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Nanostructured polymer composites have opened up new perspectives for multifunctional materials. 
In particular, carbon nanotubes (CNTs) present potential applications in order to improve mechanical 
and electrical performance in composites with aerospace application. The combination of epoxy resin 
with multiwalled carbon nanotubes results in a new functional material with enhanced electromagnetic 
properties. The objective of this work was the processing of radar absorbing materials based on 
formulations containing different quantities of carbon nanotubes in an epoxy resin matrix. To reach 
this objective the adequate concentration of CNTs in the resin matrix was determined. The processed 
structures were characterized by scanning electron microscopy, rheology, thermal and reflectivity in 
the frequency range of 8.2 to 12.4 GHz analyses. The microwave attenuation was up to 99.7%, using 
only 0.5% (w/w) of CNT, showing that these materials present advantages in performance associated 
with low additive concentrations.

Keywords: nanostructured composites, radar absorbing materials, carbon nanotubes, epoxy, 
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1.	 Introduction
The technology that involves the electromagnetic 

wave absorbing materials is important for a wide variety 
of applications, ranging from minimizing radar signature 
of a target, protection of human eyes, optical sensors from 
intense laser pulses, protective shielding of computers and 
consumer electronics. With the emergence of new target 
detection modes, especially multifrequency detection, 
composites with multiwalled carbon nanotubes embedded 
into a polymer matrix have been studied for applications 
in the microwave frequency range, such as antireflections, 
electromagnetic interference shielding and microwave 
absorbers1,2.

Radar Absorbing Materials (RAM) provide energy 
losses of electromagnetic radiation. In certain frequency 
bands, these materials attenuate the incident electromagnetic 
wave radiation and dissipate the energy absorbed in the 
form of heat through internal mechanisms, magnetic and/or 
dielectrics. These loss mechanisms can be physical, chemical 
or simultaneously both3,4. Increased electromagnetic 
pollution due to the presence of microwaves and the use of 
stealth technology in defense systems and military platforms 
have been the major attractions for studies in this area, with 
investments in research that already cover the frequency 

range of 1-40 GHz5. Some recent studies have described 
radar absorbing structures applied in the frequency range 
of 10 to 100 GHz6,7.

RAM application can be done in both civilian and 
military sectors. Considering applications of these materials 
in military area it can say that the energy scattered from 
a target (eco-radar), that would be used for its detection 
by radar, is attenuated and the object coated with RAM 
becomes stealth or, as reported in the literature, “invisible” 
to radar. In civilian applications, the RAM use brings 
benefits in different areas, such as in telecommunication 
area coating cell phones and radio transmitting antennas; in 
medical sector coating, for example, electronic pacemakers 
and equipment; in anechoic chambers used for research 
and industrial purposes; in home appliances in general, 
in electromagnetic shielding and control of interference, 
among other applications8-10.

Usually, microwave absorbing coatings are composite 
materials that may present itself in various forms such 
as plates of elastomeric polymers based on polyisoprene 
and polychloroprene; flexible blankets of different types 
of rubbers and paints based on epoxy, phenolic and 
polyurethane resins3,11,12. An important characteristic of 
these composites is the possibility to adjust their electrical 
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and magnetic properties to optimize the attenuation of 
incident microwaves. This can occur at specific frequencies 
(resonant type) or in a broad spectrum of frequencies 
(broadband type)7. Relevant characteristics are continuously 
investigated in the area of RAM: durability, low density, 
low cost, performance on a wide range of frequencies and 
also the ease of application7,8,13,14.

Epoxy resins are the most important thermosets, widely 
used as adhesives, coatings, and composite materials15-18. In 
recent years, the use of carbon nanotubes (CNTs) in epoxy 
resin/carbon nanotube composites has attracted a great deal 
of attention19-26. CNTs have a unique atomic structure, very 
high aspect ratio, and extraordinary electrical, magnetic and 
mechanical properties (strength and flexibility), making 
them ideal reinforcing in nanostructured composites or 
nanocomposites.

