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In the last years the possibility of creating new conducting polymers exploring the concept of
copolymerization (different structural monomeric units) has attracted much attention from ex-
perimental and theoretical points of view. Due to the rich carbon reactivity an almost infinite
number of new structures is possible and the procedure of trial and error has been the rule. In this
work we have used a methodology able of generating new structures with pre-specified proper-
ties. It combines the use of negative factor counting (NFC) technique with artificial intelligence
methods (genetic algorithms - GAs). We present the results for a case study for
poly(phenylenesulfide phenyleneamine) (PPSA), a copolymer formed by combination of
homopolymers: polyaniline (PANI) and polyphenylenesulfide (PPS). The methodology was suc-
cessfully applied to the problem of obtaining binary up to quinternary disordered polymeric alloys
with a pre-specific gap value or exhibiting metallic properties. It is completely general and can be
in principle adapted to the design of new classes of materials with pre-specified properties.
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1. Introduction

Conducting polymers constitute a new class of electronic
materials with unusual properties, large technological po-
tential applications and new physical phenomena1.

The main focus of the early research on conducting poly-
mers was on the electrical conductivity. Once the basic struc-
tural features required to obtain highly conductive materi-
als were identified, the focus of this research shifted to the
development of highly conductive polymers with good en-
vironmental stability and more acceptable processing at-
tributes. One way to achieve this is exploring the concept of
copolymerization2. In general, the copolymers show elec-
tronic and mechanical properties intermediaries of their re-
lated homopolymers.

Due to the rich carbon reactivity, an almost infinite
number of new structures is possible. This makes the sys-
tematic search for new structures almost impossible, and
trial and error approach has been the rule. In this work we
discuss a methodology3,4 capable of generating automatic
solutions for ordered and disordered polymeric alloys with

pre-specified properties. It combines the use of negative fac-
tor counting technique (NFC)5,6, with genetic algorithms
(GAs)7. The NFC technique allows us to obtain the
eigenvalues of very large matrices without direct
diagonalization. GAs originated from the studies conducted
by John Holland in the 1970s8. The metaphor underlying
GAs is that of natural evolution. GAs follow these ideas in a
very simple way and allow us to use the computer to evolve
automatic solutions over time. This methodology was origi-
nally developed by us to study polyanilines3,4 and it was the
first time that the NFC technique coupled with artificial in-
telligence methods (Gas) was used in materials science. To
our knowledge no other approach using electronic param-
eters and combinatorial/artificial intelligence methods has
been applied to conducting polymers.

In this work we investigated the copolymer
poly(phenylenesulfide phenyleneamine) (PPSA), an alter-
nating copolymer, formed by combination of polyaniline
(PANI)9,10 and polyphenylenesulfide (PPS)11 polymers (see
Fig. 1). PPSA12 not only combines PPS and PANI structural
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features but also presents higher solubility besides good
chemical stability. Due to these thermal and chemical
stabilities, electron-rich character, and electrical conductiv-
ity, possible PPSA applications include hole-injection ma-
terial for multilayer LED devices13 and corrosion inhibi-
tion14.

The kind of problem we are interested in solving is to
find optimum relative concentration for binary, ternary up
to quinternary polymeric alloys presenting some pre-speci-
fied properties. For instance, consider a ternary disordered
alloy formed from the three types of structural units shown
in Fig. 1:

A
x
B

y
C

z
 with x + y + z = 1 (1)

What are the values for x, y, and z that would produce a
gapless structure with the largest possible electronic
delocalization (in principle the most conductive structures)
or a structure with a pre-specified gap? Considering that
typical chains can contain hundreds of rings, a systematic
analysis of each possible structure is computationally very
expensive or even impossible. In principle GAs can be used
to automatically find good solutions through intelligent
searches in the configuration space with selective sampling.

2. Methodology

In Fig. 2 we show a generic flow chart of a continuous
parameter µGA15,16. The GA starts with a group of initial
(in general randomly generated) solutions. Each solution
can be represented as bit-strings (sequences of zeros and
ones) of specified length. For analogy from genetic popula-
tion terminology each string is named as “chromosome”,
“genes” are fragments of a chromosome, and “population”

is a set of individuals (chromosomes) used in a GA itera-
tion (“generation”).

