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Silicon nanotubes (SiNTs) have been successfully synthesized recently. Despite the wide potential 
applications of SiNTs, their mechanical properties are rarely reported. In this study, as the first step, the 
mechanical behavior of clamped-free single-walled silicon nanotubes (SWSiNTs) for both armchair and 
zigzag structures is investigated by using molecular dynamics (MD) simulations while the inter-atomic 
forces are described by the Tersoff-Brenner many-body potential energy function. Meanwhile, the 
results of the total strain energy are used to establish an expression for predicting Young’s modulus of 
the nanotubes. Afterward, the free vibrational analysis including torsional, longitudinal and transverse 
vibrations behavior of SWSiNTs with different diameters and lengths are investigated to report the 
corresponding fundamental frequencies as a significant design parameter. In this study, also, an important 
stress-strain parameter ratio is defined for vibration analyses named dynamic Young’s modulus. 
Thereafter, the natural frequencies that are obtained using the current atomistic model are successfully 
compared with those evaluated by the continuum mechanics model. It is concluded that the utilized 
approach can predict the frequencies with reasonable accuracy. Furthermore, the effects of geometry 
on the natural frequencies for both armchair and zigzag structures are examined. The obtained results 
provide valuable insights into the vibrational behavior of silicon-based nanotubes.

Keywords: Molecular dynamics, Silicon Nanotubes, Vibration analysis, Natural Frequency, 
Dynamic Young’s modulus, Mechanical behavior.

1. Introduction
The concept of ‘nanotechnology’ was proposed by 

physics Nobel laureate, Richard Feynman in 1959. Since 
then, nanotechnology has developed quickly and now is a 
significant technological science. Wide potential applications 
such as molecular electronics, diagnostic biosensors, and 
novel scanning microscopy probes1, make nanotubes one of 
the most popular nanofilaments. In 1991, Iijima2 introduced 
carbon nanotubes (CNTs). As CNTs are widely implemented 
as a structural element, thus study their mechcanical 
behavior is crusial. The mechanical behavior as one of the 
most important characteristics of the nanostructures can be 
theoretically studied using quantum mechanics3-8, discrete 
modeling techniques such as molecular dynamics simulation 
and continuum mechanics9-15. Also, the vibration analysis of 
single/multi-walled carbon nanotubes in the context of coupled 
methods using molecular mechanics and finite elements 
method has been considered16-19. Meanwhile, Georgantzinos 
and Giannopoulos20 presented an efficient numerical model 
for the vibration analysis of single-walled carbon nanotube 
using finite elements methods. Although, each method has 
some merits, one of the most efficient approach to simulate 
the mechanical behavior of nanostructures is molecular 
dynamics. Studying mechanical behavior of nano materials 
using molecular dynamics simulation is recognized as one 

of the most reliable techniques. Legoas et al.21 presented 
one of the first MD simulation of carbon nanotubes used 
as gigahertz oscillators, and with the advancement of this 
method, the researchers employed this method for other nano 
sructural element with different constituents22-29.

Recently, silicon based nanotubes (SiNTs) have been 
successfully synthesized, and many authors applied molecular 
dynamics simulations to investigate mechanical properties 
of SiNTs. In this regard, Bahel and Ramakrishna30 calculated 
the lowest energy structure of silicon nanotubes. Menon 
and Richter31 studied stability of a one dimensional silicon 
structure. Fagan et al.32 presented the stability and thermal 
behavior of SiNTs. The majority of the computer-aided studies 
and experimental results discussed in literature33,34 concern 
the basic mechanical properties of Si nanotubes under axial 
tension. For instance, Jeng et al.35 examined the effects of 
temperature, strain rate, and vacancies on the tensile and 
fatigue behaviors of silicon-based nanotubes. To the best of 
authurs’ knowledge, a MD-based study with focusing on the 
vibrational behavior of SiNTs has not been yet presented. 
On the other hand, due to wide potential application of SiNTs 
in different industries like medical devices and spesificly as 
new material for fabricatiing heart valve36, it is important 
to determine the vibrational behavior of these nanotubes. 
Thus, the main target of this article is to extensively study 
the vibration characteristics of SiNTs in different directions. *e-mail: setoodeh@sutech.ac.ir
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Consequently, by applying appropriate boundary condition 
to the region of end atoms, the torsional, longitudinal and 
transverse vibrations are simulated and the coresponding 
natural frequencies of the nanotubes as a significat design 
parameter are predicted. Meanwhile, the variations of natural 
frequencies with respect to the changes in geometry diameter, 
length and chirality are exhibited in detail.

