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Experimental models of  Schistosoma mansoni infections in mammals have contributed greatly to our under-
standing of the pathology and pathogenesis of infection. We consider here hepatic and extrahepatic disease in
models of acute and chronic infection.  Experimental schistosome infections have also contributed more broadly to
our understanding of granulomatous inflammation and our understanding of Th1 versus Th2 related inflammation
and particularly to Th2-mediated fibrosis of the liver.
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Experimental schistosome infections of laboratory
animals have frequently been used to model the anatomo-
pathologic and  pathophysiologic features of the infec-
tion in humans as well as for the study of immunity and
treatment. We concentrate here on the anatomic and para-
sitologic features of various models and on the use of
models to address mechanisms of pathogenesis. Reviews
dealing with immunopathology (Lukacs & Boros 1993,
Wynn & Cheever 1995, Cheever & Yap 1997, Fallon 2000)
and with immunization and resistance to reinfection (James
1995, Richter et al. 1995, Coulson 1997, Waine & McManus
1997, Bergquist & Colley 1998) have been recently pub-
lished.

Schistosoma mansoni  matures over a 5 week (wk)
period in permissive hosts such as the mouse and egg
laying begins at that time. Most pathology in schisto-
some infected animals is attributed to the host’s reaction
to the eggs which is maximal by the 8th wk of infection.
Granulomas are composed principally of macrophages,
eosinophils and lymphocytes with the proportion of cells
varying in different organs (Weinstock & Boros 1983a).
Natural killer cells may comprise over 20% of cells in the
granuloma (Remick et al. 1988), but these produced little
IFN-γ (Rakasz et al. 1998). Mast cells are infrequent in 8-
wk granulomas in most mouse strains and become more
frequent in chronic infections (Weinstock & Boros 1983b)
and these may be important because they secrete
fibrogenic mediators and interact with hepatic stellate (Ito)
cells (Brito & Borojevic 1997). Chesney et al. (1998) de-
scribed the infiltration of circulating “fibrocytes” into
granulomas and speculate that these cells may be impor-
tant for attracting CD4+ lymphocytes as well as for col-
lagen formation.

After the 8th wk of infection there is downmodulation
of the immune reaction and granulomas around recently
deposited eggs become progressively smaller (Andrade
& Warren 1964, Chensue & Boros 1979).  Although the
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response to new eggs is downregulated, cumulative dam-
age occurs as older lesions involute to leave fibrous scars.
Thus the rate of damage decreases but accumulated dam-
age may increase, the balance being determined by the
variable ability of the host to kill worms, to inhibit worm
fecundity and to destroy eggs and repair tissue damage.
The rhesus monkey does all these things very well and
shows no residual damage after the infection has cleared
or been treated (Cheever & Powers 1969, 1971). The ba-
boon and cercopithecus monkey destroy eggs rapidly and
repair tissue damage (or perhaps never synthesize much
collagen) but kill worms slowly and inhibit oviposition
slightly (Cheever & Duvall 1974) and there is little cumu-
lative damage. In the chimpanzee worm fecundity is main-
tained and hepatic collagen and obstructive portal lesions
accumulate (Sadun et al. 1970). Major findings in the var-
ied species used to examine S. mansoni infections are
summarized in Tables I-IV.

Schistosome infected animals are exposed to antigens
from the developing worms during the 5 wk before egg
deposition begins. The interpretation of immune reactions
to the eggs is complicated by this previous exposure to
antigens, including antigens cross-reactive with egg an-
tigens (Lukacs & Boros 1991). Unisexually infected mice
and mice sensitized to many worm antigens are also sen-
sitized to egg antigens and have an augmented and accel-
erated response to injected eggs (Cheever et al. 1997,
Jacobs et al. 1997a, 1998c), in unexplained contrast to the
report of  Warren and Domingo (1970).

The intravenous injection of eggs initiates synchro-
nous granulomas in the lung of a host which may be na-
ive to schistosome antigens or treated in a defined fash-
ion. The subsequent development of the granulomas is
not entirely synchronous, but these lesions are more eas-
ily studied than the completely non-synchronized granu-
lomas resulting from infection. The lung model is not, how-
ever, a substitute for the study of infected animals.  The
antigenic quality of the eggs injected may affect both the
size of the granuloma and the effects of treatment on the
granuloma (Eltoum et al. 1995).

Beads coated with schistosome egg antigens, antigen
fractions or recombinant antigens may also be injected
intravenously or used in vitro (Parra et al. 1991, Oliveira et
al. 2000). Injection of beads or eggs into the portal vein



918 Models of S. mansoni Infection � Allen W Cheever et al.

has been employed less frequently. Some investigators
have found naive mice nonresponsive to eggs injected
into the portal vein (Leptak & McKerrow 1997) and that
portal (Cuison et al. 1995) or enteric (Weinstock et al. 1985)
injection of eggs induced tolerance to eggs subsequently
injected. Others have not noted this effect and have used
portal injection as they would the lung model (Edungbola
& Schiller 1979, Raso et al. 1983, Eltoum et al. 1995, Jacobs
et al. 1997a, 1999).

Granulomas in the mouse lung induce much less fibro-
sis than granulomas in the liver and although it is pos-
sible to study fibrosis in the lung model (Boros et al. 1983,
Metzger & Peterson 1988), the high background levels of
matrix and the low levels of fibrosis induced (Cheever et
al. unpublished) complicate this use of the lung model.
Examination of collagen mRNA levels in the lung
(Warmington et al. 1999) will doubtless be increasingly
used as will determination of mRNA for proteases.

GENERAL CONSIDERATIONS IN THE INTERPRETATION
OF MODELS OF SCHISTOSOME INFECTIONS

A. The intensity of experimental schistosome infec-
tions is generally extremely high. A single S. mansoni
worm pair in a mouse may be equivalent to more than
1,000 pairs in an infected person (Cheever 1969, Gryseels
& de Vlas 1996).

B. Most schistosome infections in humans are acquired
gradually over years while most experimental infections
are given as a single exposure.  When a mouse is given
multiple inocula, the cumulative intensity of infection be-
comes progressively less realistic.

C. Most humans exposed to schistosomiasis are born
to mothers who are or have been infected. There are ample
reasons to think that in utero exposure to schistosome

antigens or to idiotypic or anti-idiotypic antibodies may
modify the response to subsequent infection in humans
(Eloi-Santos et al. 1989, Novato-Silva et al. 1992) and in
mice (Montesano et. al. 1997, 1999a, b).

D.  The chronicity of schistosome infections in hu-
mans is obviously not reproducible in most animal mod-
els. Although one may predict that in some respects a
week or two in the life of a mouse may be equivalent to a
year in humans, the calculation of equivalent times is un-
certain.

E. While different strains (isolates) of S. mansoni clearly
behave differently in laboratory hosts it is unclear if these
patterns are relevant to human infections. Strains from
patients with acute schistosomiasis or hepatosplenic dis-
ease did not differ in the pathology they produced in mice
(Costa & Katz 1982, Costa et al. 1984) but Thiongo et al.
(1997) found differences in egg production and egg pas-
sage in the feces of mice infected with different Kenyan
strains of S. mansoni and felt these might be related to
clinical differences in infected humans.

However, a given isolate may produce one pattern of
infection (e.g. a higher proportion of eggs in the liver) in
mice (Anderson & Cheever 1972) and a different pattern
in monkeys (Powers & Cheever 1972). Rapid changes in
isoenzyme patterns occur during successive generations
of newly isolated S. mansoni strains in mice so that it is
clear that genetic selection may occur rapidly in the labo-
ratory (LoVerde et al. 1985, Bremond et al. 1993). Pinto et
al. (1997) recently documented the greater genetic vari-
ability in worms from field isolates compared to the LE
strain long maintained in the laboratory. Passage in the
molluscan host may also result in genetic selection of the
worms (Richards & Shade 1987).

TABLE I

Primate models of Schistosoma mansoni infection

Development Fecundity Fecal egg excretion Hepatic fibrosis
Species and References Early/Late Early/Late  Early/Late  General/Pipestem

Chimpanzee1 N / N N / N N / N +++ / +++
Baboon2a and N / N N / ↓ N / ↓ +---/ 0
Cercopithecus monkey2b or ++/++13

Capuchin3 N / N N / N? N /N? +-- /0
Rhesus4 N / ↓↓↓ N / ↓↓↓ N / ↓↓↓ +-- / 0
Aotus5 N / N N / N N / N + / 0
Stump tail macaque6 N / N? N / N? N / ↓? ? / 0
Cynomolgus7 N / ↓? N / N? N / ↓? ? / 0
Squirrel monkey8 ↓↓ / ↓↓ ↓↓ / ↓↓ ↓ / ↓ ? / 0
Marmoset9 ↓ / ↓ ↓↓↓ / ↓↓↓ 0 / 0 +++ / 0
Tree shrew10 ↓↓ / ↓↓ ↓↓ / ↓↓ 0 / 0 ? / 0
Tamarin11 N / N N / N N / ↓ + / 0
Spider monkey12 ↓ / ? ? / ? ? / ? + / 0

N: normal, i.e. similar to a permissive host such as the mouse; ↑ ↓: increased or decreased; ?: unknown; 0: absent.

