Acessibilidade / Reportar erro
Memórias do Instituto Oswaldo Cruz, Volume: 65, Número: 2, Publicado: 1967
  • Plancto e hidrobiologia sanitária de tanques tropicais com dáfnias e rotíferos

    Oliveira, Lejeune P. H. de; Krau, Luiza; Nascimento, Rubem do; Miranda, Arnaldo S. A.

    Resumo em Inglês:

    The engineers of the modern University City are constructing a graceful bridge, named PONTE OSWALDO CRUZ, that crosses a portion of the Guanabara Bay (Fig. 1). The work at west pillar stopped for 3 years (The concret structure in Est. 1). As it will be seen from n.º 1 — 5 of the fig. 1, Est. I, the base of the structure will have five underground boxes of reinforcement, but, to-day they are just like as five uncovered water ponds, until at present: May 1963. (Est. I — fig. 3, n.º 3 — pond n.º 3; A. — old level of the water; B.— actual level of the water; c.— green water; E.— mass of bloom of blue algae Microcystis aeruginosa). Soon after SW portion, as 5 cells in series, of the pillar abutments, and also the NE portion nearly opposite in the Tibau Mount will be filled up with earth, a new way will link Rio City and the University City. We see to day Est. I, fig. 1 — the grasses on the half arenous beach of the Tibau Point. These natural Cyperaceae and Gramineae will be desappear because of so a new road, now under construction, when completed will be 33 feet above the mean sea level, as high as the pillar, covering exactly as that place. Although rainfall was the chief source of water for these ponds, the first water (before meterorological precipitations of whatever first rain it might fall) was a common tap water mixed with Portland Cement, which exuded gradually through the pores of the concret during its hardenning process. Some data of its first cement water composition are on the chemical table, and in Tab. n.º 4 and "Resultado n.º 1". The rain — receiving surface of each pond were about 15 by 16 feet, that is, 240 square feet; when they were full of water, their depth was of 2 feet 3", having each pond about 4,000 gallons. Climatic conditions are obviously similar of those of the Rio de Janeiro City: records of temperature, of precipitation and evaporation are seen on the graphics, figs. 2, 3, 4. Our conceptions of 4 phases is merely to satisfy an easy explanation thus the first phase that of exudation of concrete. We consider the 2nd. phase formation of bacterian and cyanophycean thin pellicel. 3rd. phase - dilution by rains, and fertilisation by birds; the 4th phase - plankton flora and fauna established. The biological material arrived with the air, the rains, and also with contaminations by dusts; with big portion of sand, of earth, and leaves of trees resulted of the SW wind actions in the storming days (See - Est. I, fig. 3, G. - the mangrove trees of the Pinheiro Island). Many birds set down and rest upon the pillar structure, its faeces which are good fertilizers fall into the ponds. Some birds were commonly pigeons, black ravens, swallows, sparrows and other sea mews, moor hens, and a few sea birds of comparatively rare occurence. We get only some examples of tropical dust contaminated helioplankton, of which incipient observations were been done sparcely. See the systematic list of the species of plankters. Phytoplankters - Cyanophyta algae as a basic part for food of zooplankters, represented chiefly by rotiferse, water-fleas Moinodaphnia and other Crustacea: Ostracoda Copepoda and Insecta: Chironomidae and Culicidae larvae. The polysaprobic of septic irruptions have not been done only by heating in summer, and, a good reason of that, for example: when the fifth pond was in polysaprobic phase as the same time an alike septic phase do not happened into the 3rd. pond, therefore, both were in the same conditions of temperature, but with unlike contaminations. Among the most important aquatic organisms used as indicatiors of pollution - and microorganisms of real importance in the field of sanitary science, by authorities of renown, for instance: PALMER, PRESCOTT, INGRAM, LIEBMANN, we choose following microalgae: a) The cosmopolite algae Scenedesmus quadricuada, a common indicator in mesosaprobio waters, which lives between pH 7,0 and it is assimilative of NO[3 subscripted] and NH[4 subscripted]. b) Species of the genus Chlamydomonas; it is even possible that all the species of theses genus inhabit strong-mesosaprobic to polysaprobic waters when in massive blooms. c) Several species of Euglenaceae in fast growing number, at the same time of the protozoa Amoebidae, Vorticellidae and simultaneous with deposition of the decaying cells of the blue algae Anacystis cyanea (= Microcystis) when the consumed oxygen by organic matter resulted in 40 mg. L. But, we found, among various Euglenacea the cosmopolite species (Euglena viridis, a well known polysaprobic indicatior of which presence occur in septic zone. d) Analcystis cyanea (= M. aeruginosa) as we observed was in blooms increasing to the order of billions of cells per litter, its maximum in the summer. Temperatures 73ºF to 82ºF but even 90ºF, the pH higher than 8. When these blue algae was joined to the rotifer Brachionus calyflorus the waters gets a milky appearance, but greenished one. In fact, that cosmopolite algae is used as a mesosaprobic indicator. Into the water of the ponds its predominance finished when the septic polysaprobic conditions began. e) Ankistrodesmus falcatus was present in the 5th pond from 26the. April untill the 26th July, and when N.NH[4 subscripted] gets 1.28 mg. L. and when chlorinity stayed from 0.034 to 0.061 mg. L. It never was found at N.NH[4 subscripted] higher than 1 mg. L. The green algae A. falcatus, an indicatior of pollution, lives in moderate mesosaprobic waters. f) As everyone knows, the rotifer eggs may be widely dispersed by wind. The rotifer Asplanchna brightwelli in our observation seemed like a green colored bag, overcharged by green cells and detritus, specially into its spacious stomach, which ends blindly (the intestine, cloaca, being absent). The stock of Asplanchna in the ponds, during the construction of the bridge "PONTE OSWALDO CRUZ" inhabits alkaline waters, pH 8,0 a 8,3, and when we observed we noted its dissolved oxygen from 3.5 to 4 mg. L. In these ponds Asplanchna lived in 0,2 P.PO[4 subscripted]. (Remember the hydobiological observations foreign to braslian waters refer only from 0.06 to 0,010 mg. L. P.PO[4 subscripted]; and they refer resistance to 0.8 N.NH[4 subscripted]). By our data, that rotiger resist commonly to 1.2 until 1.8 mg. L.N.NH[4 subscripted]; here in our ponds and, when NO[2 subscripted] appears Asplanchna desappears. It may be that Asplanchna were devoured by nitrite resistant animals of by Culicidae or other mosquitoes devoured by Due to these facts the number and the distribution of Asplanchna varies considerabley; see - plates of plankton successions. g) Brachionus one of the commonest members of class Rotatoria was frquently found in abundance into the ponds, and we notice an important biological change produce by the rotifer Brachonus colyciflorus: the occurence of its Brachionus clayciflorus forms pallas, is rare in Brazil, as we know about this. h) When we found the water flea MOinodaphnia we do not record simultanous presence of the blue algae Agmenellun (= Merismopedia).
  • Redescrição de Stegophorus diomedeae (Johnston & Mawson, 1942) Johnston & Mawson, 1945: (Nematoda, Spiruroidea)

