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The Artificial Neural Network (ANN) techniques were utilized to predict wear rate and CoF of 
the Ti-5Al-2.5Sn matrix reinforced with B4C particle manufactured by the powder metallurgy. TMCs 
and wear test samples were characterized by the Scanning Electron Microscope (SEM). Dry sliding 
wear narrative of the composites was estimated on a pin-on-disc machine at various loads of 20-60N, 
sliding velocity of 2-6m/s and sliding distance from 1000m-3000m. The wear rate of the composite 
was reduced by augmentation in weight fraction of boron carbide from 3-9%. The benefits of interfacial 
TMCs with B4C are: increase in strength, wear-resistance, and volume fraction. ANN was planned 
and utilizes a Levenburg-Marquardt program algorithm to reduce the mean squared error using a 
back-propagation technique. The input parameters are considered to include load, sliding velocity, 
and sliding distance. The experimental results of an ANN model and regression model are compared. 
ANN replicas have been urbanized to foreshow experimental rate of wear and CoF of TMCs and 
examined that ANN predictions have exceptional concord with deliberated values. Accordingly, the 
prediction of wear rate and CoF of TMCs using ANN in earlier actual manufacture will significantly 
save the manufacturing time, exertion, and expenditure.
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1. Introduction
Titanium and its alloys have amazing physical, chemical, 

and mechanical characteristics such as low density, high 
corrosion resistance, and comparatively low elastic modulus 
making them more suitable for industrial, aerospace, marine, 
power plant, chemical, sport, and biomedical applications1-6. 
TMCs possess significant mechanical characteristics, such as 
high specific strength, thermal stability, erosion, corrosion, 
and creep resistance7,8.

Ti-5Al-2.5Sn gives an impressive performance and 
is considered as the workhorse in the titanium and alloys 
product manufacturing engineering since its inception in 
the early 1950s9,10, the industry has evolved. Ti-5Al-2.5Sn 
alloys have exceptional weldability and are usually utilized 
in airframe applications, particularly on weldability of the 
aerospace structural constituents close to engines where they 
can withstand super high temperatures11,12.

Ti-5Al-2.5Sn also acquires superior ductility and fracture 
toughness at tremendously low down temperatures whereas 
the prominent Ti-6Al-4V alloy It loses its ductility9,13,14. 
Ti-5Al-2.5Sn alloy is low in cost, economics and cheaper 
than the well Ti-6Al-4V is an alloy. Ti-5Al-2.5Sn alloy, 
which formed near to and under alpha, is preferred for use 
in high-temperature cryogenic applications. Due to its low 
heat conductivity and chemical reactivity, the efficiency 
of machining titanium alloys is negatively influenced by 
early tool wear when using standard machining techniques. 
Rapid tool wear is a problem that needs to be solved when 
titanium alloys cutting13.

A metal matrix composite has two categories based on 
the form of reinforcement. The first form of reinforcement 
is squashy reinforcement as of graphite and the next form is 
of tough particulates like SiC, Al2O3, TiC, TiO2, and others. 
The use of hard particulates minimizes loss of wear, mainly 
contrasting to the matrix main alloys15,16. The TMCs produced *e-mail: winsureshv2011@gmail.com
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by the addition of B4C showed a greater tensile elongation. 
The tensile elongation of TMCs attained with B4C improved 
as the coarse reinforcements manufactured by B4C could be 
more easily cracked at the fracture surface17,18.

The hardness of the composites increased as compared 
to the base material (Ti-6Al-4V) and TMCs/10 B4C which is 
accredited to the incidence of the rigid ceramic stage. ANOVA 
was utilized to verify the legality of the urbanized model. 
The optimal constraints of WR and CoF were recognized 
and so was abridged wear rate19,20. Powder metallurgy is 
commonly used for the production of processed MMC 
materials with sufficient potential that can be used in many 
applications instead of obtaining a few admirable properties 
over other competing methods21.

An ANN-based replica is very critical and complex than 
another pragmatic modelling approach. It also necessitates 
significant acquaintance and knowledge to pertain efficiently 
and has been functioning predominantly for examining the link 
among input and output constraints of materials dispensation 
method22-25. ANN is an excellent pertinent technique due to 
its significant merits of superfluous precision, low cost, and 
shorter time. Recognizing every type of complex nonlinear 
interaction between input parameters and prediction of the 
output parameter is probable with ANN26-29. The complexity 
of ANN-based modeling is often higher than that of other 
empirical modeling techniques. In order to use it properly, 
it also requires a great deal of knowledge and expertise, and 
it has mostly been used to examine the relationship between 
the input and output parameters of materials processing 
processes27.