More and more studies involving the dispersion of 
nanotubes in polymer matrix have been reported aiming 
to improve electrical and mechanical properties of the 
nanostructured composites23,27-31. Aggregations of nanotubes 
due to van der Waals interactions and shear forces during 
mixing have been reported to cause a drop in electrical 
conductivity32-34. Considering high aspect ratio and good 
dispersion, nanotubes can reach conductivity thresholds at 
lower loading levels and can create networks that facilitate 
the electron transport. In addition to the aspect ratio and 
the dispersion, several studies have shown that various 
processing parameters affect the properties of the resulting 
nanostructured composites27,30,35-40.

The processes of covalent and noncovalent 
functionalization have been suggested as one of the options 
for better dispersion of nanotubes27,41-43. The chemical 
modification of the nanotube surface through covalent 
functionalization results in reduction of the aspect ratio with 
the formation of sp3 carbons on nanotube surface, which 
decreases the electrical conductivity of nanotubes27,44-47. 
Therefore, as-received nanotubes were used in the present 
work without any functionalization, once this study is 
focused on the electromagnetic properties.

A tube configuration of CNTs enables them to have 
a so-called electronic conjugate π structure which is 
responsible for its unique electronic transport behaviors. 
Theoretical calculations show that CNTs act to like 
insulators, semiconductors or metals depending on their 
radii and chiralities. Composites with multiwalled carbon 
nanotubes (MWNTs) embedded into a polymer host have 
been use to microwave applications, such as antireflection, 
electromagnetic interference shielding (EMI) or microwave 
absorber1,47-54.

Thus, the objective of this work was to process 
nanostructured composite materials based on formulations 
containing different quantities of multiwalled carbon 
nanotubes in an epoxy resin matrix, aiming to determine the 
adequate quantity of CNT for processing X-band microwave 
absorbing nanostructured composite.

2.	 Experimental

2.1.	 Nanostructured composites production

For the absorbing nanostructured composites processing, 
carbon nanotubes were dispersed in an epoxy resin matrix. 

Carbon nanotubes were acquired from ILJIN NANOTECH 
Co. Ltd., a Korea enterprise (type CM-95/MWNT). 
According to the manufacturer this MWNT has size of 
0.01-0.015 µm of diameter and 10-20 µm of length. The 
used polymer matrix was the EpikoteTM Resin MGS® 
L135 epoxy resin by Hexion, which is transparent in the 
frequency range evaluated (8.2 to 12.4 GHz). To obtain 
nanostructured composites were used formulations with 
0.1, 0.5 and 1.0% in weight (w/w) of CNT dispersed in the 
epoxy resin. To achieve more homogeneous dispersion of 
the nanotubes (powder) in the polymer matrix was used an 
ultrasonic homogenizer tip (sonicator) for 10 min utilizing 
25% of its maximum amplitude (750 W, 20 kHz). This 
was used for the mixtures added with 0.1 to 1.0% (w/w) 
of CNTs. The cure of polymer matrix was obtained using 
a hardener (type Hardener 137 by HexionTM) under room 
temperature (25 ± 2 °C) and atmospheric pressure for 8 h. 
The specimens were prepared according to the requirements 
of the characterization techniques used, as follow.

2.2.	 Nanostructured composites characterization

The cured nanostructured composites were characterized 
by scanning electron microsocope LEO, model 435 VPi, 
aiming the investigation of the surface and the dispersion 
of CNTs in the processed materials. Samples submitted 
for analysis by scanning electron microscopy (SEM) were 
fixed on aluminum holders and coated with a gold thin film 
prepared by vacuum evaporation, to ensure the conductivity 
of the surface.

Rheological analyses were performed to measure the 
initial viscosity of CTNs/epoxy composites. For this, it 
was used an SR5 stress-controlled rheometer (Rheometrics 
Scientific Inc.) equipped with heated plates. These analyses 
were performed at room temperature (25 ± 2 °C); frequency 
of 1 rad/s and stress of 200 Pa.