    Rodrigues, H. de Oliveira; Mendonca, J. Machado de
  • Contribuição ao estudo dos rotatoria do Brasil: I. Lista das espécies verificadas

    Krau, Luiza
  • Efeito de alguns curares naturais e da d-Tubocurarina retardando o tempo de coagulação e o tempo de protombina do sangue humano

    Canali, João; Vieira, João Vieira

    Resumo em Inglês:

    In this paper the author points out to a old question of about 200 years ago in wich two kinds of opinions were discussed. BANCROFT and FONTANA in one hand atributes for the Indian arrow poison (curare) the propriety of uncoagulate the blood, and C. BEBNAHDJ, B. RODRIGUES and others made an contradictory opinion upon this subject. In our experiments, we utilized 4 curares samples from indians who lives near the Brazilian border at Colombia, the famous Ticunas poison, and the alkaloid d-Tubocurarine. These poisons were added in form of emulsion in saline to the blood and blood plasma in order to perform two kinds of experiments. In one serie of experiments we observed the effect of curare on human blood coagulation time according to LEE-WHITE technic puting 0.5 ml of the various poisons emulsions previously into the tube. By this method, we have found that the emulsion containing 0.1 g of the poison in 10 ml saline was the most effective (Table II), therefore we used this curare emulsion concentration in the other serie of experiments, in which we tested the action of these venoms on the human blood plasma prothrombins time, (Quick Technic) adding 0.1 ml of the saline poison emulsion to each 0.1 ml of human blood plasma. Results from these experiments can be seen on Table II. These experiments we have tried on one sample of human blood plasma plus the differents curares samples; and in another opportunity four samples of human blood plasma were tried with the curare from Ticunas indians (the most effective in this respect). Results from these experiments may be seen on Table III. All the poison tried in our experiments was previously tested on toads legs (B. crucifer) to verify his curares action. All times obtained with the experiments above, show highly significant results (P<001) when compared with the blood and blood plasma mixed with in the same volume of saline. Our results, point out that BANCROFT and FONTANA views upon the effect of curare on blood clothing time were correct. Curares enhance the blood clothing time "in vitro". But, in other hand, the work in that matter by NESI (6), and TISTHOUND (7) showing that d-Tubocurarine had no significant effect on blood clothing time of man and dogs "in vivo", made possible to conclude that the observations of C. BERNARD, B. RODRIGUES and others were also true. These discordance of opinions, we believe, may result as BANCROFT and FONTANA researches, were wade "in vitro" whereas C. Bernard, B. Rodrigues and others performed their experiments "in vivo".
  • Microanatomia e citologia das glândulas pençonhentas de Rhninocricus Padbergii (Diplopoda)