The ANN and regression analysis is used in optimization 
of the manufacturing process and proved that ANN showed 
improved results30-34. An ANN technique was pertained 
earlier for predicting the process parameter routine in 
several applications26,27,29,31,33-35. Mondal et al.30 used Flower 
Pollination Algorithm (FPA)- based optimization of drilling 
burr using regression analysis and ANN model and concluded 
that ANN produced better results. Ivan I Argatova (2019) 
investigated the usage of the neural network as an aspect of 
a necessary type nonlinear regression model guided by the 
spatial understanding of the experimental collection of data. 
It was for a pedestal on a scrupulous group of investigational 
data for the composites showed, the efficiency of the 
ANN-supported Archard – Kragelsky regression model36. 
Palanivel R (2019) examined and found the link among 
friction welding titanium joints by the relevance of an ANN 
technique. The joints were modelled by the relevance of 
the RSM37. Ashan et al.32 studied that an ANN model was 
more precise as compared to RSM. Hassan et al.31 observed 
the fatigue performance of composite shafts by ANN and 
discussed that it forecasted predictions of superior quality. 
Wang et al.34 utilized an ANN model to depict the bending 
force deeds in a hot strip rolling process. Chen et al.33 found 
an ANN model for the prediction of the surface roughness of 
titanium alloys while making an allowance for cutting forces 
and tool vibrations as input parameters. IlkerKucukoglu 
researched artificial neural network technique, an artificial 
intelligence tool commonly used for identification and it 
was tested and evaluated. A capable ANN with a two-layer 
feed-forward structure has been identified in this analysis. 

The ANN rating precision for the study results were 88.9%and 
95.0%for all calculation details. Details of the experiments 
carried out for the neural network have shown that ANN is 
a useful and appropriate tool for identifying faulty assembly 
operations by the considered wearable devices38.

The current research work executes the artificial neural 
network technique to they predict the wear rate of TMCs 
under different load conditions. Rahmath Ulla Baig (2020) 
developed and tested ANN predictions that were precise with 
an overall regression of 0.9993. The addition of reinforcement 
has augmented the wear resistance of aluminium MMC39. 
Sosimi et al.40, analyzed the ANN-LM model and the results 
showed the prediction precisely and the model provided an 
enhanced routine. Mutuk et al.41 observed an ANN model 
for predicting the wear rate values of the composite that was 
created. This entails that the wear rate can be predicted by 
the structure of ANN is predicated with good accuracy by 
the experimental data.

Kannaiyan and Raghuvaran42 analyzed the evaluation of 
wears of ANN modelling methods which were tested, and the 
performance of the model was found satisfactory. The ANN-
based process was found to be the most suitable one in the 
calculation of performance response. Dinaharan et al.43 used 
an ANN to foreshow the wear rate composites formed by 
friction stir processing (FSP). The DoE approach was utilized 
to direct the investigation. Pati44 studied the ANN approach to 
predict used nonlinear regressive predictive equation showing 
the wear rate of the composites and showed improved superior 
wear resistance of the composite. Megahed et al.45 examined 
that on augmentation of both the load and sliding distance 
it leads to an augment of the wear rate. The augment in the 
weight fraction of Al2O3 diminishes the wear rate appreciably. 
The ANN approach is a successful model for predicting the 
wear rate of Al-Si/Al2O3 composite.

Sweety Mahanta  et  al.46 performed a wear test and 
considered three input parameters L, D, V; to investigat WR 
and CoF creation of the output parameters. The investigational 
resultant is examined by RSM at the same time as the wear 
performance extrapolative model is urbanized by using ANN. 
Pramod et al.47 measured wear analysis of damage to parts 
of the system, and, to investigate this specific phenomenon, 
research was conducted by using the L27 orthogonal array 
method. For predicting the tribological behaviour of the 
Al7075-Al2O3 composites, an ANN was developed using 
the Levenberg – Marquardt optimization model. Gampala 
Satyanarayana et al.48 reported a mathematical regression model 
and ANN models were urbanized to foreshow the conjectural 
rate of wear rate of the Al/red mud nanocomposites and 
found that ANN calculation showed exceptional conformity 
with premeditated values than the other models. Hanief 
and Wani49 formed a model for the wear analysis. ANN’s 
findings are significantly higher than the standard model. 
It is manifested from the analysis that together the developed 
and ANN models could be used to determine where wear 
rate could run through with precise accuracy.