The optimum population size depends on the specific
problem under analysis7,17, in our present case as the fitness
evaluation function (see discussion below) is compu-
tationally expensive we have opted to use a population of
only 5 chromosomes (referred in the literature as micro GA
(µGA)18,19).

Once the first population is generated the “fitness” (how
“good” is the proposed solution) of each individual (chro-
mosome) is calculated through an evaluation function. The
next populations (“offspring” generated from “parents”) are
composed in the following way (see Fig. 2):

(1) The best individual (in terms of fitness) from the pre-
vious population is always included (“elitism” option).

(2) The other 4 individuals are generated from crossover
operators over individuals from the previous genera-
tion and selected with probability proportional to their
fitness. The operator we are using here is uniform
crossover15, i.e. the “genes” are randomly copied from

Figure 1. Possible structural monomeric units for copolymers of
PPS with PANI. PPS (A); PANI (B – leucoemeraldine form; D –
pernigraniline form; E and F – polaronic and bipolaronic struc-
tural defects), and PPSA (C). Figure 2. Flow chart of micro Genetic Algorithm used on this work.
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the first and second parent chromosomes. The use of
uniform crossover is one procedure to achieve genetic
variability. In some ways it substitutes the use of mu-
tation in µGas.

(3) As the mutation operator generally introduces poor
individuals in terms of fitness (in special for small
populations) in general it is not used in µGAs. Thus,
and because the number of chromosomes are small,
the population could become rapidly homogeneous.
When this happens the next population is obtained by
keeping the best individual (elitism) and adding other
four randomly generated.

(4) The above steps are repeated until the criteria conver-
gence is reached.

To describe the electronic structure of our polymeric
chains we are using a LCAO (Linear Combination of Atomic
Orbitals)20 approximation with a Hückel (tight-binding)
hamiltonian20:

The IPN (Inverse Participation Numbers)21 are a meas-
ure of the level of delocalization of a molecular orbital. They
are obtained from:

(2)

IPN can assume values from zero (maximum delocalization)
to one (localized over only one orbital). The c

jr
 are the LCAO

expansion coefficients.
As the structures are long polymeric chains (200 rings –

100 monomeric units) obtaining the Hückel eigenvalues and
eigenvectors from direct diagonalization is computationally
very expensive. One alternative is to use the NFC5,6 tech-
nique. The NFC basic idea is to obtain the eigenvalues of
large matrices without direct diagonalization. Once obtained
the eigenvalues, the eigenvectors of interest can be obtained
(one by one) through the use of the inverse iteration method
(IIM)22, and consequently the IPNs through Eq. 2. Through
Eq. 3 or Eq. 4.1 and 4.2 we can combine GA with NFC/IIM
in order to have a methodology capable of generating auto-
matic solutions to the complex problem of disordered poly-
meric chains with pre-specified properties. This methodol-
ogy was used with success to the study of polyaniline al-
loys4. Our polymeric chains are randomly sequences of
monomeric units (A, B, C, D, E and F, Fig. 1) satisfying
imposed relative concentration. The chains are generated in
the following way:

(1) From GA, a population of chromosomes is generated
defining the relative concentration of A, B, C, D, E,
and F units (see Fig. 1).

(2) The chains are then generated from a random func-
tion with post-sorting corrections23 in order to pro-
vide the exact relative unit percentage.

(3) From these structures the Hückel matrices are con-
structed.

(4) From NFC/IIM the eigenvalues and eigenvectors are
obtained.

(5) The IPN are then calculated.
(6) The fitness function f(x) is then evaluated.

The process is repeated until the convergence is attained,
i.e., if a variation of the best fitness over a specified number
of generations is not observed.

One major point in GA procedures is how to implement
the fitness function. When we are searching for structures
presenting zero gap and extended electronic states at Fermi
level we can define f(x) as a function of the gap and IPN
values with the same statistical weight. As they have differ-
ent range definition (gap varying from 0.0 to 1.36β, and
IPN from 0.0 to 1.0) we need to use a scale constant (0.735)
to satisfy this condition:

(3)

To search for structures that presents a pre-specified gap
value, we can define f(x) as a linear function depending on
the variable gap values as follow:

interval [a,ϕ] (4.1)

interval ]ϕ,b] (4.2)

where .ϕ is the gap value cho-
sen arbitrarily to determine a structure with pre-specified
gap.

