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1. Introduction
In the past decades, Fe-based bulk metallic glasses (BMGs) 

with a high glass forming ability (GFA) have become a very 
hot research topic not only because of their soft-magnetic 
properties but also the high fracture strength and corrosion 
resistance1-5. In particular, these BMGs can be obtained 
directly either from the liquid or the deformation within 
the supercooled liquid region in the final shape suitable for 
various applications in different devices, such as magnetic 
sensors, magnetic valves, and magnetic clutches etc. Soft 
magnetic materials with low core losses, high magnetization, 
and low cost are the key components for transformer with 
improved energy efficiency, especially in the higher frequency 
operation and elevated temperature conditions6,7. Since the 
1970s, the greatly reduced coercivity has been achieved 
in amorphous and nanocrystalline alloys8-12. Conventional 
methods of improving the intrinsic and extrinsic soft magnetic 
properties have focused on tailoring the composition, 
controlling the microstructure with varied heat treatment 
environments. The low temperature annealing of metallic 
glass causes changes in most physics properties. This is 
attributed to atomic rearrangement in the amorphous state. 
Very recently, high magnetic field (HMF) up to above 
10T has been successfully applied to materials design and 
productions13,14. The finding has demonstrated that the magnetic 
field is a powerful tool to affect the crystallization process 
of metallic glass and texture formation of the crystallized 
phases15-20. In this work, a HMF up to 12T is introduced 
to the low temperature structural relaxation process of 
high-boron Fe71(Nb0.8Zr0.2)6B23 BMG. The  results show 
that HMF can improve the thermal stability of amorphous 
state during annealing in the BMG’s supercooled liquid 
region as compared with the annealing without magnetic 

field. The HMF annealing inhibits the brittleness of BMG 
during the structural relaxation, due to the increment of the 
activation energy under the HMF. The HMF annealing also 
results in lower coercivity and squared hysteresis loops of 
the metallic glass after structural relaxation.

2. Experimental
Elemental pieces with a purity better than 99.9 wt.% 

were used as starting materials. The master alloy ingots of 
Fe71(Nb0.8Zr0.2)6B23 with the nominal composition (in at.%) 
were prepared by arc melting under a Ti-gettered argon 
atmosphere. Bulk rods of 1.0 mm in diameter were fabricated 
using suction casting in a copper mold. The amorphous 
nature as well as homogeneity of the rod was ascertained 
with X-ray diffraction. The differential scanning calorimeter 
(DSC) measurements were performed under a purified Ar 
atmosphere in a TA Q100 at a heating rate of 2, 5, 10, 20 
and 40 °C/min for both the as-cast and annealed samples. 
The morphology of the annealed rod was observed by using 
a scanning electron microscope (SEM). The magnetic field 
annealing was performed in a vacuum furnace, where a 
superconducting magnet (JMTD-12T100, JASTEC, Japan) 
was used to generate a magnetic field with a maximum 
magnetic flux density up to 12T at the center of a bore 
(100 mm in diameter). The 20-mm-length isothermal region 
of the furnace has an accuracy of around ±3 °C. The stable 
homogeneous magnetic fields were used in this work. The axis 
of the rod was parallel to the direction of the magnetic field. 
As the magnetic field was applied, the samples were heated 
to a given temperature at a heating rate of 5 °C/min, kept 
for 60 minutes, and then cooled down to the temperature 
below 100 °C in the furnace. The average cooling rate is 
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around 6 °C /min. Vickers microhardness was measured in 
a MVR-HS hardness tester (Kawasaki, Japan) using a load 
of 300 N and 20 s hold time. The microhardness value given 
is the average of 20 individual measurements. Vibrating 
sample magnetometer (VSM, Lakeshore 7407) was used to 
measure the magnetic properties of the samples.

3. Results and Discussions
Figure  1 shows the DSC curves of the as-cast and 

annealed rods for Fe71(Nb0.8Zr0.2)6B23 BMG. Characteristic 
temperatures associated with the glass transition temperature 
(Tg) and the onset temperature of primary crystallization (Tx1) 
are labeled in Figure 1. To simulate the heating rate for the 
magnetic field annealing, a heating rate of 5 °C/min was 
used for the as-cast rod in the work15. At the heating rate of 
5 °C/min, the Tg and Tx1 of the as-cast rod are revealed to be 
555 °C and 600 °C, respectively. Therefore, the structural 
relaxation annealing temperatures of this BMG are selected 
to be 500 °C and 550 °C, respectively.