1: Pan satyrus (Sadun et al. 1970); 2a: Papio anubis (Sadun et al. 1966, Damian et al 1986, 1992, 1996, Mola et al. 1999); 2b:
Cercopithecus aethiops (Sadun et al. 1966, Cheever & Duvall 1974); 3: Cebus apella (Sadun et al. 1966, Barral et al. 1983); 4: Macaca
mulatta (Sadun et al. 1966, Cheever & Powers 1969); 5: Aotus trivirgatus (Erickson et al. 1971); 6: Macaca speciosa (Sadun et al.
1966); 7: Macaca cynomolgus (Sadun et al. 1966); 8: Saimiri sciureus (Sadun et al. 1966); 9: Callithrix sp. (Sadun et al. 1966, Warren
& Simões 1966); 10: Tupaia sp. (Sadun et al. 1966); 11: Saguinus fuscillis (subcutaneous, resistant to percutaneous infection, Portillo
& Damian 1986); 12: Ateles geoffroyi (Sadun et al. 1966); 13: Papio cynocephalus cynocephalus and P. c. anubis (Njenga et al. 1998,
Nyindo & Farah 1999).
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ACUTE TOXEMIC SCHISTOSOMIASIS

Humans infected for the first time with S. mansoni
often develop an acute disease characterized by fever,
malaise, diarrhea, intense eosinophilia and occasionally
allergic manifestations such as asthma or angioedema
(hives). Symptoms may appear before the onset of ovipo-
sition and are accentuated after oviposition. Acute dis-
ease is virtually unknown in residents of endemic areas
but is frequent in outsiders exposed for the first time.
Acute toxemic schistosomiasis is associated with high
levels of immune complexes and with a vigorous cellular
response to schistosome antigens (Hiatt et al. 1980). Symp-
toms, signs and immune reactivity decrease over a period
of months while the infection continues unabated. An
acute toxemic phase is obvious in many animal models
judging from the appearance of the animals and from an
initial vigorous cellular immunity and high eosinophilia.
As the infection becomes “chronic”, at 10-20 wks, the
appearance of the animals improves and the cellular re-
sponse to antigen is downregulated while egg laying by
the parasite continues unchanged (Tawfik et al. 1986,
Damian et al.1992). Particular efforts to study the toxemic

phase have been made in baboons, which exhibit fever as
well as the other features noted in mice and other animal
models (Damian et al. 1992, 1996). It is unclear, however,
how to relate the experimental acute disease to that in
humans. The cytokine patterns which may be related to
the fever, malaise and other symptoms and signs of the
acute phase in baboons included TNF-α, IL-1 and IL-6
(Damian et al. 1996), findings remarkably similar to those
later reported in humans (Jesus et al. 2002).

Decreased levels of corticotropin-releasing hormone,
adrenocorticotropic hormone and dehydroepiandroste-
rone were reported by Morales-Montor et al. (2001) in
acutely infected baboons and mice but not in rechallenged
chronically infected baboons. In baboons, but not mice,
the lower hormone levels correlated with unmodulated
granulomas.

THE FORMATION OF CIRCUMOVAL GRANULOMAS AND
MODULATION OF GRANULOMA SIZE

Studies in infected mice often give different results
than those obtained from intravenous injection of eggs.
A general overview will be presented here and differences
between the lung model and the use of infected mice will
be detailed later.

It has long been clear that T helper cells (CD4+ T cells)
are instrumental for the formation of granulomas around
S. mansoni eggs (Mathew & Boros 1986) and that CD8+

TABLE II

Schistosoma mansoni infection in mammals other than
primates and rodents

Species and Development Fecundity Hepatic
References Early/Late Early/Late fibrosis

Rabbit1 ↓↓↓ / ↓↓↓↓ ↓↓↓ / ↓↓↓↓ +
Opossum2 ↓ / ↓ N / ? +
Armadillo3 ↓ / ↓ ↓ / ↓ ±
Raccoon4 ↓↓ / ? ↓ / ? ±
Skunk5 ↓↓ / ? ↓↓ / ? 0
Red fox6 R NA NA

R: resistant to infection; NA: not applicable

1: Sylvilagus floridanus (Lichtenberg et al. 1962, Andrade et al.
1988); 2: Didelphis marsupialis (Lichtenberg et al. 1962); 3:
Dasypus novemcinctus (Smith et al. 1988); 4: Procyon lotor
(Lichtenberg et al. 1962); 5: Mephitis nigra (Lichtenberg et al.
1962); 6: Vulpes fulva (Lichtenberg et al. 1962).

Numerous other species have been exposed but little or no
description of the pathology was noted; e.g. Loos (1964) exposed
Erinaceus europaeus, Sorex araneus, Sciurus vulgaris, Glis glis,
Chlethrionomys glareolus, Microtus avalis, Ondatra zibethica,
Micromys minutus, Apodemus flavicollis, Rattus ratus, Rattus
norvegicus and Apodeumus sylvaticus. Stirewalt et al. (1951)
exposed cats, dogs, three varieties of rabbits, cotton rats and
albino rats (Sigmodon hispidus hispidus and Mus norvegiucus
albinus) in addition to mice and hamsters. Kuntz and Malakatis
(1955) exposed Mus musculus pratextus, Rattus rattus,
Arvicanthus niloticus, Acomys cahirinus, Gerbilus pyramicum,
Jaculul jaculus, Meriones s. shawi, Psammomys o. obesus,
Nesokia indica suilla, Hemiechinus auritus aegypticus, Mustela
nivalis subpalmata, Herspestes i. ichneumon and Vulpes v.
aegyptiaca. Torrealba et al. (1958) exposed Didelphis marsupialis,
Calluromys trinitatis venezulae, Cebus nigrivittatus, Cerdocyon
thous, Herpalurus jagarundi, Sciurus granatenis griseogena,
Echymis semivillosus punctatus, Dasyprocta rubrata, Sylvilagus
floridanus valenciae, Hydrochoerus hydrochoeri, Cuniculus paca
and Pecari tajacu torvus.

TABLE III

Schistosoma mansoni infection in rodents other than mice

Development Fecundity Hepatic fibrosis
Species Early/Late Early/Late (mice=+++)

Woodchuck1 N / ↓↓↓ N / ↓↓↓ +
Calomys2 N / ? N / N ±
Mastomys3 N / N N / N +
Rat-lab4 I /sc ↓↓↓ / sc ±
Rattus rattus5 >> lab rat >> lab rat ?
Hamster6 N / N N / N ±
Gerbil7 N / N N / N ±
Gray squirrel8 N / ? N / ? +
Chipmunk9 ↓ / ? ↓↓ / ? ±
Nutria10 ¯ / ? ↓↓ / ? ±
Meadow vole11 ↓ / ? ↓↓ / ? ±
Muskrat12 R R R
Guinea pig13 ↓ / ↓ ? / ? ±
Agouti14 N / ? N / ? +

R: resistant to infection; ↑ ↓: increased or decreased; ±: slight
change; N: normal; ?: insufficient data; sc: self cure, i.e. adult
worms are killed.

1: Marmota monax (Anderson et al. 1991, Andrade et al. 2001);
2: Calomys callosus (Lenzi et al. 1995); 3: Mastomys coucha
(Cheever 1965a, b); 4: (Phillips et al 1987); 5: (Denoya et al
1997, Cêtre et al. 1999); 6: Mesocricetus auratus (Cheever 1965a,
b; 7: Pachyuromys duprasi natronensis (Cheever 1965a, b; 8:
Sciurus carolinensis (Lichtenberg et al. 1962); 9: Tamias striatus
(Lichtenberg et al. 1962); 10: Myocaster coypus (Lichtenberg et
al. 1962); 11: Microtus pennsylvanicus (Lichtenberg et al. 1962);
12: Ondatra zibethicus (Lichtenberg et al. 1962); 13: (Hsu et al.
1973, Pearce & McLaren 1983); 14: Dasyprocta aguti (Price
1953).
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T cells appear to be important for downregulation of granu-
loma size in chronic infections (Chensue & Boros 1979,
Henderson et al. 1992), but antibody is necessary in addi-
tion to downregulated T cells (Jankovic et al. 1998).

In acute infections (8 wk) regulation of granuloma size
seems to differ fundamentally from downregulation in
chronic infection. Thus in acute infection granuloma size
seems controlled principally by T cells and volume is de-
creased by IL-10 (Flores Villanueva et al. 1996), increased
in the absence of Il-10 (Wynn et al. 1998) and increased
by administration of cyclophosphamide or cymetidine
(Weinstock & Boros 1981, Weinstock et al. 1983). Cyclo-
phosphamide also increased granuloma size in chronic
infections and one needs to postulate that the effect on T
cells can partially overcome the effects of immunoglobu-
lins (Colley et al. 1979, Weinstock et al. 1983). Antibody
has a significant but modest effect in acute infections
(Jankovic et al. 1998).

Delayed type hypersensitivity (DTH) is commonly
taken to be indicative of a Th1-type cellular reaction, al-
though there are several instances in which contact hy-
persensitivity etc. have been shown to be predominantly
a Th2-type response (Assherson et al. 1996). The reac-
tion to schistosome eggs is a cell-mediated hypersensi-
tivity reaction which has usually been considered to be a
DTH reaction.  We think that the evidence indicates that
the reaction to schistosome eggs is predominantly Th2
and propose that the schistosome granuloma be consid-
ered as a type-2 DTH, although it is clear that the granu-
loma can begin as a Th1-type response and can also later
be manipulated toward Th1. Rakasz et al (1998) found that
granulomas contained numerous activated Th1 and Th0
cells but that these were under tight control.

Lenzi et al. (1998) have given a detailed morphogenic
and biomechanical description of granuloma development
and involution and have detailed the spatial deployment
of collagen fibers within the granulomas (Lenzi et al. 1999).

The Role of Cytokines in Granuloma Formation and
Downregulation (See Tables IV-VI)

Several comprehensive reviews dealing with this sub-
ject have been published recently (Lukacs & Boros 1993,
Wynn & Cheever 1995, Cheever & Yap 1997, Cheever et
al. 1998, Fallon 2000) and the discussion here will be  ori-
ented toward the models described. Adhesion molecules
such as ICAM-1 are presumably important for circulating
cells to reach the site of the granuloma (Langley & Boros
1995, Jacobs et al. 1997b) and adhesins are upregulated in
acute and chronic murine infections.