3. Results and Discussions

In order to test the reliability and effectiveness of our
GA methodology we investigated the simple case of a bi-
nary alloy where the systematic search is feasible. We car-
ried out a detailed analysis (solving the Hückel equations
for each configuration) varying x (alloy concentration pa-
rameter) in steps of 1%. For each concentration x we rela-
tionship the gap and IPN values. For binary alloys A100-xBx,
A100-xDx, A100-xEx, C100-xBx, C100-xDx, C100-xEx we optimized
the concentration x that would produce some specific gap
values and for binary alloys A100-xFx and C100-xFx (this struc-
tures produce zero gap) we search for structures with si-
multaneous zero gap and HOMO more delocalized possi-
ble. In Table 1 we show the results. We can observe that is
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possible to obtain more than one optimal solution, i.e, to
have degenerate states (see Table 1). Basically It depends
on the way we define the fitness function. When the fitness
includes only one parameter this is very likely to occur, as
in the case of binary alloys A

100-x
B

x 
and A

100-x
D

x
 (see

Table 1). For fitness function with many dependent param-
eters this would be very improbable to happen.

In summary GA produce exactly the same results ob-
tained by systematic search.

3.1 Ternary alloy

We then proceed for simulations of ternary alloys
AxByC100-x-y, AxCyD100-x-y, AxCyE100-x-y and AxCyF100-x-y, where
the systematic search is impracticable. The GA simulations
will look for automatic solutions determining the relative x
and y concentration that produce polymeric structures with
zero gap and lowest IPN values or with a specific gap value
(in this case 0.95β).

In Table 2 we show the GA results. Although GA could
not obtain solutions to the chosen pre-specified gap value
(green) for ternary alloys, close solutions were obtained.
These results do not mean that GA failed, but only that for
PPS with PANI alloys is not possible to obtain this gap value.

For the optimization of relative concentrations that pro-
duce structures with zero gap and lowest IPN, GA found the
solution A4C52F44 (see Table 2). In Fig. 3 we show the calcu-
lated electronic structure for the GA proposed solution. As
we can see from Fig. 3a where we show the density of states,
the Fermi level is inside the valence band (p-type material).
In Fig. 3b we show the square coefficients of HOMO (High-
est Occupied Molecular Orbital). The HOMO is relatively
delocalized for around 60% of the polymeric chain. GA found
a satisfactory solution for the problem (copolymer formed by
combination of PPS and PANI). The copolymer presents con-
ductivity lower than PPS and PANI12.

Table 1. Results obtained for systematic search and GA. β = 2.5 eV.

Binary alloy with specific gap value

Binary alloy  Gap chosen (ϕ) Results from systematic search Results from GA
A

100-x
B

x
1,24β A

37
B

63 
and A

36
B

64
A

36
B

64

A
100-x

D
x

0,36β A
71

D
29 

and A
70

D
30

A
71

D
29

A
100-x

E
x

0,48β A
23

E
77

A
23

E
77

C
100-x

B
x

1,24β C
19

B
81

C
19

B
81

C
100-x

D
x

0,30β C
37

D
63

C
37

D
63

C
100-x

E
x

0,42β C
28

E
72

C
28

E
72

Binary alloy with zero gap and lowest IPN

Binary alloy Gap IPN Results from systematic search Results from GA
A100-xFx 0 0.00551 A9F91 A9F91

C
100-x

F
x

0 0.00542 C
5
F

95
C

5
F

95

Figure 3. a) Density of electronic states for the proposed GA solu-
tion. The arrow indicates the position of the Fermi level; b) Square
of corresponding HOMO’s expansion coefficients. In the lower
part of Fig 3b is indicated the actual chain composition in terms of
A, C and F units.
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3.2 Quintenary alloy

When we are performing the optimization of relative con-
centration x, y, z and w for a quintenary alloy, we must fulfill
the following condition: x + y + z + w ≤ 100. As the chromo-
somes, that represents the relative concentration of different
monomeric units of polymeric chains are generated by GA
through operators (crossover, elitism or even randomly – see
the methodology) this condition sometimes is not reached.
When it happens the respective chromosome receive the worst
fitness value. In order to provide a significant number of chro-
mosomes those reach the above condition we considered in
this section a population of 7 individuals, and we carried out
GA simulations up to 500 generations or until convergence is
reached. The results obtained from GA for the optimization of
relative concentrations for structures that present a specific gap
value (green region ~ 0.95β) were: (a) alloy AxByCzDwE100-x-y-z-w,
closest solution A67B18C7D8 after 237 generation with a gap of
0.47β; (b) alloy AxByCzDwF100-x-y-z-w (F units replacing E ones),
closest solution A11B61C11D17 after 399 generations with a gap
of 0.45β. In this case an almost twice number of generations
was needed to achieve convergence. It is due the presence of F
units that tend to induce zero gap.