2. MD Modeling
Molecular dynamics simulation is a powerful technique 

to explore the microcosmic mechanism of deformation and 
intrinsic characteristics of a structure at the atomic level. 
For modelling the mechanical properties of nanostructures 
and nanoparticles, it is a useful and reliable technique. 
To model Si nanotube based on MD, one needs to calculate 
the interatomic forces, the elastic properties, the molecular 
bond energies, and bond lengths of the Si-Si bond for each 
time step by solving Newton’s Equations. The present 
study pursues the Tersoff-Brenner many-body potential 
function37,38 to model the Si-Si interactions. Regarding this 
potential, the electronic structural effects such as sp3 bonding 
are described via a many-body bond ordering expression. 
the Tersoff potential parameters for the silicon atoms are 
extracted from Ref.39 to determine the interaction among the 
atoms. Moreover, the total potential energy for SiNT based 
on the Tersoff-Brenner potential function is expressed as40:
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where E is the total energy of the system, i, j and k denote 
the atoms, ijr  is the distance between pairs adjoining atoms i 
and j, ijV  is the bonding energy, ijb  is an empirical bond-order 
term, attV  and repV  are the attractive and repulsive parts of the 
potential, ( )c ijf r  denotes the cutoff function, ( ) ( ) ijk ij ikg f r rθ −  
is the number of bound to atom beside the ij bound function, 

ijg  is the coordination, ijkθ  denotes the bond angle between 
bonds ij and ik41. In the present simulations which is performed 
by LAMMPS largescale atomic/molecular massively 
parallel simulator) open source package42, the Si-Si bond 
is considered equal to 2.245A 43, the model is conducted in 
canonical ensemble (NVT) at room temperature (300K) to 
control the volume and temperature, boundary conditions in 
x any y directions are considered to be periodic in order to 
decrease the length effect, the nanotubes are extended axially 
(i.e. in the z direction) by providing accurate uniaxial stress 
condition, while the timestep used in this model is kept 1 fs 
during the simulation. In order to set the relaxation state of the 
atoms, the conjugate gradient method is employed to reach 
the equilibrium state. At the beginning of the simulation, 
the system is relaxed for 50 ps, and then the external 
displacements are applied to elongate the relaxed nanotube. 
Meanwhile, the velocity Varlet algorithm44 is used to solve 
the equations of motion. This procedure is continued until 

the rupture happens in the nanotube. The initial configuration 
strained, and fractured conditions of silicon nanotubes is 
illustrated in Figure 1.

3. Stiffness of SiNTs
The Young’s modulus (Y) is calculated using the second 

derivative of the total energy with respect to strain at the 
zero strain (i.e. at the equilibrium configuration) according 
to Equation 4. In this equation, 0V  denotes the equilibrium 
volume, ε  is the strain and E stands for the total energy. There 
is an extreme challenge to determine the value of 0V . Many 
researchers define this volume by using a shell-thickness 
equal to the interlayer spacing in silicene. The value of 0V  
for SiNTs can be also found using LAMMPS molecular 
dynamics simulator’s data.

Figure 2 presents the variation of the strain energy per atom, 
which is determined by difference between the total energy per 
atom in strained and unstrained condition. The Young’s modulus 
for each nanotube is determined by fitting a polynomial curve 
to the corresponding plotted data and using Equation 4.
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The Young’s modulus of (10,10) SiNT is predicted 
as 52.56 (GPa) by the present study which shows a great 
congruence in compare with the existing data in the literature35.

Figure 1. Configuration for tensile process of SiNT. (a) Unstrained, 
(b) Strained and (c) Fractured conditions.

Figure 2. Strain energy values of (10,10) SiNT as a function of the 
axial tensile strain from MD simulation.



3
Longitudinal, Transverse, and Torsional Free Vibrational and Mechanical Behavior of Silicon Nanotubes Using 

an Atomistic Model

After validating the results and verification of the simulated 
model, Young’s modulus of SiNTs with length of 5 nm and 
different diameters are determined by the same procedure 
for both zigzag and armchair structures and illustrated in 
Table 1. It can be observed that armchair configuration of 
SiNTs are more stable than zigzag ones due to their higher 
value of Young’s modulus. Moreover, the diameter has 
a minor effect on the Young’s modulus of the nanotubes.

