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Nanostructured Powders of AA7075 - SiC Manufactured by High-Energy Ball Milling in a Bath 
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In this study, aluminum alloy 7075 (AA7075) nanopowders were prepared by High-Energy Ball 
Milling (HEBM) in a bath of isopropyl alcohol. The process was investigated in different milling times 
and silicon carbides (SiC) reinforcement percentual. The effects of these parameters on the samples 
were characterized by X-ray diffraction (XRD), Laser Diffraction (LD), Scanning Electron Microscopy 
(SEM), and Energy Dispersive Spectroscopy (EDS). The XRD analyses showed that as the grinding 
time increases, the micro deformation also increases, while the crystallite and particle size decrease 
until a constant value at 480 min. If the percentual of SiC reinforcement increases until 5 percent, there 
is a minimum change in the results compared to AA 7075 milling 480 min with no reinforcement. 
On the other hand, when the AA7075 was milled for 480 min and reinforced by 10 percent SiC, 
the best structural refinement result was achieved.
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1. Introduction
The growing demand for aluminum in aerospace sectors 

has spurred research into enhancing the reinforcement 
of aluminum metal matrices across technological uses. 
The aim is to substitute traditional materials and their alloys 
with improved alternatives. Aluminum metal matrices reinforced 
with other materials exhibit high mechanical and tribological 
properties and an attractive strength-to-weight ratio1-7. In this 
context, aluminum alloy 7075 (AA7075) as a matrix is notable 
for its low density and good workability, offering a favorable 
combination of strength, ductility, and toughness. On the other 
hand, introducing Silicon Carbide (SiC) as reinforcement, 
whether in micron or nanoscale form, enhances wear resistance 
and hardness due to its low density and high strength8-15.

Furthermore, attempts were made to explore severe 
plastic deformation processes to obtain nanostructured 
materials16-19. Among these mechanical methods, High-Energy 
Ball Milling (HEBM) is a simple and efficient technique 
to prepare alloys at room temperature with nanocrystalline 
grains (measuring below 100nm)20-23.

HEBM is characterized by the repeated flattened, 
cold-welded, fractured, and rewelded welding of powder 
particles under different conditions until the rate of fracturing is 
achieved. It introduces shear bands that contain a high-density 

network of dislocations and other crystallite defects that 
reduce crystallite size and particle size and promote changes 
in morphology up to reach the equilibrium state24-26. In this 
phase, the segregation effects decrease, and a homogeneous 
distribution of reinforcement into the particles can be obtained27.

The responses obtained by HEBM depend on the type 
of mill and the process variables, being the most typically 
studied: milling time, rotation speed, ball-to-powder ratio, and 
reinforcement percentual, among others28-31. However, when 
the HEBM occurs in a liquid medium, the environment can 
influence the results32,33. It has been reported that wet grinding is 
a more suitable method than dry grinding to obtain finer-ground 
products because the solvent molecules are adsorbed on the 
newly formed surfaces of the particles and lower their surface 
energy. The less-agglomerated condition of the powder particles 
in the wet medium is also a helpful factor34,35. Besides that, as 
a disadvantage, the rate of amorphization and the increase of 
the contamination of the process is faster during wet grinding 
than during dry grinding36-38. The critical issue arises from 
the contribution of the influence of the liquid on the resulting 
grain and particle/morphology size.

The main aim of the research presented here was to investigate 
the effect of changing milling time and reinforced percentual 
of SiC applied to AA7075 manufactured by high-energy 
ball milling in a liquid media of isopropyl alcohol to obtain 
nanocrystalline powders.*e-mail: heronilton.lira@ufrpe.br
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2. Experimental Procedure
Commercial gas-atomized nanocrystalline powder 

AA7075 from Aluminum Powder Corporate and nanometric 
powder of SiC, with a particle size D (50) 50nm, supplied 
by Iolitec GMBH, were used as matrices and reinforcement, 
respectively. In Table 1, the chemical composition of 
AA7075 is shown39.