    Barth, Rudolf

    Resumo em Português:

    No presente trabalho, descreve-se a estrutura microanatômica e citológica, bem como a função das glândulas laterais de um Diplópode, Rhinocricus padbergii. Chegamos aos seguintes resultados principais: 1 — Do ponto de vista anatômico o, o aparelho glandular representa uma invaginação complicada do integumento. O epitélio glandular é uma formação homóloga a hipoderme, fato provado pela presença de um revestimento cuticular e de pigmentos nas células de todo o aparelho. O sistema compõe-se de uma vesícula glandular, de um canal condutor e de um dispositivo de fechamento. 2 — Os detalhes da construção do aparelho glandular inteiro apresentamos na figura 1. Todo o complexo possui apenas um forte músculo para o movimento do aparelho de fechamento; seu antagonista é uma região elástica do próprio aparelho de fechamento que funciona à maneira de mola em virtude de numerosas dobras grudadas. 3 — A hipoderme glandular possui uma membrana basal muito fina, sendo porem reforçada, secundàriamente, por uma membrana celular mais forte. 4 — A expulsão de secreção através da abertura externa ("poro glandular") dá-se por meio de aumento da pressão no interior da cavidade geral do corpo (contrações generalizadas da musculatura inteira do corpo) e pela pressão da borda posterior do segmento anterior, exercida sobre a vesícula glandular devido a contração dos troncos da musculatura longitudinal. 5 — A respeito da função das células glandulares diferenciamos quatro estágios: a) Fase I: Na zona media da célula formam-se concentrações de secreção difusas. Os mitocôndrios localizam-se, quase exclusivamente, sobre a face basal da célula. b) Fase II: As concentrações de secreção difusas tornam-se mais densas; as esferas de secreção aumentam, gradativamente, de diâmetro e localizam-se em vacúolos, em forma de fendas, no protoplasma. Os mitocôndrios aumentam de número, distribuindo-se sobre todo o interior da célula. c) Fase III: Os vacúolos pequenos confluem em alguns grandes, , preenchendo-se com esferas de secreção, maiores e menores. Os mitocôndrios deslocam-se em direção à zona apical da célula, encontram-se porém, ainda, também em número elevado no protoplasma. d) Fase IV: Os vacúolos juntam-se, formando um só vacúolo grande que ocupa mais do que a metade do volume da célula e que é preenchida por esferas de secreção. Os mitocôndrios encontram-se agora quase exclusivamente na face apical da célula. 6 - Durante a formação das esferas de secreção ocorre no seu interior um acondensação secondária, que se inicia no centro de cada esfera, e que pode ser comparada com o mesmo fato observado nas esferas de secreção das células lipócrinas das glândulas salivares de Aedes scapularis. 7 - A secreção não é de natureza lipóide. 8 - A expulsão da secreção da célula é processo micro-apócrino. 9 - As esferas de secreção no interior da célula e a secreção contida na vesícula glandular têm uma composição química diferente. Baseando-se na migração dos mitocôndrios (veja os itens 5 a-d dêste resumo) conclui-se que, antes ou durante sua passagem através da face apical da célula, a secreção sofre uma modificação química por ação enzimática.