The earliest hepatic granulomas form in a Th1 envi-
ronment with downregulation of Th1 and upregulation of
Th2 responses 6 wk after infection (Todt et al. 2000). This
sequence is similar to that seen after injecting eggs into
the lungs (Wynn et al. 1993). The intense blood and tis-
sue eosinophilia and high IgE antibody levels associated
with schistosome infections suggest a Th2-type reaction.
Treatment of injected or infected mice with IFN-γ results
in decreased granuloma size and hepatic fibrosis (Czaja et
al. 1989a) while chronically infected (immunologically
downregulated) mice treated with IL-4 make larger granu-
lomas than do untreated animals (Yamashita & Boros 1992).

IL-4 and IL-13 are largely compensate for each other for
formation of hepatic granulomas in infected mice. Thus
only minute granulomas are formed when both are sup-
pressed, as in IL-4 receptor ko mice (Jankovic et al. 1999)
or IL-4 ko mice in which IL-13 action is suppressed
(Chiramonte et al. 1999b). Kaplan et al. (1998) found that
Stat6 knockout mice mounted a minimal Th2 response and
formed small granulomas. Stat4 deficient mice showed a
minimal Th1 response but normal hepatic granulomas.
Wynn et al. (1995a) found that immunization with SEA
and IL-12 produced immune deviation toward Th-1 type
reactions with reduction of granuloma sized. All of these
effects are consistent with the concept of the granuloma
as a Th2 dominant reaction, but under some conditions
Th1 granulomatous responses may be predominant and
damaging (Stadecker & Hernandez 1998, Chen & Boros
1999, 2001, Hoffmann et al. 2000, Rutitzkky et al. 2001).
cDNA microarrays are a powerful tool for examining ar-
rays of activated genes in schistosome infected-mice with
Th1 and Th2 type mediated reactions and led to recogni-
tion of the importance of neutrophils in hepatic lesions of
wild type and immune deviated mice (Hoffmann et al. 2001).

TABLE IV

Murine models of Schistosoma mansoni infection

Type of mouse Hepatic granuloma size
and References  Early/Late Hepatic fibrosis

Outbred N / ↓ +++
  Germfree1a ↓? / ? ↓
Inbred2 V† / ↓ + to +++
  Biozzi2a HIII > LIII HIII = LIII

Immuno-deficient
  Nude3a ↓ / ↓ ±
  SCID3b ↓ / ↓ ±
  W/Wv3c = / ? =
  bg/bg3d = / = =
  XID3e ↓ / = =

Transgenic
  IL-7cutaneous

9 ? ↑
  IL-98 = =
 TGF-β14a = / ? ↑

Knockout
  CD85a = / = =
  β-2mic5b = / = =
  TAP-15c = / = =
  TGF-β1+/-5t = / = ?
  ClassII MHC5v ↓↓↓ / ? ↓↓
  B cell5f ↑ / ↑↑ ↑↑
  Fce-RI5g ↑ / ? ↑
  Fcγ-R5h ↑ / ↑ ↑
  IL-4 129xB65i = / = =
  IL-4 B65j ↓ / ? =
  IL-4 B65k = / ? ?
  IL-4R5x ↓↓↓/ ? ↓↓↓
  IL-55l = / = ±↑
  IL-65z =/ ? ?
  IL-105m ↑ / = =
  IL-10 & IL-45n = / ? ↓
  IL-138 = ↓↓↓
  IL-13 & IL-48 ↓↓↓ ↓↓↓

9
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In chronic infections (20 wk) Th2 responses are
blunted (Grzych et al. 1991, Henderson et al. 1992, Chensue
et al. 1992) and Borojovic (1992) regards the chronic phase
of murine schistosomiasis as predominantly Th1 medi-
ated, largely on the basis of increasing ratio of IgG2a to
IgG1 and decreasing eosinophil and IgE levels in chroni-
cally infected mice. IFN-γ, IL-4 and IL-10 exert cross-regu-
latory effects on the Th1-Th2 balance as IL-4 drives the
reaction toward Th2, IFN-γ toward Th1 and IL-10 may

inhibit either trend depending on the circumstances
(Chensue et al. 1994a, b, Jankovic & Sher 1996, Wynn et
al. 1997, 1998, Boros & Whitfield 1998). IL-10 ko (knock-
out) mice also formed very large granulomas 8 wk after
infection but subsequently downregulated granuloma size
(Wynn et al. 1998).

IL-5 does not seem to be directly involved in mediat-
ing granuloma size or fibrosis. Anti-IL-5 treated mice
lacked eosinophils but granuloma size and hepatic fibro-
sis were virtually unaffected in both acute (Sher et al.
1990) and chronic (Cheever et al. 1992c) infections and
the pathology was not greatly changed in IL-5 ko mice
(Rosa Brunet et al. 1999a). Rumbley et al. (1999), however,
note that eosinophils form the majority of cytokine pro-
ducing cells in the granuloma and are the dominant source
of  IL-4.

Type of mouse Hepatic granuloma size
and References  Early/Late Hepatic fibrosis

  IFN5o = / = =
  IFN-R5p = or ↓ / ? ?
  IL-65u = /? ?
  Il-77 ↓↓/? ↓↓
  Stat45w = / ? =
  Stat65w ↓↓↓ ↓↓↓
  Substance P-R5y ↓/? ?
  5-LO5r ↓ / ? ?
  12-LO5r = / ? ?
  IgE5s ↓ / ? =
  MIP-1αR5d = / ? =
  B7-1-/- 5q = ?
  B7-2-/- 5q = =
  B7-1/2-/- 5q ↓ =
  TIMP-110 = =
  TIMP-210 = =
  TNFR5e = / ? = / ?
  CD154 ↓/ ? ?

V†: variable between strains;↑ ↓: increased, decreased or
unchanged compared to appropriate control mice.

1a: Viera & Moraes-Santos (1987); 2: Cheever et al. (1987); 2a:
Biozzi high (HIII) and low (LIII) responder mice (Blum & Cioli
1978, Catapani et al. 1994); 3a: nude athymic mice lacking T
cells (Cheever et al. 1993); 3b: mice with severe combined
immunodeficiency lacking T & B cells (Amiri et al. 1992, Cheever
et al. 1999); 3c: mast cell deficient mice (Cheever et al. 1987); 3d:
Cheever et al. (1987); 3e: Gaubert et al. (1999); 5a: Yap et al.
(1977); 5b: β-2 microglobulin deficient mice (Yap et al. 1997,
Hernandez et al.1997b); 5c: mice unable to process class 1
antigens (Yap et al. 1977); 5d: receptor for macrophage
Inflammatory Protein-1α [CCR-III] (Gao et al. 1997); 5e: mice
lacking both TNF-α receptors (Yap et al. unpublished); 5f: µ-
MT mice (Jankovic et al. 1998, Ferru et al. 1998) JHD B-less
mice had normal granulomas at 8 wk (Hernandez et al. 1997a);
5g: Jankovic et al. (1997); 5h: Jankovic et al. (1998); 5i: IL-4 ko
mice from cross of 129J and C57BL/6 mice (Pearce et al. 1996);
5j: IL-4 ko mice bred back to the C57BL/6 background (Rosa
Brunet et al. 1997); 5k: IL-4 ko mice formed using C57BL/6
germline only (Metwali et al. 1996); 5l: Rosa Brunet et al. (1999a);
5m: Wynn et al. (1998); 5n: Wynn et al. (1998); 5o: Amiri et al.
(1994, Yap et al. unpublished); 5p: (Akihani et al. 1996, Rezende
et al. 1997a, Oliveira et al. 2000); 5q: Hernandez et al. (1999); 5r:
5 lipoxegenase, 12-lipoxygenase (Secor et al. 1998); 5s: King et
al. (1997); 5t: Frazier-Jessen et al. (unpublished); 5u: Blum et al.
(1997); 5v: Hernandez et al. (1997b); 5w: Kaplan et al. (1998)
Stat4- deficient mice make a deficient Th1-type reaction and
Stat6-deficient mice a deficient Th2-type reaction; 5x: Jankovic
et al. (1999); 5y: substance P receptor (Blum et al. 1999); 5z:
Blum et al. (1998); 6: Angyalosi et al. (1998); 7: Wolowczuk et
al. (1999); 8: Fallon et al. (2000b); 8: Fallon et al. (2000c); 9:Roye
et al. (2001); 10: Vaillant et al. (2001).

TABLE V

Infected-mice treated with cytokines or antibodies against
cytokines

Hepatic granuloma size Hepatic
Cytokine or antibody Early/Late fibrosis

IFN-γ1 ↓ / ? ↓
anti-IFN-γ2 = / = =
IL-1212,20 ±↓ / ? ±
IL-12 +anti-IL-4+anti-IL-1020 ↓↓ ↓↓
TNF-α3 ↑ / ↑ ↑
anti-TNF-α4 ↓ / ? ?
anti-NK1.119 ? / ? ↑
IL-25 ↑ / ↑ ?
anti-IL-26 ± or ↓ / ↓ ↓↓
IL-47 ↑ / ↑ ?
anti-IL-48 = or ↓ / ↓ ↓↓
anti-IL-59 = / = =
IL-10/Fc10 ↓ / ? ?
anti-IL-1011

PGE1 
14 ↓ / ? ?

PGF2α
15 ↓ / ? ?

NK-1RA16 = / ? ?
SOM analogue17 ↑ / ? ? or ↓
Cimetidine18 ↑ / ↑ ?
Diphenhydramine18 ↓ / ↓ ?

↑, ↓: increase,  decrease or no change; ?: unknown; ±: slight
change.