The DSC curves of the samples both annealed at 500 °C 
for 60 min with or without a 12 T magnetic field are shown 
in Figure  1, which exhibit the significant endothermic 
characteristics of a glass transition followed by an exothermic 
peak almost with the same exothermic heat amount of the 
as-cast rod indicating the normally full amorphous structure 
after the low temperature annealing. From the XRD curves, no 
peak correspond to the crystalline phase is visible, which are 
not shown here. In contrast, there is no obvious Tg observed 
in the DSC curve of the sample annealed at 550 °C without 
the magnetic field and a following smaller exothermic heat 
amount which indicates a partial crystallization already 
occurred in the precursor sample. The endothermic enthalpy 
of sample annealed at 550 °C with 12T high magnetic field is 
higher than that without magnetic field, which showed that 
the HMF improved the thermal stability of amorphous state 
of Fe71(Nb0.8Zr0.2)6B23 BMG during the structural relaxation. 
Due to the partial crystallization when annealed at 550 °C, 
the structural relaxation discussed in this work focused on 
the rod annealed at 500 °C only.

The continuous DSC traces of the as-cast and annealed 
rods at 500 °C with heating rate of 2, 5, 10, 20 and 40 °C /min 
are done which are not shown here. The Tg, Tx1, and Tp 
(peak temperature of primary crystallization) of the rods are 
shifted to a higher temperature by increasing heating rate. 
The Kissinger plots of the primary and peak crystallization 
reactions for the three rods are shown in Figure 2. The activation 
energy Ex and Ep are deduced from the slope of -ln(R/T2) 
versus 1/T, where T stands for the Tx1, and Tp, R stands 
for the heating rate. The Ex and Ep for the as-cast rod are 
508.2 and 528.5 kJ/mol, respectively. The Ex and Ep are 
enhanced after annealed at 500 °C without magnetic field, 
which are 520.0 and 531.4 kJ/mol, respectively. However, the 
Ex and Ep increased dramatically after annealed at 500 °C with 
12T high magnetic field, which are 586.8 and 541.4 kJ/mol, 
respectively, and the Ep is lower than Ex, which is different 
from of as-cast rod and annealed without magnetic field. 
From the DSC curves in Figure 1, the improved thermal 
stability of Fe71(Nb0.8Zr0.2)6B23 BMG during HMF annealing 
assumed ascribing to the increased Ex.

The indentation of the BMG rods after structural relaxation 
is also investigated. In comparison, the indentation results of 
BMG rods annealed at higher temperature are also presented 
in Figure 3a. It is clearly seen that the hardness is higher in 
the rod annealed without magnetic field compared that with 
12T HMF. For the rods (A and B as shown in Figure 3a after 
structural relaxation, the indentation images are also show 
in Figure 3b and 3c, respectively. Shear bands around the 
indentation are clearly seen in the rod annealed with 12T, 
which showing the higher plasticity, in contrast with that 
annealed without magnetic field.

The effect of the field annealing on the hysteresis loops 
of the Fe71(Nb0.8Zr0.2)6B23 BMG is demonstrated in Figure 4. 
It is evident that the HMF annealing increase the saturation 
magnetization compared with those of annealing without 
magnetic field and as-cast rods. The different magnetization 
process indicates that the domains rotate easily by external 
field due to low anisotropy. While, saturation field is lowest in 
the rod annealed under 12 T, indicating the lowest anisotropy. 
Therefore, the coercivity filed is also deduced from 30.5 A/m 
in the rod annealed without external field to 10.6 A/m in the 
rod annealed under 12 T.

Figure 1. DSC traces for the Fe71(Nb0.8Zr0.2)6B23 BMG after annealing 
for 1h at different states at the heating rate of 20 °C/min.

Figure 2. Kissinger plots of the start and peak temperatures for the 
primary crystallization for Fe71(Nb0.8Zr0.2)6B23 BMG.
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4. Conclusions

(1)	 HMF can improve the thermal stability of 
amorphous state during structural relaxation 
annealing in the BMG’s supercooled liquid region 
as compared with the annealing without magnetic 
field for Fe71(Nb0.8Zr0.2)6B23 bulk metallic glass.

(2)	 HMF can effectively suppress the brittleness of 
Fe71(Nb0.8Zr0.2)6B23 bulk metallic glass during 
structural relaxation.

(3)	 HMF can reduce the coercivity and saturation 
magnetization, which is thought due to the reduced 
anisotropy by high magnetic field annealing.
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Figure 3. (a) Hardness as a function of annealing temperature in Fe71(Nb0.8Zr0.2)6B23 BMG annealed under 0 T and 12 T magnetic field. 
The corresponding indentation images for the rod annealed at (b) 500 °C under 0T and (c) 500 °C under 12T external field.

Figure 4. Hysteresis loops for Fe71(Nb0.8Zr0.2)6B23 BMG after annealing for 1h at different states.
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