
DOI: http://dx.doi.org/10.1590/1980-5373-MR-2016-0002
Materials Research. 2016; 19(3): 680-685 © 2016

*e-mail: liupengcheng8883@sohu.com

Introduction
Methyl tertiary-butyl ether (MTBE) has received a very 

high attention over the last decade due to its widespread 
detection in indoor environments 1,2 . MTBE is used as an 
additive of oxygen added to gasoline in order to elevate 
the octane number, combustion improvement, and reduce 
CO2 production. However, MTBE has been recognized as 
a prevalent and persistent groundwater and surface water 
pollutant. Acute toxicity levels of MTBE for rodent LD50 and 
lethal air concentrations for rats (LC50) were estimated to be 
3.8–3.9 g/kg and 65–126 g/m3, respectively 3,4. However, the 
presence of MTBE in water is mainly responsible for taste and 
odor related problems. Moreover, the International Agency 
of Research on Cancer (IARC) and the U.S. Environmental 
Protection Agency (EPA) classified MTBE as a health risk 
threat in 2000 5. Therefore, removal of MTBE from water is 
an important issue.

So far, many methods have been studied for removing 
MTBE. Such as adsorption 6, air stripping 7, photocatalysis 8, 
ozone treatment 9, Fenton process 10, high energy electron beam 
irradiation 11, cavitation 12, biodegradation 13 and electrochemical 
oxidation 14. Among them, designing suitable photocatalyst 
for MTBE degradation received a considerable attention due 
to its green approach, free sun energy and easy to scale-up. 
ZnO is a well-known n-type semiconductor with band gap 
energy of 3.37 eV, hence is considered as one of the best 
photocatalysts to deal with organic pollutant 15-21. However, 
the photocatalytic activity of ZnO is still restricted by fast 
recombination of the photogenerated electron-hole pairs 22-24 
. Many efforts have been made for extending the absorption 
range of ZnO, such as elements doping and metal‑semiconductor 
heterostructure formation. Silver halides are widely recognized 
as photosensitive materials 25-35. Recently, research showed 
that the Ag-AgCl supported metal oxide semiconductor has 
enhanced photocatalytic activity under visible or simulated 
solar light 36,37. Therefore, combining ZnO with silver halide 
is expected as an ideal photocatalyst for MTBE removal. 
Herein, we proposed a simple one-pot hydrothermal method 
for ZnO-AgCl nanocomposite formation. The photocatalytic 
activity of prepared ZnO-AgCl nanocomposite was tested. To 

the best of our knowledge, this is the first report of using ZnO-
AgCl nanocomposite for MTBE photodegradation.

Experimental
Materials

Zinc nitrate hexahydrate (Zn(NO3)2∙6H2O), ammonium 
hydroxide (28-30% NH3 basis), silver nitrate (AgNO3) and methyl 
tert-butyl ether (99%) were purchased from Sigma‑Aldrich. All 
other chemicals used were analytical grade reagents without 
further purification. Milli-Q water (18.2 MΩ cm) was used 
throughout the experiments.

Preparation of ZnO-AgCl nanocomposite
Certain amount of zinc nitrate hexahydrate was dissolved 

in 50 mL of water. Then, 5 mL of ammonium hydroxide 
was added into the solution for 15 min stirring. Afterward, 
a certain amount of AgNO3 solution (50 mM) was slowly 
added. After 30 min stirring, 5 mL of NaCl (0.5 M) was slowly 
added into the formed suspension. Then the suspension was 
refluxed at 110°C for 30 min. The precipitate was collected 
by centrifugation followed with water wash. The final product 
was obtained by calcination of the precipitate in a furnace at 
150°C for 1 h (denoted as ZnO-AgCl-1, ZnO-AgCl-2 and 
ZnO-AgCl-3 for the mole ratios of Zn/Ag set as 3:1, 2:1 and 
1:1, respectively).

Characterizations
The morphology and structure of the prepared samples 

were characterized using a field emission scanning electron 
microscope (FESEM, ZEISS SUPRA 40VP, Germany) and an 
X-ray diffractometer (D8 –Advance XRD, Bruker, Germany) 
with Cu Kα radiation, respectively. The Photoluminescence 
(PL) emission curves were obtained by a Fluorescence 
spectrophotometer (HORIBA Jobin Yvon Fluorolog-3-P, Japan)

Photodegradation of MTBE
Aqueous MTBE solutions were prepared by mixing 

MTBE with Milli-Q water. The pH of deionized water was 
adjusted to 7.0. For photodegradation, 200 ppb MTBE was 
prepared as a starting concentration.
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In a typical photodegradation experiment, 40 mg of 
photocatalyst was added into MTBE solution and kept 
under dark conditions for 30 min. After light irradiation, 
2 mL of suspension was then taken out a certain period 
and the photocatalyst was separated by centrifugation. 
The  concentration of MTBE was detected by GC-FID 
analysis 38 . For comparison purpose, nano-size ZnO was 
synthesized using a similar method for ZnO-AgCl preparation 
except adding AgNO3. P25 (commercial TiO2 photocatalyst, 
containing both anatase and rutile phase of TiO2) was also 
purchased and used as control group.