The symmetric per-atom stress tensor of the SiNT is 
calculated by using “stress/atom” and “compute” commands 
in Lammps to obtain the desired stress vector. Then, the 
predicted stress is divided to the volume. Eventually, metric 
unit conversion is utilized to determine the correct value 
of the stress. To further study the mechanical behavior of 
SiNTs, the stress-strain diagrams of armchair and zigzag 
silicon nanotubes with chiralities of (5,5), (10,10), (5,0), 
(10,0) are demonstrated respectively in Figures 3  and 4. 
It can be seen that the ultimate tensile strength of SiNT 
is read equal to 13.06 GPa and 4.21 GPa, respectively for 
(5,5) armchair and (5,0) zigzag nanotubes. This shows the 
substantial impact of the SiNT chirality on the mechanical 
properties of the structure. Also, another significant point is 
the discrepancy between mechanical behavior of materials 
in nanoscale in comparison to the common tensile diagram 
of structures in macro-scale.

3. Vibration Analysis of SiNTs
Vibration analysis and finding natural frequencies of 

structures are always important and are considered as a 
significant parameter in designing. Nowadays, due to rapid 
development of nanotechnology, predicting the intrinsic 
characteristics of these new nanostructures is attractive to 
the scientists. In this part three main types of SiNTs free 
vibration, namely, torsional, longitudinal and transvers 
vibrational are investigated.

3.1. Torsional, longitudinal, and transverse 
vibration

According to the geometry of a nanotube, torsional 
vibration analysis is paramount in order to produce nanoprobes 
and resonators, longitudinal vibration is important due to 
highly application in piezoelectric and nanocomposites and 
transverse vibration is one of the most significant parameters in 
designing and producing. In this section, molecular dynamics 
simulation is implemented to consider torsional, longitudinal 
and transverse free vibration behavior of single-walled silicon 
nanotubes. In these simulations, the Tersoff-Banner potential 
energy function is used to determine the interatomic forces 
between the silicon atoms similar to the previous simulation 
which discussed above. The system is subjected to canonical 
ensemble at constant temperature (10K) which is controlled 
by Nose-Hoover thermostat. The SWSiNTs are initially 
relaxed for 50 ps due to minimization of the system’s energy 
in the simulation via the conjugate gradient method to reach 
the equilibrium state. Thereafter, four layers of atoms are 
fixed to apply the clamped-free boundary condition, then 
the proper torsional, elongation and transverse deflections 
are imposed separately to the free end of SiNT for 3 ps, 
and eventually, the nanotube is released. This allows the 

structure to freely vibrate in micro-canonical ensemble. 
Figures 5, 6, and 7 illustrate a schematic view of the clamped-
free SiNTs and the corresponding initial torsional, longitudinal 
and transverse deformations, respectively. The SiNT natural 
frequencies of the vibration are found by fitting a sinusoidal 
curve to the variation of system kinetic energy during the 
free vibration. The equation below is used to define that 
trigonometric function.

Table 1. Elastic modulus of (5,5) SiNT with length of 5 nm.

Chirality Young’s Modulus
(GPa)

(5,5) 51.08
(5,0) 46.70
(6,6) 51.56
(6,0) 46.81
(7,7) 51.78
(7,0) 47.42
(8,8) 52.26
(8,0) 47.87
(9,9) 52.34
(9,0) 48.11

(10,10) 52.56
(10,0) 48.84

Figure 3. Stress–Strain curve of silicon nanotube armchair (5,5) 
and (10,10).

Figure 4. Stress–Strain curve of silicon nanotube zigzag (5,0) 
and (10,0).



Jahromi et al.4 Materials Research

	 ( ) ( )f it  a s n ctω= + 	 (5)

where 𝜔 denotes the angular natural frequency, 𝑐 is constant 
phase of the sine wave and t is the time. Figure 8 demonstrates 
a representative of curve fitting to the variations of nanotube 
kinetic energy for a period of 400 ps during free vibration. 
The SiNTs natural frequencies of the free torsional, longitudinal 
and transverse vibrations are respectively illustrated for 
different diameters and chirality in Table 2.