The materials, matrix, and reinforcement were deposited 
into a stainless-steel attrition ball mill equipped with a K-type 
thermocouple and a temperature controller. Milling was 
carried out at 900 rpm with balls 100C6 (1%C, 1,5%Cr) 
of 6,4mm and balls to powder mass ratio of 20:1. For each 
sample, 50g of material was manufactured at a bath of 100ml 
isopropyl alcohol (C3H7OH - 99,82%) and 1wt% of zinc 
stearate (C36H70O4Zn) was used as process control agent 
(PCA). The process temperature of 25ºC was maintained via 
a jacket refrigerated with water around the attritor mill40. 
The following milling conditions were studied:

a) Milling time: 60, 120, 240, and 480 minutes.
b) Reinforce weight percentual (SiC): 1wt%, 2wt%, 

5wt%, and 10wt%.
After gridding, the samples were dried at 100ºC to 

evaporate the residues. The effects of crystallite size, micro 
deformation, particle size, morphology, and chemical 
composition were analyzed.

The crystallite size and micro deformation were investigated 
by X-ray diffraction, XRD (Rigaku Ultima III) in the range 
of 5-120º with a step rate of 0.02º/s at 40kV and 30mA. The 
Match Phase Analyses software was used to identify the 
phases and to index the diffraction peaks.

Utilizing the linear regression analysis of the Williamson – 
Hall plot equation (Equation 1)41,42, the determination of 
crystallite size and the assessment of micro deformation 
to the Full Width at Half Maximum (FWHM) of the peak 
were conducted for the four principal aluminum peaks, 

with a confidence level exceeding 92 percent. Comparatively, 
the instrument effect on crystallite size was not considered.

  /   4  FWHM k Lcos tagλ θ ε θ= +   (1)

where “FWHM” is the full width at half maximum in radians; 
“k” is a constant (0.94); “λ” is the wavelength of the x-rays 
(15.4nm); “L” is the average crystallite size; “θ” is the Bragg 
angle, and “ε” is the micro deformation measured.

The particle size was determined by Laser Diffraction 
(Malvern Mastersizer 2000), where the sample was suspended 
in water and agitated by ultrasound to size range 0.02μm 
to 2000μm43.

The laser beam incident by an ensemble of particles 
dispersed in either a liquid or an air stream promotes light 
scattering, and the particle size is calculated as spheres of 
equal volume. The scattering or diffraction angles exhibit 
distinct traits related to particle size, as they progressively 
decrease with an increase in particle size. The equations 
for the average and uncertain of particle sizes assume 
the size distribution is available as a histogram. The 
measure D (0.5) represents the median particle diameter 
corresponding to the 50th percentile of the cumulative 
undersize distribution44-46.

Lastly, the morphology and composition of the particle were 
analyzed by Scanning Electron Microscopy (Hitachi TM 3000) 
operating at 20kV, equipped with an EDX probe.

3. Results and Discussion
The results of eight samples compare the AA7075 

as-received, AA7075 as a function of milling time, and 
AA7075 as a function of SiC reinforce percentual.

Figure 1 presents the morphology and alloy elements 
detected by EDS microanalysis of AA7075 starting powder. 
Table 2 shows all values found to the crystallite size, micro 
deformation, and particle size.

Table 1. Chemical Composition AA 7075.

Material Al Cr Cu Fe (max) Mg Mn (max) Si (max) Ti (max) Zn
Weight % 87.1-91.4 0.18- 0.28 1.2-2.0 0.5 2.1-2.9 0.3 0.4 0.2 5.1-6.1

Figure 1. SEM AA7075 as received (x500) and EDS microanalysis.
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The AA7075 as-received powder was round because 
of its production process44-46. Some particle sizes presented 
values around 30μm, according to particle size measured 
by Laser Diffraction D (0.5) 31.71μm. Besides that, the 
crystallite sizes and micro deformation measured 49nm and 
0,02 percent, respectively.

3.1. AA7075 as a function of milling time
Figures 2-5 present, at the sequence, the graphs of X-rays 

diffraction, particle size distribution, crystallite size, micro 
deformation, and particle size, particle morphologies, and 
AA7075 milled 480 min EDS as a function of the milling time.

The values obtained to crystallite size standard agree 
with the particle size distribution and micro deformation.

Table 2 and Figure 4 present the internal structures 
refinement as a function logarithmic of milling time. The 
crystallite size decreased from 49nm to about 30nm while 
the micro deformation increased from 0.02 percent to 
around 0.12 percent. It is evidenced by diffraction peaks 
that became wider, smaller, and not shifted. The X-rays are 
reflected in a diffraction peak when a crystalline material 

is struck. However, the effects that lead to an increase in its 
width and a subsequent decrease in intensity are attributed 
to the reduction of crystallite size and increased micro 
deformation47-49.