1: Czaja et al. (1989a, b); 2: (Sher et al. 1990, Cheever et al.
1992c); 3: SCID mice, Amiri et al. (1992); chronically infected
mice, Joseph & Boros (1993); 4: Joseph & Boros (1993); 5:
Mathew et al. (1990); 6: Cheever et al. (1992); 7: Yamashita &
Boros (1992); 8: Yamashita & Boros (1992), Cheever et al. (1994);
9: acute (Sher et al. 1990), chronic (Cheever et al. 1992c); 10: IL-
10/Fc fusion protein, competes with IL-10 (Flores-Villanueva et
al. 1996, also see Verwaerde et al. 1999); 11: 12: (IP Oswald et al.
unpublished) IL-12 was generally ineffective in reversing the
Th2 response in S. mansoni-infected mice once infection has
begun; 13: Boros & Whitfield (1998); 14: Prostaglandin E1
(Chensue et al. 1986); 15: Prostaglandin F2α (Chensue et al.
1986); 16: antagonist for NK-1 receptor (for substance P &
other tachykinins), (Blum et al. 1993); 17: (Blum et al. 1992,
Mansy et al. 98), mice were treated with octreotide, a somatostatin
(SOM) analogue which competes with SOM; 18: antihistamines,
Cimetidine blocks H1 receptors and diphenhydramine H2 receptors
(Weinstock et al. 1983); 19: antibody to natural killer cells
(Asseman et al. 1996); 20: Boros & Whitfield (1999).
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The use of  T cell lines and clones would seem to be a
definitive way of resolving the relative importance of Th1
and Th2 cells. However granulomas are induced by trans-
fer of Th0, Th1 and Th2 cells specific for SEA
(Chickunguwo et al. 1991, Zhu et al. 1994, Jankovic et al.
unpublished).

The downregulation of granuloma size has often been
regarded as an effect of CD8+ suppressor cells (Chensue
& Boros 1979, Green & Colley 1981) which one might ex-
pect to be mediated at least in part by IFN-γ. Normal
downregulation was found in ko mice unable to make IFN-
γ, in CD8 ko mice, in β-2 microglobulin ko mice (also virtu-
ally unable to produce CD8+ cells) and in TAP1 ko mice
which are unable to process antigen in the context of class
I (Hernandez et al. 1997b, Yap et al. 1997). It is unclear how
these findings can be reconciled with the studies impli-
cating CD8+ cells in downregulation of granuloma size.
Rumbley et al. (1998, 2001) hypothesize that selective
apoptosis of sensitized lymphocytes within the granulo-
mas contributes to immunoregulation (Rumbley et al. 1998,
2001, Lundy et al. 2001, Lundy & Boros 2002).

Infected mice rendered B cell deficient by treatment
with anti-µ antiserum (Cheever et al. 1985) or by genetic
manipulation (Jankovic et al. 1998, Ferru et al. 1998) (µMT
ko mice) did not modulate granuloma size or hepatic fibro-
sis and showed increased granuloma size and fibrosis in
acute (8 wk) and chronic infections. T cell responses to
antigen, however, were downregulated normally in chroni-
cally infected µMT ko mice. Another type of B cell ko
mouse (JHD B-less) showed no difference in granuloma
size from controls 8 wk after infection (Hernandez et al.
1997a) but chronic infections were not examined. Mice
lacking the Fc receptor also do not modulate granuloma
size normally, indicating that the effect of antibody in
modulation is directed through the Fc receptor (Jankovic
et al. 1998). This result is consistent with the reports of
downregulation of in vitro granuloma size by immune com-
plexes (Goes et al. 1991,1994,  Rezende et al. 1997b, c).

SCID mice show almost no reaction to S. mansoni eggs
but after injection with recombinant TNF-α formed granu-
lomas around S. mansoni eggs (Amiri et al. 1992) and
infected, immunologically intact mice treated with anti-
TNF-α formed granulomas reduced in size (Joseph & Boros
1993). Administration of recombinant murine TNF-α to
mice with chronic S. mansoni infection  restored granu-
loma size to that seen in acutely infected animals (Joseph
& Boros 1993). Nevertheless mice lacking both the p55
and p 75 chains of the TNF-α receptor formed normal
granulomas in 8 wk infections (Yap et al. unpublished).
Cheever et al. (1999) were unable to affect granulomas in
infected SCID mice by injection of TNF-α.

Flores Villanueva et al. (1994) consider the granuloma
to be a Th1-type response and attribute downregulation
to anergy. Treatment of acutely infected animals with IL-
10Fc fusion protein decreased the size of granulomas in
acute infection while diminishing levels of Th1 cytokines
(IFN-γ and IL-2) and augmenting levels of Th2 cytokines
(Il-4 and IL-10) (Flores Villanueva et al. 1996). Chen and
Boros (1998, 1999) produced “Th1” or “Th2” granulomas
to egg antigen epitopes p38 or P4 depending on the adju-
vant used in mice of the H2k haplotype.

IL-4 knockout mice exhibited increased Th1-like re-
sponses and markedly diminished Th2 responses but
granuloma size and hepatic fibrosis during infection were
equivalent to those in intact controls (Pearce et al. 1996,
Rosa Brunet et al. 1997). However, T cell responses were
more generally affected in IL-4 ko mice (Pedras-
Vasconcelos et al. 2001). Metwali et al. (1996) found granu-
loma size to be diminished in IL-4 ko mice but gave a
different interpretation to cytokine patterns similar to
those reported by Pearce et al. (1996) and Chiramonte et
al. (1999b) found enlarged granulomas but decreased fi-
brosis in IL-4 ko mice. Other experiments in various strains
of IL-4 ko mice have given discrepant results which we
cannot yet interpret (Cheever et al. 1998, Jankovic et al.
unpublished).

Weinstock and his colleagues (1992, 1998) have ex-
tensively investigated the role of angiotensin converting
enzyme and neuropeptides in the formation and modula-
tion of schistosome granulomas (Tables IV-VI). Chemokine
expression has been examined broadly by Park et al. (2001)
and Qiu et al. (2001).

TABLE VI

Use of cytokine or anti-cytokine treatments and knockout (ko)
mice using the lung model in experimental murine

schistosomiasis

Treatment Effect on granuloma size

IFN-γ1a ↓
anti-IFN-γ1b ↑
IFN ko1c ↑
IFNR ko1d ↑
TNF-α2a ↑
anti-TNF-α2b ± ↓
anti-B7-12c =
anti-B7-22c ↓↓
anti-IL-24 ↓↓↓
IL-45a ↑
IL-4 ko5b ↓
anti-IL-45c ↓↓↓
anti-IL-66 =
IL-107a ↓
anti-IL-107b =
IL-10 ko7c ↓
IL-4 & IL-10ko7d ↓↓↓
IL-128a ↓
anti-IL-128b ↑
IL-4 + IL-13 ko3 ↓↓↓
IL-13R α2Fc21 ↓↓
IL-13 transgenic mouse24 ↓
Stat4 ko18 ↓↓↓
Stat6 ko18 ↓
β2m ko9 =
Anti-ICAM-110 ↓
Anti-MCP1 

11 ↓ /=
Anti-MIP-1α12a ↓ /=
CCRI--MIP-1αR ko12b ↓
CCRII--MCP-1R ko12c ±↓
INOS ko17 ±↓
B cell ko18 =
TGFβ-1 ko13a ±↓
TGFβ-1 tg13b ±↑

9
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Role of Murine Host Genotype on Immune Reactivity,
Granuloma Size and Hepatic Fibrosis

Claas and Deelder (1979) found C3H/Sn (H-2k) mice
had lower mortality, antibody titers and DTH (ear swell-
ing) than did C3H.B10 (H-2b) mice but worm numbers and
cell proliferation in vitro did not differ. The differences
extended to the I-region of the H-2 complex and B10.A(2R)
showed lower mortality but higher antibody titers than
B10.A(4R) mice (Class & Deelder 1980). Mendlovic et al.
(1989a, b) further explored the effects of I-A and I-E on
the responses of congenic mice to crude and purified an-
tigens.

Jones et al. (1983) used H-2b and H-2k mice on both
the C57BL/10 and BALB/c backgrounds and found that

both the strain background and the H-2 haplotype influ-
enced antibody response and passage of eggs in the fe-
ces. The effects of crosses between mouse strains were
complex (Jones & Kussel 1985).

Kee et al. (1986) tested fractionated antigens in mice
with a variety of haplotypes and found that a 14kDa frac-
tion was recognized only by H-2k mice while an 86kDa
fraction was not recognized by any of 4 H-2b strains of
mice. Responses to the 86 kDa fraction were further exam-
ined by Schweitzer and Taylor (1991) and Schweitzer
(1992). Trzyna and Cordingley (1993) found H-2b mice
unable to produce IgG to a major egg antigen, p-40 and
Hernandez et al. (1997c, 1998). Stadecker and Hernandez
(1998) and Hernandez and Stadecker (1999) found that H-
2k mice, including C3H and B10.Br, made a T-cell response
to a recombinant fraction of p40 while C57BL/6 mice (H-
2b) did not. Granuloma size and other pathologic changes
did not, however, follow H-2 haplotypes in a large number
of mouse strains examined nor in congenic mice (Fanning
et al. 1981, Colley et al. 1983, Fanning & Kazura 1985,
Cheever et al. 1987).

Comparison of Granuloma Formation and Regulation in
Infected Animals Versus the Response to Injected Eggs

The lung model allows study of granuloma formation
and cytokine production in vivo in naive animals at de-
fined periods after egg injection and the model allows
sensitization with defined antigens or antigenic fractions
as well as the testing of defined antigens as targets, i.e.
the injection of antigens on beads which are roughly the
size of schistosome eggs. Although the lung model gen-
erally seems to reflect the sequence of events, and regu-
lation, present during the course of infection induced by
cercariae, important exceptions exist. Administration of
IL-13R fusion protein, inhibiting IL-13 function, dramati-
cally reduced granuloma size around eggs injected into
the lung (Chiramonte et al. 1999a) but did not affect the
size of hepatic granulomas in infected mice (Chiramonte
1999b). Additionally, although granulomas around injected
eggs were downregulated by the injection of anti-IL-4
granulomas around eggs laid by worms in infected ani-
mals, in the lung or in the liver, were not (Cheever et al.
1994c). The differences were attributed to the inferior an-
tigenic quality of eggs extracted from the tissues as nei-
ther the site of granuloma formation nor the state of sen-
sitization of the host were important (Eltoum et al. 1995).
Granulomas around eggs injected into the lungs
downregulate in a fashion similar to hepatic granulomas
while granulomas around pulmonary eggs shunted from
the portal system in infected mice are not downregulated
(Sousa Vidal et al. 1993). In infected IL-10 ko mice, liver
granulomas were larger than in control mice while granu-
lomas in the lung of sensitized mice were smaller in IL-10
ko mice than in controls (Wynn et al. 1997, 1998).