Since such analysis is carried out for the first time for 
single-walled silicon nanotubes, to check the validity and 
accuracy of the current study, the results obtained from 
molecular dynamics simulation are compared with those 
obtained from the continuum mechanics solution. To determine 
the fundamental frequencies in continuum mechanics, the 
silicon nanotube is assumed as a simple rod with clamped-free 
boundary conditions which presents orthotropic behavior. 
Therefore, the first natural frequency of the free torsional 
vibration can be obtained by using Equation 645

	 1 Gf
4l ρ

= 	 (6)

where f denotes the fundamental frequency, G is the shear 
modulus, l is the length, and ρ denotes the density. The density 
is determined using molecular dynamics simulation as follows:

	 M n m
V Dhl

ρ
π
×

= = 	 (7)

where M is the total mass of the SiNT comprises of n atoms 
with the mass of m. Also, V is the volume of the nanotube.
Moreover, the shear modulus of the nanotube in the Equation 6 
is determined as:

	 ( )
EG

1 v
=

+ 	 (8)

In above equation, the Young’s modulus (E) is calculated 
by MD for each SWSiNT, and v is the Poisson’s ratio 
determined based on the relative alteration of the nanotube 
diameter in the transverse direction with respect to the axial 
axis using Equation 9.

	 ( ) 0

0

d d
v

d
ε −

= − 	 (9)

where ( )d ε  denotes the tube diameter at strain ε , and 0d  is the 
diameter at the initial state (equilibrium) as shown in Figure 9.

Furthermore, the continuum mechanics solution for the 
longitudinal and transverse first natural frequency of clamped 
rods are found using Equations 10 and 1146-47:

	  1 Ef
4l ρ

= 	 (10)

Figure 5. Schematic view of an armchair SWSiNT with C-F 
boundary conditions (a) before torsional deformation and (b) after 
initial torsional deformation.

Figure 6. Schematic view of an armchair SWSiNT with C-F boundary 
conditions (a) relaxed and (b) after initial longitudinal exertion.

Figure 7. Schematic view of an armchair SWSiNT with C-F 
boundary conditions (a) minimized energy and (b) after initial 
transverse deflection.

Figure 8. Curve fitting to the profile of system kinetic energy for a period of 400 ps during torsional free vibration.
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where I is the second moment of area, A is the cross-sectional 
area of nanotube, β  is approximately equal to 0.5π, l  is the 
length and E is the Young’s modulus

For comparison study in Table 2, the both of armchair 
and zigzag nanotubes with length of 5 nm are modeled. As it 
can be seen in this table, a good agreement is found between 
the results calculated from the two different methods. This 
verifies the accuracy and reliability of the MD model. It is 
worth noting that the continuum mechanics solution cannot 
be individually used to predict the frequency of vibration in 
atomistic level as the Young’s modulus is unknown. In the 
next step, the influence of length on the natural frequency of 
torsional and transverse vibration of Si nanotubes is studied in 
Table 3. According to the results, it is observed that chirality 
and diameter have small effect on the natural frequency 
of the free vibration, while the length shows a significant 
impact on this parameter. It is seen that the natural frequency 
decreases by increasing the length of SiNTs. Also, the zigzag 

Figure 9. (a) schematic view of a SWSiNT in equilibrium state 
(Yellow atoms) and Strained state (blue atoms) (b) Middle Cross 
section view, d_((ε)) and d_0 denote diameter of nanotube in strained 
state and initial state respectively.

Table 3. Natural frequencies (THz) of free vibration due to torsional and transverse excitation of armchair (5,5) and zigzag (5,0) SiNT 
with different lengths calculated by MD simulations.

Length
(nm) Chirality Torsional

Natural Frequencies (THz)
Transverse

Natural Frequencies (THz)

5
(5,5) 0.6381 0.18766
(5,0) 0.6033 0.09953

6
(5,5) 0.5302 0.12212
(5,0) 0.5078 0.07580

7
(5,5) 0.4277 0.09773
(5,0) 0.4218 0.05985

8
(5,5) 0.3896 0.08774
(5,0) 0.3797 0.03551

9
(5,5) 0.3444 0.06636
(5,0) 0.3412 0.02434

10
(5,5) 0.3213 0.03866
(5,0) 0.3151 0.02412

Table 2. Comparison between torsional, longitudinal and transverse vibration frequencies (THz) of SiNT with 5nm length predicted by 
continuum mechanics and molecular dynamics simulation for different chirality and diameters.