Dynamic mechanical analyses (DMA) were carried 
out to measure the storage and the loss modulus of cured 
samples. A TA Instruments 2980 DMA, coupled to a single 
cantilever module, at constant frequency of 1 Hz and 15 µm 
of amplitude was used. Specimens of 20 mm  ×  13  mm 
and thickness of 2.0 mm were machined so as to fit in 
the sample holders. The studies were conducted starting 
at room temperature (25 ± 2 °C) up to 300 °C using the 
heating rate of 2 °C.min-1. The ratio of the storage and the 
loss modulus, given as tan delta (δ), provided the glass 
transition temperatures.

Thermogravimetric analyses (TGA) of cured samples 
were evaluated with PerkinElmer 7HT TGA, which was 
fitted to a nitrogen purge gas from room temperature 
(25 ± 2 °C) up to 800 °C, at heating rate of 10 °C.min–1.

2.3.	 Electromagnetic evaluation

The electromagnetic characterization of nanostructured 
composites was carried out according to the transmission/
reflection method using a waveguide in the frequency 
range of 8.2 to 12.4 GHz (X-band). These analyses aimed 
to calculate the reflection loss (reflectivity) and the electric 
permittivity (ε) and the magnetic permeability (µ) as 
functions of the frequency. A Hewlett-Packard X752C 
waveguide (for X-band) with rectangular cross section was 
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coupled to a system consisting of a vector network analyzer 
Agilent 8510C, a frequency generator Hewlett-Packard 
8340B (10 MHz-26.56 GHz) and an S-parameter test 
Hewlett-Packard 8510A (45 MHz-26.56 GHz). Adapters 
and coaxial cables for low loss applications Sucoform 
SM-141-Pe (50 ohms) were also used in the measurements 
(Agilent kit WR90). This setup measured the S-parameters51 
of the material, i. e., the reflection (S11) and transmission 
(S21) coefficients to calculate ε and µ as functions of the 
frequency. For this, a commercial software (Agilent 85071E) 
was used. To evaluate the reflectivity of the nanostructured 
formulations, an aluminum plate was used as reference, 
representing a material that reflects 100% of the incident 
radiation. To ensure electrical contact of the specimen 
with the waveguide, the liquid formulations were poured 
in a mold with exactly the same cross-section dimensions 
(length 22.9±0.01 mm and width 10.2±0.01 mm) of the 
sample holder used in the electromagnetic measurements. 
The thickness of all specimens was 9.0 mm.

3.	 Results and Discussion

3.1.	 Scanning electron microscopy

When dispersing conductive particles with diameters 
below 1 mm in a material of low viscosity, diffusion 
processes and particle–particle interaction forces play an 
important role in the agglomeration and network formation. 
Electrostatic charging of particles can both aid dispersion 
and hinder the aggregation required in order to achieve a 
network of touching particles. In certain circumstances, 
thermal energy alone is insufficient to surmount the potential 
energy barrier to aggregation and specific measures need to 
be taken. The application of low shear forces has already 
been shown to greatly enhance the migration of dispersed 
carbon nanotubes and the resulting network formation 
at loadings below 1.0% (w/w) in an epoxy matrix55-58. 
These results indicate that the processing conditions play 
a crucial role in achieving low percolation thresholds in 
epoxy systems.

Figures 1 and 2 show the images obtained by SEM of 
the materials processed. It can be observed in Figure 1 that 
the nanotubes were poorly distributed and the presence 
of clusters in island (0.1% (w/w) CNT/epoxy composite) 
in polymer matrix. However, within the island the CNTs 
are dispersed indicating that they form an interconnected 
network.

Figure  2 shows a more homogeneous dispersion. 
Correlating this result to that one observed in Figure  1 
it is assumed that the relatively high volume fraction of 
CNTs (0.5% (w/w) promoted the presence a large number 
of agglomerates homogeneously distributed in the epoxy 
matrix. Only very few singly agglomerates are observed. 
Figure  2b shows a similar morphology for higher CNT 
concentration (1.0% w/w) in the composite. A network 
structure formed by CNTs is clearly visible. This network 
is desired because it facilitates the transport of electrons 
through the material improving their electromagnetic 
properties.