Results and Discussion
Characterization of ZnO-AgCl nanocomposite

Fig.  1 shows the SEM images of ZnO-AgCl-1 and 
ZnO-AgCl-3. As can be seen, the ZnO particles present a 
rod structure in the ZnO-AgCl nanocomposite with length 
varying from 30-200 nm. AgCl sphere are attached to the 
ZnO particles with a diameter of 180 nm. The attachment of 
the ZnO rods on the AgCl surface can be clearly absorbed. 

The formation of ZnO and AgCl nanoparticles should 
be independent during the chemical reduction process. 
However, the high temperature reflux condition could produce 
diffusion‑limited-aggregation process, which involves cluster 
growth by the adhesion of a particle to a seed on contact 
and growing surface after the reduction 35,39 . It also can be 
seen that the size of ZnO particles slightly decrease after 
the mole ratio of Ag increases in the preparation stage. 
The morphology of ZnO-AgCl-2 (not present) is similar to 
that of ZnO-AgCl-1 while the ZnO-AgCl-3 shows a much 
higher content of AgCl particles than that of ZnO-AgCl-1.

Fig. 2A depicts the XRD patterns of the as-prepared 
ZnO-AgCl nanocomposite with different mass ratios of 
ZnO to AgCl. All XRD patterns exhibit peaks at 32.1°, 
34.3°, 36.1°, 47.6°, 56.6°, 62.9°, 67.3°, 68.1°, 68.6°, 72.1° 
and 77.7°, which are related to the hexagonal ZnO (JCPDS 
36-1451). Moreover, all samples also show the peaks at 
26.1°, 45.3°, 54.3°and 56.7°, which corresponded to the 
cubic phase crystal structure of AgCl (JCPDS 31-1238). 
In addition, the AgCl peaks intensity increased along with 

Fig. 1. SEM images of (A) ZnO-AgCl-1 and (B) ZnO-AgCl-3 nanocomposites.

Fig. 2. (A) XRD patterns and (B) PL spectra of ZnO-AgCl-1, ZnO-AgCl-2 and ZnO-AgCl-3 nanocomposite.
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the AgCl ratio increasing, suggesting the increase in AgCl 
content in the nanocomposite.

Fig.  2B shows the PL spectra of ZnO-AgCl-1, 
ZnO-AgCl-2 and ZnO-AgCl-3. Three main emission 
bands are observed in the ZnO, which can be attributed 
to the recombination of photogenerated electron-hole 
pairs, impurities and structural defects, and oxygen/zinc 
interstitials, for peaks located at 433 nm, 474 nm and 522 
nm, respectively 40,41 . The PL intensities decreasing along 
with the content of AgCl increasing, synergistic effect 
between ZnO and AgCl nanoparticles, which effectively 
reduces the electron-hole pairs recombination and facilitates 
the charge carrier separation. Among all these samples, 
ZnO-AgCl-3 displays the lowest PL intensity, which may 
lead to the highest photocatalytic activity.

Photodegradation of MTBE by ZnO-AgCl 
nanocomposites

The photocatalytic activity of as-prepared ZnO-AgCl 
nanocomposites was investigated by photodegradation 
of MTBE. Fig.  3A shows the photodegradation profile 
using 40 mg ZnO-AgCl-1, ZnO-AgCl-2 and ZnO-AgCl-3 
without light irradiation. Where C0 and C are the initial 
concentration of MTBE and concentration after irradiation, 
respectively. It  can be seen that the concentration of 

MTBE did not show a significant decreasing. The slight 
decreasing can be attributed to the adsorption of MTBE by 
nanocomposite. Therefore, the results indicate ZnO-AgCl 
nanocomposite show no photocatalytic activity towards 
decomposition of MTBE without light irradiation.

We further studied the photocatalytic properties of 
ZnO‑AgCl nanocomposite. Fig. 3B shows the photodegradation 
profile using 40 mg ZnO-AgCl-1, ZnO‑AgCl-2 and 
ZnO‑AgCl-3 under visible light irradiation. It can be clearly 
seen that three photocatalysts show positive degradation 
performance toward MTBE. After 120 min visible 
irradiation, ZnO‑AgCl-1, ZnO‑AgCl-2 and ZnO‑AgCl-3 
nanocomposites can remove 62.1%, 92.3% and 77.11% 
of MTBE from water, respectively. The results did not 
match to our prediction from PL results. The photocatalytic 
activity of the ZnO-AgCl-2 showed a higher performance 
than that of the ZnO-AgCl-3, which could ascribe the 
sufficient amount of ZnO in the nanocomposite. Therefore, 
the ratio between ZnO and AgCl is very important factor 
in the photodegradation performance of ZnO-AgCl 
nanocomposite. The possible mechanistic pathway of 
the catalysts for photocatalytic degradation of MTBE is 
proposed as follows: under light irradiation, photogenerated 
electron–hole pairs (ecb

−–hvb
+) were formed in ZnO rods. 