The literature survey concludes the TMCs were utilized 
to enhance physical, chemical, thermal, tribological and 
mechanical properties like that hardness, density, thermal 
conductivity, wear, corrosion, abrasion, erosion, tensile, 
compression, impact, and flexure. In generally preparations 
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of the composites were used stir casting, squeeze casting, die 
casting and powder metallurgy. The powder metallurgy is the 
one of the best technique to develop metal matrix composites 
and the ANN tool is the best predict the wear resistance.

The objective of the current investigation is to generate 
and utilize the ANN technique that could be associated in 
measuring the tribological behaviour of the Ti 5Al-2.5Sn/B4C 
composites under different load, velocity, and distance 
conditions. An influential ANN technique is described to 
foresee the wear and CoF deeds of TMCs using neural 
network software MATLAB R2018b for the assessment and 
ANN outcomes be presently thought about.

2. Materials and Methods

2.1. Materials
Titanium alloy (Ti 5Al-2.5Sn) matrix material with 

powder mean size of 35−40 μm was considered for this 
experiment. Ti 5Al-2.5Sn is a non-heat immoderation able 
alloy that can attain superior weldability with stability. It also 
contains good high-temperature steadiness, high strength, 
superior corrosion opposes and fine creep opposes. Creep 
mentions the occurrence of plastic strain for longer periods 
of time, which ensues at high temperatures. Ti 5Al-2.5Sn 
is generally utilized in aircraft, airframe, and cryogenic 
applications50. B4C with an indicate size of 20−40 μm was used 
as reinforcement in this work for requirement for dispersal 
strengthening. The yield strength of TMCs with 3, 6, and 
9% of the addition of B4C is a further representation of the 

believed collective effects of next phase strengthening, grain 
refinement, and solution strengthening. Specification of the 
powder details used in this work for the powder compaction 
process is provided in Table 1.

2.2. Preparation of composite
The powder metallurgy method was used for embryonic 

TMCs reinforced with B4C made during the chemical vapor 
authentication process. Predominantly, the powders were weighed 
up in conformity with diverse compositions as Ti 5Al-2.5Sn 
with 3%, 6%, and 9% B4C. The weighed proportion was then 
intermingled to make use of a planetary ball mill for a total of 
7 hours through an interlude of 45 minutes for each and every 1 hour 
for the progress of dispersal of B4C into the matrix. Scanning’s 
of SEM of B4C subsequent to intermingling amalgamation of 
powders are shown in Figure 1. These micrographs carry an 
obvious vision for the dispersal of B4C in TMCs. The composite 
combination was then dense at 750 MPa using a hydraulic press 
to attain cylindrical specimens with 10 X 30 mm in diameter 
and height respectively. Subsequent to compacting, composite 
specimen as per standard measurements was sintered in the 
incidence of air at 950 °C for 1 hour51.

Table 1. Specification of powders.

Powder Mean size(μm) Purity/% Density(g/cm3)

Ti 5Al-2.5Sn 35−40 99 4.48

B4C 20−40 99.5 2.52

Figure 1. SEM images of TMCs (a) Ti 5Al-2.5Sn+3% B4C (b) Ti 5Al-2.5Sn+6% B4C and (c) Ti 5Al-2.5Sn+9% B4C.
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2.3. Microstructure of the composite
The titanium matrix composites specimens remained 

erudite for removing rubbish present on the surface. Particle 
distribution remains estimated at the support of optical 
microscopes. The powder metallurgy process remained 
inspected under the optical microscope to determine the 
reinforcement pattern of the powder metallurgy method. 
They remained grained using 100 grit silicon carbide paper 
tracked by 220 to 1,000 grades of emery paper ahead of optical 
surveillance the specimen were automatically polished and 
engraved by Keller’s reagent to attain an improved disparity. 
The samples remained pictured on diverse magnifications to 
display the occurrence of reinforcements and its allocation 
of the metal matrix diverse elements/compounds which were 
presented in the graphite and boron carbide are difficult to 
distinguish by optical micrographs.

The microstructure of the Titanium matrix alloy formed by 
the powder metallurgy method is shown in Figure 2 The matrix 
particle distribution was uniform, according to microstructure 
analysis. The inclusion of 3%, 6%, and 9% boron carbide in this 
situation provides a benefit by minimizing the corrosion caused 
by the interaction with the titanium matrix. It was obvious that 
the 9% graphite interacted with the titanium matrix, causing 
corrosion, and that its higher volume in respect to the substrates 

might enable powder to escape from the matrix and onto the 
reinforcement. This resulted in the reinforcement fracturing 
and degrading, and the strength qualities deteriorating as a 
result. It might be because of the creation of boron carbide as 
a result of the interaction between carbon and boron, which 
results in an increase in strength and hardness.