Figure 1. SEM of nanocomposite containing 0.1% (w/w) CNT: 
the network of dispersed CNTs is visible as white/black spots 
throughout the material (a) and island detail in the surface (b).

Figure 2. SEM of material containing 0.5% (w/w) (a) and 1.0% 
(w/w) (b), in which the network region formed by CNTs becomes 
easily visible.
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3.2.	 Rheological properties

Figures  3-5 show the viscoelastic behavior of 
formulations 0.1, 0.5 and 1.0% (w/w) CNT dispersed in 
epoxy matrix, respectively. Typical response curves used 
for linear viscoelastic study when is considered strain/
stress limit are obtained. These tests were performed only 
in order to evaluate the critical strain/stress limit of the 
linear viscoelastic state. According to these curves, for all 
formulations processed with CNT, 200 Pa as stress value can 
be used. In all plots, the neat epoxy resin showed a typical 
Newtonian behavior in which the relatively low viscosity 
(around 2 Pa.s) of the resin was independent of the frequency 
of the applied stress. On the other hand, the CNT reinforced 
composites exhibited a typical pseudo-plastic behavior.

In Figure 3 is depicted the complex viscosity (η*) as 
function of time for all formulations CNTs-epoxy mixtures. 
The plots show the drastic increase in the complex viscosity 
of the carbon nanotube/epoxy suspensions with increasing 
loading fractions. The initial complex viscosity of epoxy 
pure resin is 2 Pa.s; 0.1% (w/w) CNT-epoxy is 2.8 Pa.s; 

0.5% (w/w) is 4.5 Pa.s and 1.0% (w/w) is 28 Pa.s. The 
addition of only 1.0% (w/w) CNT in the epoxy resin system 
increase its viscosity more than 10 times. This behavior 
can be explained due to the fact of solid particles of high 
aspect ratio are been incorporated in the liquid system 
(epoxy matrix). This is one of the problems to produce 
nanomaterials with high filler content of CNTs. Higher 
loadings resulted in samples containing numerous voids, 
because air bubbles were trapped during the processing 
due to the high viscosity. However, it would be desirable to 
further increase the filler content of CNTs. If a good state 
of dispersion is reached, the mechanical properties should 
benefit from a higher loading fraction. Furthermore, the 
electrical conductivity of the nanocomposites also increases 
with increasing CNT content37.

Figure 4 shows the elastic modulus (G’) as function of 
time for all formulations CNT-epoxy mixtures. The increase 
of the elastic modulus with the increase of the loading 
carbon nanotubes content in the system suggests that the 
good dispersion was reached once the improvement on the 
mechanical property can be observed. The elastic modulus 
of epoxy pure resin increases of 0.0043 Pa to 3.2 Pa with 
addition of 1.0% w/w CNT in the system.

A plot of the frequency-dependent storage modulus 
is shown in Figure  5. In this case, the magnitude of G’ 
increases with loading, accompanied by a flattening in the 
slope of response. This frequency-independent behavior 
at low ω (angular frequency) is indicative of increasing 
solid like elastic response. In addition, the distinct jump in 
the low-frequency magnitude of G’ between 0.5 and 1.0% 
(w/w) is an indicative of percolation behavior. In this case, 
the transition in behavior is evidenced by both an enhanced 
resistance to flow and increased degree of shear thinning.

3.3.	 Dynamic mechanical analysis

Dynamic mechanical analysis measurements were 
performed to find the storage modulus (E’), the loss 
modulus (E”) and the glass transition temperature (Tg), 
and the results are summarized for neat epoxy resin (pure) 
and nanostructured composites CNT/epoxy in Table 1 and 
Figure 6.

Figure 3. Complex viscosity as function time for all CNTs-epoxy 
mixtures.