Furthermore, Table 2 and Figure 3 show particle size 
decreased from about D(50) 30μm to the value constant 
D(50) 10μm in 480 min. Until 240 minutes of milling, there 
is an indication of competition between cold welding and 
fracturing because the particles are still flattened, and at 
480 min, the fracture domain is observed50-52 (Figure 5). 
Various mechanical factors and parameters, including 
wet milling and energetic conditions, have influenced this 
response. Wet milling contributed to the formation of good-
proportion particles. The high-energy collision among the 
milling balls played a crucial role in uniformly dispersing 
the stress in the matrix53-55.

Finally, AA 7075 milled 480 min EDS (Figure 5) 
reveals no contamination traces from the steel balls or the 
stainless steel attritor mill were detected. The presence of 
liquid alcohol in the milling process increased the oxygen 
percentage in the sample.

Figure 2. Standard of X-rays diffraction AA7075 as a function of the milling time.

Table 2. Values of crystallite size, micro deformation, and particle size for all samples AA7075.

Sample Number Crystallite Size 
[nm]

Micro Deformation 
[%]

Particle Size D (0.5) 
[µm] Milling Time [min] Reinforce (SiC) 

[wt%]
AA075 49 0.02 31.71 As Received

1 33 0.06 37.62 60 0
2 32 0.06 25.44 120 0
3 30 0.10 16.28 240 0
4 29 0.12 10.64 480 0
5 29 0.12 11.18 480 1
6 32 0.10 13.66 480 2
7 29 0.12 10.80 480 5
8 25 0.16 9.04 480 10
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Figure 3. Particle size distribution AA 7075 as a function of the milling time.

Figure 4. Crystallite size, micro deformation, and particle size of AA 7075 as a function of the milling time.

3.2. AA7075 as a function of SiC reinforce percentual.
In its turn, Figures 6-9 show the standard of X-rays 

diffraction, particle size distribution, crystallite size, micro 
deformation, particle size, particle morphologies, and 
AA7075 milled 480 min + 10% SiC EDS as a function of 
SiC reinforcement percentual.

The crystallite size, micro deformation, particle size, 
morphologies, and chemical composition present similar to 

values found in AA7075 milled 480 min, independently if no 
reinforcement was used or if the SiC reinforces percentual 
was used until 5 percent due to the AA7075 can support 
high-stress structurals56. Significant changes were observed 
when 10 percent of SiC reinforcement was applied; in this 
condition, the best refinement structural results were achieved: 
25nm of crystallite size, 0.16 percent of micro deformation, 
and 9μm of particle size.



5Nanostructured Powders of AA7075 - SiC Manufactured by High-Energy Ball Milling in a Bath of Isopropyl Alcohol

Figure 5. SEM AA7075 as a function of the milling time (2000x): a) 240min e b) 480min and EDS AA7075 milled 480 min.

Figure 6. Standard of X-rays diffraction as a function of SiC reinforce percentual.
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4. Conclusions

Nanosize powders of AA7075 were manufactured by 
high-energy ball milling, and the milling time and SiC 
reinforce percentual were studied. The following results 
can be resumed according to below:

1- For AA7075 as a function of milling time, the 
crystallite size and particle size decrease from 49nm 
up to about 30nm and from D (50) 30μm to D (50) 
10μm, respectively, while the micro deformation 
increases from 0.02 percent to around 0.12 percent 
to a constant value of 480 minutes.

Figure 7. Particle size distribution AA 7075 as a function of SiC reinforce percentual.

Figure 8. Crystallite size, micro deformation, and particle size of AA 7075 as a function of SiC reinforce percentual.
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2- The presence of liquid alcohol in the milling process 
increased the oxygen percentage in the sample.

3- For the AA7075 as a function of SiC reinforcement 
percentual, the crystallite size, micro deformation, 
particle size, morphologies, and chemical composition 
presented like AA7075 milled 480 min, independently 
if no reinforcement was used or if the SiC reinforces 
percentual was used until 5 percent.

4- The best structural refinement result was achieved when 
10 percent of SiC reinforcement was applied AA7075 
milling 480 min (25nm to crystallite size, 0.16 percent 
to micro deformation, and 9μm to particle size).
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