2.4. XRD analysis
Figure 3 displays the Ti alloy and TMCs’ XRD patterns. 

The suggested powder metallurgy composites’ phase 
structure was ascertained using X-ray diffraction analysis. 
It can be seen from Figure 4 that the suggested composite’s 
needed composition is clear. The existence of the matrix 
is guaranteed by the high intensity of the Ti peak, and the 
difference in intensity of the B4C phases distinguishes between 
variations in the weight % of composites. All composites 
shared the XRD phases that were discovered. These patterns 
demonstrate the incorporation of B4C particles into the Ti 
matrix, demonstrating the suitability of the powder metallurgy 
process for producing B4C reinforced TMCs.

2.5. Wear test experiment
Dry sliding wear tests for a different sample were carried 

out by using a pin-on-disc machine supplied by DUCOM as 

Figure 2. Optical Micrographs of TMCs (a) Ti 5Al-2.5Sn+3% B4C (b) Ti 5Al-2.5Sn+6% B4C and (c) Ti 5Al-2.5Sn+9% B4C.
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shown in Figure 4. In pin on disc wear test equipment, the 
disc material is grade H11 tool steel and followed ASTM 
G99 standard. The disc has a 500 HB hardness rating. H11 is 
a low carbon, high chromium, hot work tool steel with good 
toughness. By air quenching, this alloy has the capacity 
to undergo profound hardening. This alloy is suitable for 
severely stressed structural components in the aerospace 
sector because to its low carbon content and toughness. 
The Figure 5 shows the samples of the wear test specimen. 
The sample was whipped beside the counteract face of a 
revolving disc with a wear pathway diameter of 60 mm. 
The sample was loaded beside the disc during a deadweight 
loading system. The wear test for different specimens was 
carried below the normal loads of 20N, 40N, 60N, and a 
sliding velocity of 2, 4, and 6m/s. Wear tests were conducted 

for a total sliding distance of 3000 m beneath parallel 
surroundings as conversed below. The wear test parameters 
details are shown in Table 2.

2.6. Artificial Neural Network (ANN) structure
The predictions play a vital role in modern science 

and technology and in this ANN play an amazing role. 
ANN is a physically stirred computer program designed 
to replicate the system in which the human natural brain 
processes information. ANN provides a range of powerful 
new techniques for solving problems in materials science 
and engineering applications52.

The predictive capabilities of ANN-based on the training 
on experimental data and then validated by an assortment of 
proper neural network structure are important. The expansion 
and implementation of the network model were approved 
by means of neural network utensils from MATLAB 
R2018b software53. ANN architecture is one among the 
back-propagation method which has been working as per 
the flow chart shown in Figure 6.

In this investigation, ANN was shown to be working 
to predict the wear rate and CoF of TMCs reinforced with 
B4C. The ANN network is defined to have three layers such 
as input, hidden, and output layer. The input layer utilized 
3 parameters (L, V, D), the ten hidden layers of neurons 
and two outputs (WR and CoF), were speckled according 
to the optimum output requirement. The function of the 
ANN model is alienated into two significant steps such 
as forward computing and rearward erudition. The input 
parameters, pertaining to the neurons of the first layer, are 
meager stimuli to the network in forwarding computing 
step54. The hidden neurons are associated to each other in 
the output layer so that change in the value of one node has 
an effect on the value of another55. Figure 7 shows urbanized 
ANN architecture among single based buried layer. In this 
urbanized architecture, ANN 3 stands for the input parameter 
layer (L, V, D), 10 means of neurons (hidden layer) and 2 is 
the output parameter, b and w mentioned are for the biases 
and weights respectively. In Figure 7, the transfer function 
associated with the buried layer is Tansig and is signified 
by a curvature.

Figure 3. XRD analysis of TMCs.

Figure 4. Wear testing machine.

Figure 5. Wear test samples of TMCs (a) Ti 5Al-2.5Sn+3% B4C (b) 
Ti 5Al-2.5Sn+6% B4C and (c) Ti 5Al-2.5Sn+9% B4C.

Table 2. Wear Test parameters.