Although Eltoum et al. (1995) did not find the site (lung
vs liver) of the granulomas to be important, there are ob-
vious differences in the liver and lung, e.g. the hepatic
and pulmonary microenvironments are different and the
miracidia in eggs injected via the tail vein are killed much
more rapidly than those in eggs injected into the portal
vein (Feldman et al. 1990) and all remnants of the eggs are

Treatment Effect on granuloma size

Anti-NK1.1 or anti-AsialoGM1 
14 ↑

PGE1 
15a ↓

PGF2α 15b ↓
p47phox-/- 22 =
NK-1RA16 ↓
Osteopontin ko23 ↓
Rantes20 ↓

↑, ↓: increased, decreased or unchanged; ±: slight change; {N:
naive mouse; S: sensitized mouse; I: infected mouse; E: eggs
injected; B: antigen coated beads injected}.

1a: {I,E} (Lukacs & Boros 1993); 1b: {I,B} (Lukacs & Boros
1993), {S,E} (Chensue et al. 1994, {S,E} 1995c); {S,E} 1996;
{N,E} (Wynn et al. 1994). 1c: (Wynn et al. 1995b); 1d: {N,E}
(Mountford et al. 1999); 2a: {I,E} (Joseph & Boros, 1993); 2b:
{S,B} (Chensue et al. 1994b, 1995c, 1996); 3: {N,E} (McKenzi
et al. 1999); 4: {I,B} (Lukacs & Boros 1993, {N,E} Wynn et al.
1993); 5a: (Yamashita & Boros 1992, {I,B} Lukacs & Boros
1993, {N,E} Wynn et al. 1993, {N,E} Eltoum et al. 1995); 5b:
{I.E} (Pearce et al. 1996, {S,E} Wynn et al. 199  7); 5c: {S,E}
(Chensue et al. 1992, {S,E}, 1994, Wynn et al. 1993, Ruth et al.
2000) 6: {N,E} (Cheever et al. unpublished); 7a: recombinant
IL-10, {I,E} (Flores-Villanueva et al. 1996); 7b: antibody against
IL-10, {N,E} (Wynn et al. 1994, {S,E} Chensue et al. 1994,
Chensue et al. 1995c); 7c: IL-10 ko mouse{N,E;S,E} (Wynn et
al. 1997); 7d: ko for IL-10 and IL-4{N,E} (Wynn et al. 1997); 8a:
{S,E} (Wynn et al. 1994); 8b: {N,E} (Wynn et al. 1994);  9: β2-
microglobulin ko mice, (Brown et al. 1966); 10: antibody against
intracellular adhesion factor 1, {N,B} (Lukacs et al. 1994); 11:
anti-macrophage chemotactic protein, {S,B--no effect with N,B}
(Chensue et al. 1995b, {S,B} 1996); 12a: anti-macrophage
inflammatory protein 1α; {N,E=↓ & S,E=↓} (Lukacs et al. 1993,
{S,B=0} Chensue et al. 1996); 12b: {N,E; SE} CCR1 ko (Gao et
al 1997);  12c: CCR2 (Warmington et al. 1999); 13a: ko for
TGFβ1 gene,  (Wahl et al. 1997); 13b: mice transgenic for TGFB1
gene, (Wahl et al. 1997); 14: {N,E} (Wynn et al. 1994). Both
antibodies act against NK cells. 15a: Prostaglandin E1. {I,E}
(Chensue et al. 1986). 15b: Prostaglandin F2α, {I,E} (Chensue et
al. 1986). 16: antagonist for NK-1 receptor (for substance P and
other tachykinins), {I,E} (Blum et al. 1993); 17: ko for inducible
nitric oxide synthase {S,E} (Jankovic et al. unpublished); 18:
{N,E} (Epstein et al. 1995); 19: {N/S, E} (Kaplan et al. 1998);
20: {N,B} (Chensue et al 1999); 21: {S,E} (Chiramonte et al
1999a); 22: p47phox-/-, model for chronic granulomatous disease
(Segal et al. 1999); 23: {N,E} (O’Regan et al. 2001); 24: {N,B}
(Hu et al. 2001).
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removed from the lungs more quickly (Cheever & Ander-
son 1971, Almeida & Andrade 1983). Kupffer cells in the
liver of infected mice contribute to the type 2 reaction
(Hayashi et al. 1999).

ICAM-1 was the only adhesion molecule identified in
the liver of infected wild type (control) mice (Ritter &
McKerrow 1996) while VCAM-1 was the predominant
adhesion protein identified in the vicinity of lung granu-
lomas (Ritter & McKerrow person. commun.). VCAM-1
was seen in the livers of infected ICAM-1 ko mice, afford-
ing a striking illustration of the ability of ko mice to adapt
to their deficiencies  (Ritter & McKerrow 1996). However,
VCAM-1 was found to be rapidly upregulated in the liv-
ers of infected-wild type mice by Rathore et al. (1996), a
result in apparent conflict with the above. Leptak and
McKerrow (1997) found little IL-4 in livers of mice given
injected portal eggs and postulate that TNF-α plays a
prominent role in the formation of hepatic granulomas
while IL-4 is important for initiation of pulmonary granu-
lomas, but Eltoum et al. (1995) found similar levels of IL-4
mRNA after injection of eggs at either site.

The regulation of granuloma size in the mouse gut
also differs from that in the liver (Weinstock & Boros 1981,
Jacobs et al. 1998a).

HEPATIC FIBROSIS

General
Hepatic fibrosis is related to the immune response to

the egg and is virtually absent in infected nude and SCID
mice (Cheever et al. 1994a, Cheever et al. 1999) or in mice
infected with only male or female parasites.

Female C3H/HeNN mice infected with 25 male worms
for 20 wk had only 2.21 µmoles of hydroxyproline per liver
as compared to 1.53 in uninfected mice and 30 in mice
infected with 2-3 worm pairs. However mice unisexually
infected for 8 wk and  then given bisexual infections modu-
lated fibrosis (but not granuloma size) and had 21% less
fibrosis (p < 0.05 in each of two experiments) than control
mice given the same infection (Cheever et al. unpublished).

The regulation of fibrosis is often independent of the
regulation of granuloma size, i.e. larger granulomas are
not always associated with greater hepatic fibrosis (Olds
et al. 1989, Cheever et al. 1994c, Phillips et al. 1996, Cheever
1997, Chiramonte et al. 1999b, Fallon et al. 2000b). Hepatic
fibrosis in schistosome infected mice is clearly linked to
IL-13 and the Th2 response, although fibrosis also clearly
sometimes occurs around granulomas formed in the Th1
melieu (Chen & Boros 1999, Hernandez et al. 1999,
Hoffmann et al. 2000, Hesse et al. 2000).

Animals treated with anti-IL-4 showed a decrease in
Th2 response, an increased Th1 response and a reduc-
tion in hepatic fibrosis (Cheever et al. 1994c). IL-13 is even
more important for fibrosis and treatment of infected mice
with sIL-13R α2Fc fusion protein led to a marked decrease
in fibrosis with little effect on granuloma size (Chiramonte
et al. 1999b). IL-4 ko mice treated with sIL-13R had tiny
granulomas but fibrosis equivalent to that in SIL-13R
treated wild type (WT) mice, although the cytokine pat-
tern was Th2-like in WT mice and Th1-like in IL-4 ko mice
(Chiramonte et al. 1999b) and in IL-4R ko mice, in which
neither IL-4 or IL-13 can signal in the absence of the re-

ceptor (Jankovic et al. 1999). Mice treated with anti-IL-4
might be expected to have low IL-13 levels. IL-13 ko mice
had granulomas the same volume as wild-type mice but
showed minimal fibrosis (Fallon et al. 2000b). Arginase-1
activity is important in influencing both granuloma size
and hepatic fibrosis, probably through increasing hepatic
proline levels (Hesse et al. 2001).

Mice vaccinated with eggs + IL-12 before infection
developed an increased Th1-like cytokine response, a
moderate decrease in granuloma size and a marked de-
crease in hepatic fibrosis (Wynn et al. 1995). This effect is
dependent on IFN-γ, IL-12 and TNF-α (Hoffmann et al.
1999) and mediated through nitric oxide synthase-2 (Hesse
et al. 2000). Treatment with IFN-γ resulted in a marked
decrease in hepatic fibrosis (Czaja et al. 1989a) but anti-
IFN-γ had no effect on granuloma size or hepatic fibrosis
in infected mice (Sher et al. 1990). SEA given without ad-
juvant intravenously or intraperitoneally before infection
also affected granuloma size (Botros et al. 1997) and fibro-
sis (uncorrected for egg number, Pancré et al. 1999).
Hassanein et al. (2001) noted amelioration of pathology in
mice immunized intravenously with either SEA or recom-
binant S. mansoni glutathione S-transferase.

Wolowczuk et al. (1997) reported that a single subcu-
taneous dose of IL-7 given at the site of exposure to S.
mansoni increased worm recovery and hepatic collagen
(µg collagen/mg protein) but their analysis of fibrosis did
not allow for the increased intensity of infection in treated
mice. IL-7 ko mice had small granulomas and little fibrosis
(Woloczuk et al. 1999) and IL-7 Tg mice showed increased
fibrosis (Roye et al. 2001). A somatostatin inhibitor,
octreotide, diminishes hepatic fibrosis in infected mice
(Mansy et al. 1998).