Chirality

Torsional
Natural Frequencies

(THz)

Longitudinal
Natural Frequencies

(THz)

Transverse
Natural Frequencies

(THz)

MD Continuum 
Mechanics MD Continuum 

Mechanics MD Continuum 
Mechanics

(5,5) 0.6381 0.62356 1.0682 0.97375 0.1876 0.16916
(5,0) 0.6033 0.58714 0.9461 0.91714 0.0995 0.09419
(6,6) 0.6516 0.63576 1.0763 0.99309 0.2151 0.20562
(6,0) 0.6246 0.60438 0.9761 0.94408 0.1177 0.11451
(7,7) 0.6589 0.64255 1.0796 1.00374 0.2424 0.24137
(7,0) 0.6212 0.61222 0.9951 0.95642 0.1385 0.13408
(8,8) 0.6637 0.64703 1.0804 1.01072 0.2672 0.26608
(8,0) 0.6258 0.61637 1.0075 0.96281 0.1591 0.15324
(9,9) 0.6659 0.64930 1.0828 1.01151 0.2881 0.28773
(9,0) 0.6286 0.62154 1.0159 0.97087 0.1772 0.17305

(10,10) 0.6664 0.65272 1.0843 1.01966 0.3052 0.30207
(10,0) 0.6308 0.62821 1.0211 0.98129 0.1904 0.18844
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nanotubes possess a lower natural frequency in comparison 
to armchair ones as an identical length in view of their lower 
diameter. According to Table 2, it can be deducted that the 
natural frequencies predicted by the continuum mechanics 
theory are less than precised values of MD simulations due 
to neglection of the bond energies, atomic forces and more 
importantly by asuming a continuum medium. It means that 
the continuum mechanics theory predicts a lower stiffness 
for the SiNTs in comparison to the MD simulations.

In addition, based on the MD simulations results of 
the longitudinal vibrational analysis, the dynamic Young’s 
modulus can be computed. The dynamic Young’s modulus 
parameter is defined as the ratio of stress to strain during 
the vibrational simulation. It can be calculated by using the 
natural frequency in either the transverse or longitudinal 
modes of vibration. Thus, the dynamic Young’s modulus 
equation is found according to Equation 12:

	      2 21 Ef E 16 f l
4l

ρ
ρ

= → = 	 (12)

where f denotes the natural frequency, E is the dynamic 
Young’s modulus, l  is the length, and ρ  denotes the density.

In this study, the dynamic Young’s modulus parameter is 
obtained by using the MD simulations results for frequency 
and density and reported in Table  4 for the longitudinal 
vibration of armchair (5,5) and zigzag (5,0) SiNTs with 
different lengths for the first time. This practical design 
parameter can effectively assist engineers to have a more 
clear insight of structure response for fabricating nano/micro 
electromechanical devices when the dynamic behavior is 
important.

4. Conclusions
On the basis of molecular dynamics simulations, the 

torsional, longitudinal, and transverse vibration and mechanical 
behavior of single-walled silicon nanotubes are investigated. 
The simulated model contains geometrical parameters such 
as the length scale, diameter and chirality in order to be able 
to study influences of aforementioned factors on the free 
vibration analysis. The Tersoff-Banner potential parameters 
are used to represent the bonding interatomic forces between 

the silicon atoms. The fundamental frequencies of free 
vibration in each case are given relevant to the different 
length and diameter for both armchair and zigzag SiNTs. 
It is found that the length size plays a paramount role in 
the vibration responses of silicon nanotubes and the results 
clearly illustrate a counter-wise relation between the natural 
frequency and the length size. However, the diameter is 
not an effective parameter to alter natural frequencies. 
Furthermore, a practical design factor named the dynamic 
Young’s modulus is defined and evaluated in this article for 
the design purpose of the nanoelectremechanical devices 
such as probes and gigahertz oscillators when the dynamic 
behavior is the matter of concern. The molecular dynamic 
results exhibit that this parameter can be efficiently employed 
to study the free or forced vibrational behavior of nanotubes. 
The developed results not only clarify the vibrational behavior 
of SiNTs as an important nano-structured element, but also 
assist engineers to have better insights in design of micro/
nanoelectromechanical devices.
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