    Resumo em de:

    Es werden dieser Arbeit die mikroanatomische und cytologische Struktur, sowie die Funktion der Seitendruesen eines Tausendfuessers, Rhinocricus padbergii, beschrieben. Es ergaben sich folgende Hauptergebnisse: 1: Anatomisch gesehen ist der Druesenapparat eine komplizierte Invagination des Integuments, so dass das Druesenepithel der Hypodermis homolog ist, was durch die Existenz einer Cuticularbedeckung und von Pigmentkoernern bestaetigt wird. Er besteht aus einer Druesenblase, dem Ausfuehrgang und dem Verschlussapparat. 2: Einzelheiten des Aufbaus des Druesenapparates ergeben sich aus dem Schema der Figur 1. Der geamte Komplex besitzt nur einen kraeftigen Muskel, der den Verschlussapparat oeffnet; sein Antagonist ist eine durch verkittete Falten elastische Region des Ausfuehrganges, die wie eine Blattfeder wirkt. 3: Die Druesenhypodermis besitzt eine sehr duenne Basalmembran, de durch eine sekundaer aufgelagerte, zellige, dickere Membran verstaerkt wird. 4: Die Austreibung des Sekrets aus der aeusseren Muedung des Apparates (Druesenporus) erfolgt durch Druckerhoehung in der Leibeshoehle (allgemeine Kontraktion der gesamten Skelettmuskeln) und durch Druck des Hinterrandes des vorhergehenden Segments auf die Druesenblase infolge Kontraktion der Laengsmuskelstaemme. 5: An den Druesenzellen lassen sich vier Funktionsstadien unterscheiden: a) 1. Stadium: In der mittleren Zellzone bilden sich diffuse Sekretkonzentrationen. Die Mitochondrien befinden sich fast ausschliesslich auf der Basalflaeche der Zelle. b) 2. Stadium: Die diffusen Sekretkonzentrationen werden dichter, nehmen laufend an Groesse zu und liegen in vakuolenaehnlchen Spaltraeumen des Protoplasmas. Die Mitochondrien nehmen an Zahl zu und verteilen sich ueber den gesamten Zellaraum. c) 3. Stadium: Die kleinen Spaltraeume fliessen zu einigen groesseren zusammen, die sich mit groesseren und kleineren Sekretkugeln fuellen. Die Mitochondrien wandern zur apikalen Zellkretkugeln fuellen. Die MItochondiren wandern zur apikalen Zellkretkugeln fuellen. Die Mitochondrien wandern zur apikalen Zellflaeche, finden sich aber auch in groesserer Anzahl im Protoplasma. d) 4. Stadium: Die Vakuolen vereiningen sich zu einer einsigen grossen, die ueber die Haelfte des Volumens der Zelle einnimmt. Sie ist dicht mit Sekretkugeln gefuellt. Die Mitochondrien finden sich jetzt fast ausschliesslich an der apikalen Zellflaeche. 6: Waehrend der Bildung der Sekretkugeln erfolgt in diesen eine sekundaere Kondensation, die im Zentrum beginnt, vergleichbar mit dem gleichen Vorgang in den Sekretkugeln der lipokrinen Zellen der Speicheldruese von Aedes scapularis. 7: Das Sekret ist nicht lipoider Natur. 8: Der Ausstoss des Sekrets aus der Zelle ist micro-apokrin. 9: die Sekretkugeln in den Zellen und das Sekret in der Druesenblase haben unterschiedliche chemische Zusammensetzung. Aus der Wanderung der Mitochondrien (siehe Punkt 5 a-d dieser Zusammenfassung) wierd geschlossen, dass vor oder waehrend seines Durchtritts durch die apikale Zellflaeche das Sekret auf enzymatischem Wege chemisch veraendert wird.
  • Novos longicórneos neotrópicos: XIII. (Col., Cerambycidae, Cerambycinae)

    Zajciw, Dmytro

    Resumo em Inglês:

    The author describes one new genus, Dihammaphoroides allied to Dihammaphora Chevr., 1859 and tree new species: Coleoxestia omega, approximate to bivittata (Buq., 1852), Ommata (Eclipta) melzeri resembling castanea Bat., 1873 and Dihammaphoroides sanguinicollis, all from Brazil, Prov. Rio de Janeiro, National Park Itatiaia, collected by J. F. Zikan.
Instituto Oswaldo Cruz, Ministério da Saúde Av. Brasil, 4365 - Pavilhão Mourisco, Manguinhos, 21040-900 Rio de Janeiro RJ Brazil, Tel.: (55 21) 2562-1222, Fax: (55 21) 2562 1220 - Rio de Janeiro - RJ - Brazil
E-mail: memorias@fiocruz.br