Load(N) 20,40,60
Sliding velocity (m/s) 2,4,6
Sliding distance (m) 1000 to 3000

Dimension(mm) 30x10
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The transfer function pure lin is used in the output layer 
and is shown by the appearance of a straight line. The design 
of experiment (L27 array) for wear of the TMCs is presented 
in Table 3.

3. Results and Discussion

3.1. Analysis of wear debris and worm surfaces
The investigation analysis of the wear debris and the worm 

surface was carried out with the help of SEM. The morphological 
examination of the wear wreckage confirmed the results. 
SEM micrographs of titanium alloy, after dry sliding 
wear conditions are shown in Figures 8(a), 8(b) and 8(c). 
Figure 8(a) shows the wear surface clearly exhibiting the 
presence of delaminated layers, and deep grooves. The worn 
surface of the TMCs clearly reveals the incidence of wear 
tracks, delaminated layers, and deep grooves. The layer has 

stimulated the sliding surface clearly, as shown in Figure 8(a). 
The surfaces also appear to be smooth because of the boron 
reinforcement content and the incidence of deep grooves, 
which may have augmented the wear loss. The surface of 
the TMCs (Figure 8(b)) apparently reveals the incidence 
of delaminated layers and debris, observation shows the 
occurrence of debris and wrecked particles. The surface of 
the TMCs (Figure 8(c)) visibly exposes the prevalence of 
cracks, delamination, and deep grooves. Imprecise grooves 
and fine grazes were created on the worn surface. The wear 
mechanisms are disposition by the arrangement of the 
undulation, which is fashioned by the humanizing exploit 
of rigid abruptness on the counter disc and toughened worn 
debris. Augmentation in B4C would consequently diminish 
in wear. At immense velocities, the temperature over the 
sliding surface increases consequence of oxidization of 
material and thus material relocates to transpire between 
the pin and contradict face leading to the creation of layer. 
These layers smooth the progress in accomplishing greater 
tribological possessions more than immense velocities.

3.2. ANN results

3.2.1. Best Validation performance of Network training 
for foreseeing of wear rate of TMCs

Assured and successfully prediction of the wear rate 
of TMCs and assorted intends of the ANN architecture are 

Figure 6. Flow chart of ANN architecture.

Figure 7. Representation of single concealed layer in ANN architecture.

Table 3. The design of experiment (L27 array).

S.No. Load (L) N Sliding velocity 
(V) (m/s)

Sliding distance 
(D) (m)

1. 1 1 1
2. 1 1 1
3. 1 1 1
4. 1 2 2
5. 1 2 2
6. 1 2 2
7. 1 3 3
8. 1 3 3
9. 1 3 3
10. 2 1 2
11. 2 1 2
12. 2 1 2
13. 2 2 3
14. 2 2 3
15. 2 2 3
16. 2 3 1
17. 2 3 1
18. 2 3 1
19. 3 1 3
20. 3 1 3
21. 3 1 3
22. 3 2 1
23. 3 2 1
24. 3 2 1
25. 3 3 2
26. 3 3 2
27. 3 3 2
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endeavoured for this kind of examination, investigating 
different parameters, perceptibly, is imperative in promising 
the most excellent and consistent ANN structure which is 
associated to take care of the model and its associations to 
the full extent for sequence developed. In this research, the 
single based hidden layer of 3-10-2 (input-hidden-output) 
ANN structure was finally decided.

The ANN structure is designed with 3 credentials 
suggesting the number of input parameters in that order and 
the complementary ‘10’ suggests the number of neurons 
(hidden layer), used as an ingredient of the buried layer, 
at the same time and the last ‘2’ specifies the measure of a 
parameter in the output. The ANN was programmed to use a 
Levenburg-Marquardt algorithm. MATLAB R2018b software 
was wont to instruct the network for innumerable periods 
nearly allowing 9000 epochs to accomplish an adequate 
recital27.In this investigational process, the network was 
instructed for the best validation performance of WR and CoF 
for 2087 epochs and 3253 epochs. The recital of the ANN is 
finalized by MSE. Biases and weights are attuned iteratively 

throughout training by taking into consideration the MSE56-58. 
All experimental data is reduced by MSE. Figure 9 shows 
MSE is abridged for the purpose of the number of epochs 
for best validation. The most excellent recital is acquired for 
WR and CoF at 2087 epochs and 3253 epochs and displaying 
an MSE value of 2.3939e-06 and 1.1865e-08 respectively. 
This minimum value shows accuracy of good prediction.