Then, the hvb
+  could react with AgCl  to form Ag+  and 

Fig. 3. (A) Degradation of MTBE over ZnO-AgCl-1, ZnO-AgCl-2 and ZnO-AgCl-3 without light irradiation. (B) Photodegradation of 
MTBE over ZnO-AgCl-1, ZnO-AgCl-2 and ZnO-AgCl-3. (C) MTBE removal rate using ZnO-AgCl-2, P25 and nano-ZnO under visible 
light irradiation. (D) MTBE removal rate using ZnO-AgCl-2, P25 and nano-ZnO under UV light irradiation.
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Cl0. A part of hvb
+ generated by ZnO reacted with OH− to 

form  OH. The Cl0 and  OH could react with the MTBE 
pollutant. Therefore, although the ZnO‑AgCl-3 showed 
a best electron-hole pairs recombination suppression 
performance, the lack of ZnO to produce the hvb

+ restricted its 
photocatalytic activity. In order to evaluate the enhancement 
of nanocomposite, we also compared ZnO-AgCl-2 with 
nano-ZnO and commercial photocatalyst P25 (TiO2, rutile: 
anatase = 85: 15). Fig.  3C depicts the removal rate of 
three photocatalysts using the same conditions. As can 
be seen that, the removal efficiency order is ZnO-AgCl-
2>P25>nano-ZnO. Therefore, our proposed ZnO-AgCl 
nanocomposite exhibits a clear enhancement towards 
photodegradation of MTBE.

Besides the visible light irradiation, we also tested 
the photodegradation performance of ZnO, ZnO-AgCl-2 
nanocomposites and P25 under UV light irradiation. 
Fig. 3D displays the removal rate of MTBE using different 
photocatalysts after 60 mins UV light irradiation. It can be 
seen that the ZnO-AgCl-2 still exhibits best performance 
among the photocatalysts, indicating the ZnO-AgCl 
nanocomposite can be used as a photocatalyst under both 
UV light and visible light conditions.

The effects of photocatalyst loading were investigated 
at 10 mg, 20 mg, 30 mg, 40 mg, 50 mg and 60 mg of 
ZnO‑AgCl-2 nanocomposite. As shown in Fig.  4A, 
all experiments showed clear degradation of MTBE. 
When insufficient amount of ZnO-AgCl-2 nanocomposite 
was added into MTBE solution, the low removal rate 
could be the result of limited production of OH- caused by 
the inadequate conversion from light energy to chemical 
energy 42 . This can be evidenced by the enhancement of 
removal rate after increase in amount of ZnO-AgCl-2 
nanocomposite. On the other hand, at a high concentration 
of ZnO-AgCl-2 nanocomposite, aggregation of photocatalyst 
is causing a decrease in the number of surface active sites 
and an increase in opacity and light scattering leads to a 
decrease in the transmission of irradiation through the 
sample 43. Therefore, 40 mg ZnO-AgCl-2 nanocomposite 
was used in this study.

The effect of pH on the photodegradation was also 
studied. As shown in Fig. 4B, the pH condition can apply 
a significant role in the photodegradation results due to 
the photocatalytic destruction mechanism in different pHs 
has different activation energies 44. At acid condition, the 
photocatalyst is protonated and became positively charged, 

Fig. 4. (A) Effect of ZnO-AgCl-2 dosage on photodegradation efficiency of MTBE. (B) Effect of pH on photodegradation efficiency of 
MTBE. (C) Effect of concentration of MTBE on photodegradation efficiency of MTBE. (D) Reusability of ZnO-AgCl-2.
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which is more favorable for the electron to move from the 
valance band to the conduction band of the semiconductor 
particle. Similar phenomenon was observed by other 
researchers 45-46. Therefore, pH 3 is selected for optimum 
condition.

Fig. 4C shows the effect of initial concentration of 
MTBE on the photodegradation process. It can be seen 
that the higher initial MTBE concentration could lead to 
low final removal rate. This is caused not simply by the 
increase in amount of target molecules but the results are 
also influenced by suppression of OH─ radicals formation 
as a consequence of poisoning the catalyst surface by 
pollutant ions 47.

The stability of photocatalyst in photocatalytic 
reaction is an important factor in the practical applications. 
Therefore, the reusability of the ZnO-AgCl-2 nanocomposite 
was tested by 5 photodegradation cycles. As shown in 
Fig.  4D, the ZnO-AgCl-2 nanocomposite remain more 
than 80% of photodegradation performance in the 5th 
cycle of photodegradation, indicating that the proposed 
photocatalyst owing an excellent stability.

Conclusion
In this study, a facile one-pot hydrothermal approach 

has been used to synthesize ZnO-AgCl nanocomposites, 
and their corresponding photocatalytic performance under 
visible irradiation was investigated. The results on MTBE 
photodegradation indicated that the as-prepared ZnO-AgCl 
nanocomposites have a superior photocatalytic activity 
than bare ZnO and P25. Additionally, the reusability test 
showed that the ZnO-AgCl photocatalyst remained more 
than 80% photocatalytic activity in the fifth cycle, which 
made it high promising for practical applications such as 
waste water purification.
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