Here, chimeric virus was recovered after
transfection of certified FRhL cells with five addi-
tional passages of the virus to produce seed lots
and experimental vaccine lot (5th passage) all un-
der GMP in certified cells.  Virus yields in this cell
system were not provided.

Chimeric virus retained nucleotide/amino acid
sequences present in the original SA14-14-2 strain.
This vaccine strain differs, in prM/M/E region,
from the parental virus in six positions (E-107;
E138; E176: E279; E315; E439).  Mutations are
stable across multiple passages in cell culture
(Vero) and mouse brain but not in FRhL cells.
Despite previous data on the genetic stability of
such virus, one of the four changes in the E protein
related to viral attenuation had reverted, during the
passaging to produce the secondary seed.

Initial phenotypic characterization of FRhL 5th
passage virus by inoculation in mice suggested it
is not neurovirulent in contrast to the 17D vaccine
virus.  Monkey neurovirulence test with YF 17D
virus and 17D/JE-FRhL-3rd passage resulted in low
viremia for both viruses and lower clinical and his-
topathological scores for the chimeric virus as com-
pared to 17D.

In a dose-response study neutralizing antibod-
ies specific for prM/M/E were elicited in all groups
of monkeys with different doses even with as little
as 100 PFUs and conferred full protection against
IC challenge with wild type JE.  However, the lower
the chimeric virus dose the more residual histo-
pathological changes were noted in the SNC after
IC challenge with wild type JE virus.  Thirteen/
sixteen monkeys developed significant increase in
N antibodies after challenge suggesting viral rep-
lication and booster immune response. It was con-
cluded that Chimerivax 17D/JE SA14-14-2 virus
meets preclinical safety and efficacy requirements
for a human vaccine, it appears safer than 17D vi-
rus but has a similar profile of immunogenicity and
protective efficacy.

Development of chimeric 17D/dengue viruses
- The first chimeric 17D/dengue virus developed
(Guirakhoo et al. 2000) involved prM/M/E gene
replacement (fusion at the signalase cleavage site,
Fig. 3) with a den2 cDNA from PUO218 strain
(wild type virus from a DF case, Thailand 1980).
All virus regeneration and passaging was done in
Vero PM cells (a cell bank from Pasteur-Merieux)
allegedly certified for live vaccine virus produc-
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tion.  Recombinant virus retained PUO218 prM/
M/E sequences even after 18 serial passages in
Vero cells but some variation was noted in YF
genes.  Phenotypic analysis of chimeric 17D/den2
virus showed it does not kill mice even at high doses
(6 log10 PFU) in contrast to YF 17D which kills
nearly 100% at 3 log10PFU.  Antibody response
and full protection were elicited by the 17D-DEN2
chimera in both YF immune and flavivirus-naive
monkeys.  In a dose response study even at the
lowest dose (2 log10PFU) chimeric virus replicated
sufficiently to induce a protective neutralizing an-
tibody response as no viremia was detected in these
animals after challenge with a wild type dengue 2
virus.

Galler et al. (in preparation) have also devel-
oped a similar chimeric 17D-DEN-2 virus.  How-
ever, the 17D backbone used was different since it
was the modified version of it (Galler et al. in prepa-
ration, see above).  In addition to using the DEN-2
prM//M/E genes of the DEN-2 PUO218 strain they
have also derived a second chimeric virus contain-
ing the carboxi terminal third of E from a Brazil-
ian strain of DEN-2 virus.  These viruses were char-

acterized at the genomic level by RT/PCR with YF/
Den-specific primers and nucleotide sequencing
over fusion areas and the whole DEN2-moieties.
The polyprotein expression/processing was moni-
tored by SDS-PAGE analysis of radiolabeled viral
proteins immunoprecipitated with specific antis-
era, including monoclonal antibodies.  Recogni-
tion of YF and DEN-2 proteins by hiperimmune
antisera, and monoclonal antibodies was also ac-
complished by viral neutralization in plaque for-
mation reduction tests and indirect immunofluo-
rescence on infected cells.  The growth of recom-
binant viruses was examined in several cell sub-
strates such as Vero, LLC-MK2 , C6/36, MRC5,
and CEF.  Only YF virus grew in all of them to
high titers but the chimeric viruses failed to repli-
cate in the vaccine-production certified cells (CEF
and MRC5) similarly to DEN-2 virus.  Therefore,
it remains to be seen whether any other certified
cell can be used for virus production and whether
Vero cells will become an acceptable substrate for
this purpose. Analysis of viral virulence was per-
formed by intracerebral inoculation of mice (103

PFU) and the viruses turned out to be more attenu-

CC              prM/M                          EE                                          NNSS11            22AA      22BB                    NNSS33                          44AA                44BB                              

e)

Fig. 3: schematic representation of proteolytic cleavages at the flavivirus polyprotein C-prM region.  In (a) the flavivirus ge-
nome structure is depicted. In (b) is shown the proposed spatial arrangement of the translational complex at the C-NS1 region
into the ER lipidic membrane.  The solid vertical black bars represent hydrophobic transmembrane domains.  In (c) the trans-
membrane domain between C and prM is represented and flanked on the left by the viral protease NS2B-3 cleavage that takes
place in the cytoplasm, and on the right by the signalase cleavage which occurs in the ER lumen.  In (d) is shown the amino acid
sequence present in this hydrophobic transmembrane domain for both YF and  den2 viruses and (e) represents the genome
structure of a chimeric virus with a prM/M/E gene replacement with precise fusion at the signalase cleavage sites in C-prM and
E/NS1.
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ated in this system than the YF 17D virus.  With
regard to the immunogenicity, although no mon-
key studies were performed, as described by
Guirakhoo et al. (2000), studies in the mouse model
indicate the chimeric virus does induce a protec-
tive response against an otherwise lethal dose of
mouse neurovirulent DEN-2 New Guinea C virus.

CONCLUSIONS/PERSPECTIVES

YF 17D virus has several characteristics which
are desirable for vaccines in general and that has
attracted the interest of several laboratories in de-
veloping it further to be used as a vector for heter-
ologous antigens. The application of molecular
techniques to the study of flavivirus genome struc-
ture and expression led to new approaches to un-
derstand viral biology. The development of infec-
tious clone technology has allowed the genetic
manipulation of YF 17D genome towards the ex-
pression of foreign genes.  It has been shown that
the preparation of clinical grade viral seed lots suit-
able for vaccine production from cDNA is feasible
and that was a first step forward to scale up such
development.  In this regard, infectious clone tech-
nology allowed the construction of new chimeric
live flaviviruses which appear attenuated and im-
munogenic in experimental animal models and
should in a short term undergo clinical testing.

Infectious clone technology has already
unreveled some mechanisms which may lead to
viruses altered at specific points of the viral cycle.
Attenuation can be effected by introducing mul-
tiple changes and making the mutant less prone to
reversion given the high mutation rate of RNA vi-
ruses.  These mutants could be used for experi-
mental infections if the appropriate animal models
are available and may result in viruses with poten-
tial as new live vaccine.  Infectious clone technol-
ogy has a huge potential to generate new viruses.
It is likely that by the time we realize that chimeric
viruses may not be the ideal vaccine enough data
will have accumulated on several viral functions
that will allow the rational development of viruses
bearing multiple mutations.  This is turning into a
major trend in flavivirus research.
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