3.2.2. Correlation coefficients plots of training, testing, 
and validation using ANN for Wear prediction

The precision of the planned and ANN model for wear 
rate can be calculated significantly different from Figure 10. 
It is obvious that every experimental value is secure in 
accordance with the predicted values of the planned and 
ANN models. Figure 10 provides proof of the precision 
of the ANN evaluation by contrasting curves of best fit 
for training, testing, validation, and rate of wear against 
experimental data. The subsequent correlation coefficients 
were attained for training, testing, validation, and all wear 
rate: 0.99287, 0.99986, 0.99814, and 0.99417, respectively. 

Figure 8. (a), 8(b) and 8(c) show the wear worn surfaces of the TMCs/B4C that were studied using scanning electron microscope (SEM) 
for the optimal parameters at (a) 20N (b) 40N (c) 60N.
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3.2.3. Correlation coefficients plots of training, testing, 
validation using ANN for COF prediction

Most suitable curves were urbanized for training, testing, 
and validation of the ANN used. Figure 11 gives a hint of 
the accurateness of the ANN assessment by contrasting 
curves most suitable for training, testing, validation, and 
CoF adjacent to experimental data. Correlation coefficients of 
0.99063, 0.9982, 0.99955, and 0.9935 were obtained for the 
training, testing, validation, and all sets of CoF respectively.

3.2.4. Comparison of experimental, ANN and 
regression model

The regression and ANN models are compared with 
experimental results. The percentage of error is determined 
among the experimental results. It is perceptible that taken 
together the models are reliable with the experimental 
results. MAD, MSE, RMSE, and MAPE values imitate the 
intention of the ANN model which is excellent and precise as 
contrasted to the regression model and the values are given 
in Table 4 for wear rate and CoF. The results observed from 
the investigations are illustrated in Table 5 and its graphical 
representation of wear and CoF is shown in Figures 12 and 13.

Regression analysis is applied to find the rapport 
amid sovereign erratic and reliant variables and to predict 
reliable variables. In this analysis, R is of the value of the 
correlation coefficient and it is utilized to explain the validity 
of urbanized regression models. The WR of homogeneous 
TMCs composites following equation is given,

Regression Equation:

  0.0181  0.000249   0.00747   0.000015  
 0.000005 *   0.000942 *   0.000003 *
WR L V D

L L V V D D
= − − + + +

− −
	(1)

  0.01221  0.001244   0.00942   0.000004  
 0.000001 *   0.000461 *   0.000001 *
CoF L V D

L L V V D D
= − + + − −

− +
	 (2)Figure 9. Network training to (a) predict WR of TMCs (b) predict 

CoF of TMCs.

Figure 10. Line of best fit for a correlation coefficient between actual and predicted values for training, validation, testing and all wear rate data.

These values signify an extremely secure relationship between 
the experimental data and ANN model.



9Applications of Artificial Neural Network Simulation for Prediction of Wear Rate and Coefficient of Friction 
Titanium Matrix Composites

Figure 11. Correlation coefficients plots of training, testing, validation, and combination with all sets of COF using ANN for TMCs.

Figure 12. Graphical representation of Experimental, ANN and Regression model for wear rate and CoF.

Table 4. Comparison of Regression and ANN Models.

Parameters
Regression Model ANN Model

MAD MSE RMSE MAPE MAD MSE RMSE MAPE
Wear Rate 5.71111E-05 5.216519E-09 7.22255E-05 1.52% 8.53852E-05 1.086810E-08 0.00010425 2.27%

CoF 0.001353407 2.81658E-06 0.001678268 2.12% 0.001285185 2.57222E-06 0.001603815 2.17%

Figure 13. Graphical representation of Errors in ANN and Regression model for wear rate and CoF.
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4. Conclusions
The conclusions of present investigation are as the follows:
•	 The TMCs/B4C composite is prepared by the powder 

metallurgy route.
•	 The pin-on-disc wear test machine has revealed 

that the wear resistance increase in the midst of 
augmentation B4C up to 3, 6, and 9%.

•	 Regression and ANN models have been effectively 
urbanized and reveal exceptional precision and 
reliability. In this research both models were 
compared and it is observed that the accuracy of 
the ANN model is better than the regression model.

•	 From the ANN study, the predicted data was 
related to investigational data and high degree of 
accuracy was observed and the R-value was in the 
assortment of 0.9 to 0.999. The error in prediction 
was calculated to be less than 4%. The use of ANN 
for prediction played a vital role.

•	 The excellent conformity was realized between 
experimental and ANN values of the output of the 
wear parameter.
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