In Fig. 4 we show the calculated electronic structure for
the GA proposed solutions for copolymer A7B5C1D30F57

found by GA in generation 74 and for A1D45F54 found by
GA in generation 328. These two copolymers are obtained
in the same simulation of optimizing the relative concentra-
tion for AxByCzDwF100-x-y-z-w alloy that presents simultane-
ously zero gap and lowest IPN. As we can see in Fig. 4a for
the A7B5C1D30F57 copolymer the Fermi level is inside the
valence band (p-type material), and the HOMO is delocalized
around 70% of the chain (Fig. 4c). These results are con-
sistent with experimental results, as PPSA (a copolymer
formed by combination of PPS and PANI) is less conduc-
tive than the homopolymers PPS and PANI12. For the
A1D45F54 copolymer the found solution satisfies the condi-
tions for metallic regime. The Fermi level is inside the va-
lence band (p-type metal – Fig. 4b) and the HOMO is
delocalized over the whole chain (Fig. 4d). We would like

to stress that these are extended (conducting) states in dis-
ordered one-dimensional polymeric chains24. The existence
of these states contrasts to Anderson’s localization theorem25

but are common features of conducting polymers. The pre-
cise origin of these states has been explained by Phillips

Table 2. Results obtained from GA simulations for ternary alloys. β = 2.5 eV.

Ternary alloy with specific gap value

Ternary alloy Pre-specified Gap (ϕ) Gap obtained from GA Results from GA
AxByC100-x-y 0.95β 1.22β B95C5

AxCyD100-x-y 0.95β 0.48β A48C45D7

AxCyE100-x-y 0.95β 0.61β E100

AxCyF100-x-y 0.95β 1.30β A8C92

Ternary alloy with zero gap and lowest IPN

Ternary alloy Gap IPN Results from GA
A

x
C

y
F

100-x-y
0 4.98 × 10-3 A

4
C

52
F

44

Figure 4. a) and b), Density of electronic states for the proposed
GA solution (A

7
B

5
C

1
D

30
F

57
 in generation 74 and A

1
D

45
F

54
 in gen-

eration 328). The arrow indicates the position of the Fermi level;
c) and d), Square of corresponding HOMO’s expansion coefficients.
In the lower part of Figs. 5c and 5d is indicated the actual chain
composition in terms of units A, B, C, D and F.
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and collaborators26,27 with the Random Dimer Model
(RDM). One important aspect in conducting polymers is
that the intermolecular hopping of the carriers plays an im-
portant role to determine the conductivity values. In this
sense it is fundamental to know whether the extended states
in isolated chains (defining the metallic regime) would sur-
vive when the interaction among chains (more realistic de-
scription of the material) is explicitly taken into account. It
has been demonstrated that this in fact occurs28 and that the
general conclusions derived from isolated chains can be used
to extrapolate the macroscopic behavior.

4. Conclusions

The obtained results show that the methodology we are
presenting here is able to find automatic solution to the prob-
lem of designing disordered polymeric chains with pre-speci-
fied properties (in the present case metallic ones or specific
gap value). Considering the large number of possible poly-
meric units of conducting polymers (an almost infinite
number of possible combinations exists to generate new
structures) the present methodology can be a very effective
tool guiding the experimentalists in the search of new con-
ducting materials with specific properties. In the present
study we did not impose any chemical constraints on our
GA. In an actual problem chemical or physical constraints
for the structures can be easily implemented. This can be
done simply adding new terms on the evaluation function
that will make some undesired structures to have low fit-
ness or through restraints (discarding) in the generation of
the polymeric structures. The methodology is completely
general and can be used in the design of new classes of
materials, polymeric or not, disordered or not.
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