Hepatic fibrosis in infected mice is related to egg num-
bers, but not in a linear fashion, i.e. mice with heavier
infection have more total hepatic fibrosis but less fibrosis
per egg (Cheever 1986). The rate of hepatic fibrosis, as
indicated by collagen mRNA (Wynn et al. 1995a, b) or
collagen synthetic rates (Olds et al. 1989), was decreased
in chronically infected mice compared to those with acute
(6-8 wk) infections. However Takahashi and Simpser (1981)
felt that decreasing levels of collagenase in chronic infec-
tions were more important than decreased synthetic rates
and in acute infections mice receiving a single injection of
concanavalin A showed increased collagenase activity
and decreased hepatic collagen (Takahashi & Koyayashi
1982). We are unaware of attempts to adjust the rate mea-
surements of hepatic fibrosis for infection intensity. Col-
lagen synthetic rates were proportional to liver collagen
per egg in ICR mice with high fibrosis compared to C57BL/
6 mice with low fibrosis (Cheever et al. 1983).

Widely different rates of resorption of hepatic collagen
have been reported following chemotherapeutic cure of
infection (Morcos et al. 1983, Andrade & Grimaud 1986,
Cheever et al. 1992a), but in general collagen resorption is
relatively rapid (collagen half-life of wk or months) in mice
treated during the first few weeks of egg deposition and
much more gradual when chronically infected mice were
treated (Warren & Klein 1969). The morphologic pattern
of collagen resorption in mice resembles that in humans
(Andrade & Grimaud 1988, Andrade et al. 1992). Colchi-
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cine treatment did not decrease hepatic fibrosis in S.
mansoni-infected mice (Badawy et al. 1999).

Symmers’ Clay Pipestem Fibrosis
Symmers’ fibrosis is present in virtually all cases of

portal hypertension attributable to schistosome infection
in humans and nearly all cases with Symmers’ fibrosis at
autopsy also manifest signs of portal hypertension.
Symmers’ fibrosis in the chimpanzee was morphologically
indistinguishable from that in man but did not produce
portal hypertension (Sadun et al. 1970), probably because
of the extensive portal-systemic collaterals formed. Njenga
et al. (1998) and Nyindo and Farah (1999) describe, but do
not convincingly illustrate, Symmers’-like periportal fibro-
sis in S. mansoni-infected baboons and Farah et al. (2000)
relate portal fibrosis in baboons to reinfection and TGF-β
and IL-4 production.

The massive infections present in mice produce a por-
tal hypertension related to granuloma number and size
which is probably not relevant to the mechanism of portal
hypertension in humans (Cheever 1965a). However, mice
also share the obstructive portal-venous lesions appar-
ently responsible for portal hypertension in humans. Por-
tal fibrosis resembling Symmers’ fibrosis in humans was
first described in mice by Warren (1966). Andrade (1987)
and Andrade et al. (1997) described similar fibrosis in in-
fected mice in which low intensity infections allowed
gradual obstruction of peripheral portal venules with sub-
sequent preferential shunting of eggs into the portal
spaces surrounding larger veins. In infected persons it
was also noted that eggs did not concentrate in the large
portal spaces until pipestem fibrosis had already begun
(Cheever 1969). Splenectomized mice developed pipestem
fibrosis but less frequently than intact mice (Andrade et
al. 1998).

Henderson et al. (1993) not only described a more
marked and uniform Symmers’-like fibrosis in infected CBA
male mice but also related this fibrosis to the absence of
regulatory idiotypic antibodies in these mice, a finding strik-
ingly similar to their findings in humans with Symmers’
fibrosis (Montesano et al. 1990a, b). Exposure of neonatal
mice to cross-reactive idiotypes (CRI) of mice without por-
tal fibrosis, but not to CRI of mice with portal fibrosis, re-
sulted in decreased granuloma size and decreased hepatic
fibrosis in mice subsequently infected (Montesano et al.
1999b). Thus both mechanistic and immunological mecha-
nisms in the murine model of pipestem fibrosis resemble
those in humans. These CBA mice also had elevated serum
levels of TNF-α and TNF-α mRNA in their livers (Adewusi
et al. 1996) and decreased levels of IL-10 (Bosshardt et al.
1997). However idiotypes from mice without portal fibrosis
stimulated IFN-γ formation (Montesano et al. 1997). Clini-
cal hepatosplenic disease in humans was associated with a
Th1-type immunological response (Mwantha et al. 1998)
but Montenegro et al. (1999) saw IFN-γ production in such
patients only after neutralization of IL-10.  Mice with and
without pipestem hepatic fibrosis did not show differences
in the production of anti-idiotypic antibodies against S.
mansoni (Andrade et al. 1998).

Gross examination of the livers of mice (and other ro-
dent hosts) can be misleading. Macroscopic white thick-

ening of the portal areas is frequent in chronic infections,
but microscopically this usually reflects marked prolifera-
tion of bile ducts rather than fibrosis. Bile duct prolifera-
tion is often associated with eosinophilic crystals in the
duct lumen. The crystals are apparently derived from epi-
thelial secretions and not eosinophils. Similar changes
are seen in the lungs of chronically infected mice and are
presumably IL-4 and IL-13 dependent as similar crystals
are seen in the lungs of IL-4 and IL-13 transgenic mice.

Extrahepatic Pathology
Lung - The key pulmonary pathology in infected hu-

mans is granulomatous schistosomal pulmonary arteritis
resulting in pulmonary hypertension and cor pulmonale.
Granulomatous pulmonary arteritis is seen routinely in
mice injected with schistosome eggs, but the attempts to
model human pulmonary schistosomiasis have generally
involved the shunting of eggs in infected animals to the
lungs through partial ligation of the portal vein which
created a shunt from the portal system to the lungs (War-
ren 1964) producing granulomatous pulmonary endarteri-
tis similar to that in infected humans (Andrade & Andrade
1970), lesions only partially reversed by chemotherapy
(Almeida & Andrade 1983). Granulomas in the lungs of
shunted mice did not undergo the downmodulation in
size seen in the livers of the same animals after chronic
infection (Souza Vidal et al. 1993).

Pulmonary granulomas in mice with portacaval shunts
were resistant to downregulation by anti-IL-4 while granu-
lomas around intravenously injected eggs were
downregulated, a difference attributed to the lower anti-
genic potency of the eggs injected compared to those
laid in situ by the worms (Eltoum et al. 1995).

Intestines - Granulomas in the colon and small intes-
tine of mice are smaller than those in the liver, are not
always subject to the same downregulation (Weinstock
& Boros 1981, Jacobs et al. 1998a) and are associated with
less fibrosis than are hepatic granulomas (Dunn & Kelley
1979, Santos et al. 1992). Inflammatory colonic polyps were
seen in S. mansoni-infected chimpanzees (Sadun et al.
1970) but these did not ulcerate and were not associated
with diarrhea, a hallmark of schistosomal colonic polypo-
sis in man. Heavily infected animals of several species
may develop colonic ulcerations and bloody diarrhea but
it is unclear whether these bear any relation to lesions or
symptoms and signs in humans. Infected woodchucks
have only slight hepatic fibrosis but marked fibrosis of
the intestine (Andrade et al. 2001).

Alterations in the vasculature and innervation of the
intestines of infected mice have been reported (Kloetzel
1971, Block 1980, Varilek et al. 1991). Death of intestinal
neurons is uncommon (Nassauw et al. 2001). In spite of
the predominance of small intestinal over colonic pathol-
ogy in infected mice and the evident gross and micro-
scopic lesions, the functional changes seem slight.
Domingo and Warren (1966) did not find functional
changes in the guts of infected mice while Vengesa and
Lesse (1979) and Sadek et al. (1986) noted changes in the
absorption of glucose and fluid transport and of disac-
charidase activity. Moreels et al. (2001) found that at 12
but not 8 wk after infection that increased muscular con-



926 Models of S. mansoni Infection � Allen W Cheever et al.

tractility was present in the inflammed mouse gut and that
transit through the GI tract was decreased. Immunodefi-
cient mice may have severe intestinal disease, as noted
below under “Causes of Death”.

Kidneys - The glomerulonephritis seen in schisto-
some infected humans has not been described in S.
mansoni infected animals although both chimpanzees and
rabbits seem susceptible to this lesion  when infected
with S. japonicum. S. mansoni infected rabbits show similar
changes, albeit of a lesser degree (Andrade et al. 1988).
Mild glomerular lesions in infected capuchin monkeys were
described by de Brito et al. (1971) and in baboons by
Houba et al. (1977). Houba (1979) reviewed experimental
schistosomal glomerulopathy.

Glomerular deposits of immune complexes and ultra-
structural glomerular lesions and Ig deposits have been
described in infected mice, but the kidneys were often
normal by light microscopy (Andrade & Susin 1974,
Rousse & Romeiro 1974, Natali & Cioli 1976, Carneiro &
Lopes 1986, Water et al. 1988). Antigen and immune com-
plex deposition were augmented by portocaval shunting
(van Marck et al. 1977) but were present even in unisexual
infections (Lopes et al. 1981). El-Sherif and Befus (1988)
found IgA to be the predominant Ig isotype in the glom-
eruli of infected mice. Severe glomerulonephritis devel-
oped in female BXSB mice exposed to 10 S. mansoni cer-
cariae but most mice did not have granulomas in the liver
and unisexual infections were not ruled out (Fugiwara et
al. 1988). Hematuria was documented in a substantial pro-
portion of infected mice by Valadares and Pereira (1983).

S. mansoni-infected hamsters developed severe amy-
loidosis of the kidneys which resulted in marked ascites
and amyloidosis of the liver and spleen, which compli-
cates interpretation of the lesions in these organs (Cheever
1965b).

Central Nervous System  -  No proper model has been
described for the focal mass lesions most frequently re-
ported in humans, but Aloe et al. (1996) have described
granulomas in the brain and altered nerve growth factor
levels in chronically infected mice. Behavioral changes
have been noted in mice and are perhaps attributable to
effects of cytokines on the central nervous system (Fiore
et al. 1996). Focal egg deposition and granulomatous en-
cephalitis associated with convulsions were seen in an
infected cercopithecus monkey (Cheever & Duvall 1974).
Recently, Silva et al. (2002) have called attention to the
inadequacy of the murine model for studies concerning
neuroschistosomiasis.

Causes of Death
Causes of death in patients - Humans rarely die from

acute S. mansoni infections. Nearly all persons with le-
thal chronic infections have Symmers’ fibrosis and most
of these die from bleeding esophageal varices. Others with
Symmers’ fibrosis die with chronic hepatocellular failure
and a smaller number from complications of pulmonary
hypertension or glomerulonephritis (Cheever & Andrade
1967) but death from schistosomiasis in patients without
Symmers’ fibrosis is very uncommon.

Variability between laboratories - It is clear that in
some laboratories lethal infections in mice are associated
with lower numbers of infecting worms than in other labo-

ratories. It is unclear whether this should be attributed to
the parasite, the host, to concomitant bacterial or viral
infections or to other variables associated with animal
husbandry.

Acute hemorrhage into the gastrointestinal tract
causes the great majority of deaths in S. mansoni infected
mice in our experience.  A/J mice incur this complication
early in infection and at low infection intensities (Dean et
al. 1981, Colley & Freeman 1983) while C57BL/6 and
BALB/c mice are unusually resistant to death after infec-
tion. The mechanism of intestinal hemorrhage in mice is
unrelated to gastrointestinal hemorrhage in humans with
schistosomiasis. Esophageal varices in the mouse are on
the serosal surface of the esophagus and are not the
source of bleeding, which is presumably from minute le-
sions in the gut. This does not seem to be a cause of
death in other models, and perhaps is lethal for the mouse
because it cannot afford to lose the 1-2ml of blood in-
volved.

Cytokine shock in mice - Marked malaise and early
death without hemorrhage into the gut lumen were re-
ported in IL-4 ko mice on the C57BL/6 background, but
not in IL-4 ko mice which were F1 129JxB6. The lethal
effect was related to IFN-γ and NO (La Flamme et al. 2001,
Patton et al. 2002) but was independent of IL-12 (Patton et
al. 2001). Survival was improved by treating the mice with
anti-TNF-α or with recombinant IL-4 (Rosa Brunet et al.
1997a, b, 1999). Mice deficient in IL-4 and IL-13 are espe-
cially susceptible and Fallon et al. (2000b) give an excel-
lent detailed description of the pathogenesis of cytokine
shock in these mice, including the shift to a type 1 type
cytokine response and the effects of bacterial lipopolysac-
charides leaking into the circulation from the intestine.
Fallon (2000d) provides an excellent review. Hoffmann et
al. (2000) found that either extreme Th1 or Th2 polariza-
tion resulted in the early death of S. mansoni-infected
mice but probably not from cytokine shock in Th2 polar-
ized mice.

Other immunocompromised mice die in the first wk of
egg laying without evident cytokine shock. Fallon et al.
(2000) found that mice transgenic for IL-9 developed a
fatal enteropathy in a Th2 melieu and MacDonald et al.
(2002) noted wasting and early death of CD154 ko mice
which had impaired Th2 responses.

T cell deficient mice, including SCID and nude mice,
infected with S. mansoni, but not S. japonicum or S.
haematobium, frequently die 7-9 wk after infection, ap-
parently from hepatotoxicity [and presumably cytokine
shock] (Byram et al. 1979, Cheever et al. 1999). Mice defi-
cient in Class II MHC (Angyalosi et al. 1998), CD-4 de-
pleted mice (Fallon et al. 2000a) or made tolerant to S.
mansoni egg antigens seem to die a similar death (Fallon
& Dunne 1999). Gharib et al. (1999) have described in-
creased eosinophil peroxidase activity and increased oxy-
gen radical production (Abdallahi et al. 1999) in the livers
of S. mansoni-infected mice with a concomitant decrease
in hepatic antioxidant defenses, apparently predisposing
infected mice to hepatotoxicity. It is not clear that the
entities we have attributed to “cytokine shock” are all
similar nor has this toxicity in mice been shown to be
relevant to death or other illness in humans (Cheever et
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al. 2000). If the syndrome is related to acute schistosomia-
sis then it is not clear why immunodeficient mice do not
show cytokine shock when infected with schistosome
species other than S. mansoni (Cheever et al. 2000).

WORM DEVELOPMENT, FECUNDITY AND FECAL EGG
EXCRETION

Fewer worms develop in male rodent hosts than in
females and castration and exogenous hormones have
the expected effects (Berg 1957, Nakazawa et al. 1997).
Fulford et al. (1998) propose that in mice and in humans
that this might be related to dehydroepiandrosterone lev-
els. Worm development and egg production were delayed
in mice deficient in the 5th component of complement at 7
wk of infection (Ruppel et al. 1982) but no difference was
found in another laboratory at 12 wk (Cheever et al. 1987).
Biozzi high responder mice developed higher numbers of
parasites and larger worms, and significantly more eggs/
worm pair were found in the liver at 10 but not at 15 wk
(Blum & Cioli 1978). IL-7 deficient mice had fewer worms
and fewer eggs/female 7-8 wk after infection (Wolowczuk
et al. 1999).

Decreased numbers of eggs/worm pair were found in
the livers of severely malnourished mice and hepatic granu-
lomas in these mice were smaller than in well nourished
mice (Knauft & Warren 1969, Akpom & Warren 1975,
Coutinho et al. 1997) and pipestem fibrosis was absent
and total hepatic fibrosis diminished in malnourished mice
(Coutinho et al. 1997).

Fecundity is defined as the number of eggs laid per
day per worm pair. Delayed inception of egg laying is
more common than decreased fecundity so that measure-
ment of eggs/worm pair at a single point in acute infec-
tions is of limited value. Strictly speaking one should know
the total number of eggs in the tissues and eggs passed
in the feces to calculate fecundity. Generally, only the
number of eggs in the liver and intestines is known, and
this comprises almost all eggs in the tissues. Eggs de-
stroyed in the tissues also constitute a portion of the
eggs laid and in rhesus monkeys the rate of egg destruc-
tion was extremely rapid [half life of 8 days] (Cheever &
Powers 1971) and the same has been assumed to be true
for cercopithecus monkeys and baboons (Cheever &
Duvall 1974, Damian et al. 1986).  In mice egg destruction
is much slower and its effects can often be ignored
(Cheever et al. 1992a). Quantitative estimates of worm fe-
cundity for many of these species have been presented
previously (Cheever et al. 1994b). Farah et al. (1997) de-
scribed higher fecundity in multiply infected baboons than
after single infection.

In mice infected with a single pair of worms, fecundity
varied greatly between individual mice but did not vary
with duration of infection (Cheever et al. 1994a). Fecun-
dity did decrease in time in more heavily infected mice
(Cheever et al. 1994b). Worm fecundity in vitro also var-
ied greatly among worm pairs and with the host used and
the duration of infection (El Ridi et al. 1997). The fecun-
dity of worms in infected rhesus monkeys decreased with
increasing duration of infection. This decrease was much
more rapid in heavily infected animals than in those lightly
infected and the decrease in fecundity presumably had

an immune basis as worms were also much more rapidly
destroyed in the heavily infected monkeys (Cheever &
Powers 1969).

The fecundity of the worms was generally reflected
by the number of eggs passed in the feces at various
stages of infection in mice (Cheever et al. 1994b) and in
monkeys (Cheever & Powers 1969). The percentage of
eggs laid passed in the feces can vary greatly in different
species and even in different strains of mice (Jones et al.
1989). Nude mice (Cheever et al. 1993) and T-cell depleted
mice (Dunne et al. 1983, Doenhoff et al. 1978, 1985) passed
less eggs in the feces than did intact mice and SCID mice
passed almost no eggs in the feces in the first weeks of
oviposition (Amiri et al. 1992, Cheever et al. 1999). These
findings anticipated those in patients with AIDS who may
pass many fewer eggs in the feces than comparably in-
fected patients without AIDS (Karanja et al. 1997). The
number of eggs per worm pair in the tissues of nude and
SCID mice was low early in infection (Amiri et al. 1992,
Cheever et al. 1993, 1999) but the rate of egg accumulation
approached that in intact mice by the 10th wk of infection
(Cheever et al. 1993, 1999). Davies et al. (2001) correlate
worm development with the presence of a subset of CD4+

lymphocytes in the liver.
Lenzi et al. (1987) found that eosinophils favored the

passage of S. mansoni eggs in the feces, although mice
treated with anti-IL-5 and lacking eosinophils passed nor-
mal numbers of eggs in the feces (Sher et al. 1990). Worms
in mice deficient in IL-4 or IL-4 and IL-13 showed normal
to slightly increased fecundity as judged from tissue eggs
but almost no eggs were passed in the feces (Fallon et al.
2000b).

More selective immune depletion, i.e. treatment with
anti-IgE, has been reported to inhibit the development of
S. mansoni suggesting that the worms need this immuno-
globulin for normal development (Amiri et al. 1994). This
is difficult to reconcile with the increased numbers of
worms developing in IgE ko mice (King et al. 1997) and
the normal development of worms in FcεRI ko mice, in B
cell ko mice and in SJA/9 mice unable to produce IgE
(Jankovic et al. 1997, 1998, El Ridi et al. 1998).

INTERACTION OF SCHISTOSOMIASIS WITH OTHER
DISEASES

Murine viral hepatitis was more severe in schistosome
infected mice (Warren et al. 1969) and the clearance of
vaccinia virus was delayed for a period during the acute
phase of schistosome infection (Actor et al. 1994). Wood-
chuck hepatitis B infection was apparently not affected
by S. mansoni infection (Andrade et al. 2001). Surpris-
ingly hepatitis B replication in HBV transgenic mice was
inhibited by S. mansoni infection (McClary et al. 2000).

Schistosomiasis is intriguingly related to several bac-
terial infections, most notably with prolonged typhoid
fever syndromes (Chieffi 1992) and numerous experimen-
tal studies have been published using a number of bacte-
rial species (Rocha et al. 1980). The association of bacte-
ria with the schistosome gut or tegument (Loverde et al.
1980) protects the bacteria from chemotherapy and pre-
sumably from immune attack as well.
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S. mansoni infected mice also showed increased sus-
ceptibility to Entamoeba histolytica (Knight & Warren
1973), Trypanosoma cruzi (Kloetzel et al. 1973) and Toxo-
plasma gondii (Kloetzel et al. 1977). Marshall et al. (1999)
found increased plasma TNF-α and increased hepatotox-
icity in mice with combined S. mansoni and T. gondii in-
fections and this effect was diminished in IL-12 ko mice
(Araujo et al. 2001). The susceptibility to Plasmodium
yoelli and P. berghei was little affected (Lwin et al. 1982).

There has long been controversy about the associa-
tion of human hepatocellular carcinomas and schistosome
infections, but S. mansoni infection is apparently not as-
sociated with hepatoma in man (Cheever & Andrade 1967).
Hepatomas are infrequently seen in infected animals but
infected mice given low doses of some carcinogens de-
veloped hepatomas much more frequently than did mice
given the carcinogen alone (Domingo et al. 1967, Kakizoe
1985).

The vigorous Th2 response to schistosome infection
may have a role in several of the above situations and in
the response to immunizing antigens such as diphtheria
toxoid (Haseeb & Craig 1997). Diabetes was ameliorated
in NOD (non-obese diabetic) mice infected with S. mansoni
or injected with eggs (Cooket et al. 1999) and oral admin-
istration of SEA plus insulin led to a Th2 response in
NOD mice (Maron et al. 1998). Second helminth infec-
tions may be influenced as well. Mice usually susceptible
to Trichuris muris resolved their infections when infected
with S. mansoni (Curry et al. 1995).

USE OF SCHISTOSOME-RELATED MODELS FOR THE
STUDY OF OTHER DISEASES

Many of these studies are implicit in the discussion
above. Schistosome infections have been widely used as
an example of hypersensitivity granulomas (Boros 1983)
and as model systems to examine the biochemistry and
morphology of  hepatic collagen formation (Silva et al.
1990 Prakash et al. 1995, Frizell et al. 1995) or resorption,
as noted above. The interactions of the field of immunol-
ogy and the study of the immunopathology of schisto-
some infections have been mutually beneficial. The im-
portance of anti-idiotypic T cell responses in infectious
disease was first noted in schistosome infected individu-
als (Montesano et al. 1990a, b). The study of T helper
subsets has been extremely useful in analyzing infections
with schistosomes and with other helminths but investi-
gations of these infections have also contributed sub-
stantially to our knowledge of Th1 and Th2 lymphocyte
subsets (Jankovic & Sher 1996, Jankovic et al. 2000,
MacDonald et al. 2002) and are relevant to understanding
other Th2 dominated reactions such as asthma. Sabin et
al. (1996) recently used schistosome eggs to demonstrate
the importance of eosinophils as an early source of IL-4.

Coelom-associated lymphomyeloid tissue (CALT or
milky spots) is greatly expanded in schistosome infected
mice and examination of these animals has contributed to
our knowledge of CALT (Lenzi et al. 1996). Many other
studies have added to our understanding of eosinophils,
macrophages, lymphocytes, non B, non T cells, endothe-
lial cells etc.

SPECIAL CONSIDERATION OF THE RABBIT AND WOOD-
CHUCK

Rabbits are a host of choice for the study of the pa-
thology of schistosomiasis japonica. Large periovular
granulomas are formed in the liver during acute infection
and typical areas of periportal “pipestem” fibrosis appear.
However, rabbits are not good hosts for S. mansoni since
adult worms are eliminated within a few wk after cercarial
exposure (Warren & Peters 1967, Andrade et al. 1988).
Furthermore the eggs do not mature in the tissues and do
not appear in the stools. Thus the main factor in the patho-
genesis of schistosomiasis, the miracidium, is absent and
therefore there is no disseminated liver fibrosis, nor ob-
structive portal vascular lesions and no portal hyperten-
sion or splenomegaly. Lesions in the liver are produced
by the worms rather than the eggs. The basic lesion is
composed of focal phlebosclerosis, vascular dilatation and
polypoid endophlebitis. This curious and characteristic
lesion is formed by projections of chronically inflamed
subintimal connective tissue which are covered by hy-
perplastic endothelial cells. At first they do not affect the
general liver architecture but in severe chronic infection
some degree of portal and sepal fibrosis appear and may
become prominent in prolonged infections. In extremely
severe cases the combination of fibrosis and vascular
proliferation may transform the liver into a huge angioma-
tous organ. Thus focal portal vascular changes caused
directly by living or dying adult worms dominate the pa-
thology of schistosomiasis mansoni in rabbits. Periovu-
lar granulomas are not a feature and the fibrotic changes
do not resemble human “pipestem” fibrosis.

Woodchucks (Marmota monas and M. marmota) are
worth considering as an experimental model for schisto-
somiasis because they are susceptible to both S. mansoni
and to a hepatitis virus very similar to human hepatitis
virus B (Woodchuck hepatitis virus - WHV). They are
highly susceptible hosts with several peculiarities. Acute
infection can run a severe and fatal course if the cercarial
load is heavy (1,000 cercariae or more). Death in these
cases is preceded by diarrhea due to intestinal lesions.
The most severely damaged organ is the intestines rather
than the liver. Large periovular granulomas are numerous
in the submucosa and in the muscular coat, the mucosa
being least involved. Granulomas in the liver are smaller
than those in the intestines and are scattered. They cause
some degree of portal fibrosis which is never dissemi-
nated or systematized. The infection runs an auto-cure
course (Andrade et al. 2001).

SPECIAL CONSIDERATION OF CALOMYS COLLOSUS

The first report of S. mansoni infection in C. callosus
was from Coelho et al. (1979). Borda (1972) showed ex-
perimentally that it is permissive to S. mansoni.

Our histopathological observations in C. callosus, in-
fected by percutaneous exposure to 70 cercariae of S.
mansoni, and  killed at 42, 55, 80, 90 and 160 days after
infection (six animals/point), have showed some peculiar
aspects. In the liver, the granulomas were of two types:
larger, in portal spaces, and smaller ones, in the paren-
chyma, which were often intravascular. The former were
usually constituted by internal (periovular) and periph-
eral zones, while the intra-parenchymatous granulomas,
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during all the studied period, were predominantly com-
posed of large and mature macrophages, often with abun-
dant schistosomal pigment, less eosinophils and neutro-
phils, and scarce lymphocytes, as described (Lenzi JA et
al. 1995, 1998). There was no significant change in the
granuloma morphology, size and extracellular matrix com-
position during the studied periods, suggesting that they
are not modulated.

The granulomas exhibited fine texture of reticular fi-
bers, mainly in the periphery and few or absent collagen
fibers were visible by picrosirius (Junqueira et al. 1979) or
phosphomolybdic acid-picrosirius stains for confocal la-
ser scanning microscopy (Dolber & Sprach 1993) (Fig. 1).
However, they were rich in carboxylated proteoglycans.
By immunohistology, they showed deposits of fibronectin,
laminin, collagen types I, Pro-III, IV, V, which remained

Fig.1: small intraparenchymatous hepatic granuloma with few collagenic fibers, showing large number of macrophages full of schistosome
pigment (Picrosirius. Bar = 10 µm). Fig. 2: granuloma in the intestinal mucosa composed by an internal layer of macrophages and
eosinophils surrounded by an external thin collagenic pseudocapsule (Picrosirius. Bar = 15 µm). Fig.3: intestinal subserosal nodule centered
by a granuloma, which is encircled by a thick fibrous layer (Picrosirius. Bar = 40 µm). Figs 4 and 5: pancreas with granulomas and focal
lobular atrophy, presenting intense interstitial inflammatory infiltrate consisting of lymphocytes, plasma cells and macrophages (H&E.
Bar = 20 µm). Fig. 6: activated Milky Spot rich in plasma cells, showing a lymphatic vessel full of small lymphocytes. Close to the upper-
left corner there is a mature megakaryocyte (H&E. Bar = 15 µm).
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more or less constant during all the time of infection, al-
ways being less than seen in mice. Gelatinase was de-
tected in large macrophages surrounding the eggs.

Focal parenchymal necrosis was found and portal in-
flammation and fibrosis were varied, depending on the
time of infection. They were absent or minimal in more
recent infection (42 days). At 90 days in some animals,
there was an exacerbation of portal inflammation, and there
appeared also portal perivenular and periductal fibrosis,
causing sac-like dilatations in portal lymphatics, which
filled with large macrophages.

Although the granulomas never exhibited peripheral
metaplasia of hematopoietic cells, as observed in mice
(Lenzi HL et al. 1995), from 55 days on, intrasinusoidal
megakaryocyte, eosinophil and erythroid metaplasia was
observed.

In C. callosus intestines, there were numerous eggs
in all layers forming granulomas with collagen and reticu-
lar fibers detected only in the peripheral zone (Fig. 2).
Numerous intestinal nodules, appearing from 55 ups to
160 days after infection, were localized at the interface
between external muscular layer and intestinal serosa (Fig.
3) (Lenzi JA et al. 2002). From 55 days of infection on, an
intense mast cell infiltration was detected, occupying all
the intestinal layers. In the mucosa, the mast cells were
mainly of the mucosal mast cell-type (MMC), while, in the
muscular layer and in the subserosal nodules they were
almost exclusively of the connective tissue type (CTMC)
or transitional from MMC to CTMC.

Pancreatic involvement was frequent, and occasion-
ally severe (Figs 4, 5). The omentum and mesentery were
strongly activated during the infection, showing many
milky spots and a diffuse infiltration of mast cells (Fig. 6).
Milky spots were mainly of the lymphoplasmacytic type
(Lenzi et al. 1996).
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