Figure  5. Storage modulus as function of frequency for all 
formulations of CNTs-epoxy mixtures.

Figure 4. Elastic modulus (G’) as function of time for all CNTs-
epoxy mixtures.
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CNT has been reported to improve the mechanical 
properties of nanostructured composites16,37,42,43,59,60. 
However, the reported weight or volume fractions were 
much higher (50-100 times) than the ones used in this study. 
For such extremely low weight fractions of nanotubes used 
in our study, minimal change is expected in the mechanical 
properties. The storage modulus and loss modulus values 
are reported in Table 1 for measurements at 30 °C, whereas 
the modulus values during complete temperature scanning, 
starting from room temperature to well above glass transition, 
is shown in Figure 6. The effect of different weight fractions 
of CNT on the storage modulus, E’ (Figure 6a) and the loss 
modulus, E” (Figure 6b) and the tan δ curves (glass transition 
temperatures, Tg is measured corresponding to the peak), 

(Figure 6c) and comparison with neat epoxy is shown in 
Figure 6. The storage modulus has a slightly increase as 
compared with neat epoxy for nanostructured composites 
CNT/epoxy. The storage modulus for nanostructured 
composites CNT/epoxy seems to be slightly increased, 
especially for 1.0% w/w CNT. Probably, the addition of 
CNT in the epoxy system increases slightly the stiffness of 
the composites as compared with neat epoxy.

The loss modulus and the glass transition temperature 
measured from the DMA test can give some information 
about the dispersion state of the nanotubes throughout the 
specimen and the effect of localized dispersion state on the 
overall transition behavior from glassy to rubbery state. The 
changes in loss modulus are related to the changes in energy 
dissipation mechanisms, and the change in glass transition 
temperature is related to the mobility of polymeric chains 
during the transition from glassy to rubbery state16.

As seen from Figure 6b and Table 1, the loss modulus 
for nanostructured composites CNT/epoxy is comparable 
to the neat epoxy modulus and lies within the standard 
deviation. The loss modulus values at room temperature 
for 0.5 wt % CNT as the same as compared with the neat 
epoxy. The increase in loss modulus should be observed for 
all specimens due to the increased energy dissipation in the 

Table 1. DMA measurements for nanostructured composites CNT/
epoxy (E’ and E” reported at 30 °C).

% (w/w) E’(GPa) E”(MPa) Tg (°C) by tan δ
Neat epoxy 1.73 ± 0.1 48 ± 7 60.7 ± 0.1

0.1 2.03 ± 0.3 51 ± 9 61.9 ± 1.7
0.5 2.08 ± 0.3 56 ± 8 62.1 ± 1.3
1.0 2.30 ± 0.3 51 ± 9 64.3 ± 1.2

Figure 6. DMA results for nanostructured composites CNT/epoxy: (a) storage modulus (E’), (b) loss modulus (E”) and (c) tan δ as 
function of temperature.

(a) (b)

(c)
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form of heat as a result of nanotube-nanotube friction. But 
this fact is not observed in our work. The slightly increase in 
Tg (about 4 °C, almost insignificant) for such small weight 
fractions seems to be related to the localized dispersion 
state of nanotubes in epoxy matrix. Polymeric chains start 
moving during the transition process from glassy to rubbery 
state. The presence of nanotube bundles acts as a hurdle for 
movement of molecular chains of polymer at temperatures 
around the Tg, which in turn leads to an increase in the 
glass transition temperature showed a slightly increase 
for nanostructured composites CNT/epoxy, as shown in 
Figure 6c.

3.4.	 Thermogravimetry

As shown in Figure 7, the introducing of CNT does 
not affect the initial decomposition temperature of the 
matrix. However, because the presence of the CNT in the 
composites the final profile of the TGA curve is different. In 
the neat epoxy curve it can be observed all polymeric matrix 
is degraded while in the nanostructured composites CNT/
epoxy curves a residue of CNT is observed.

According to Chen  et  al.61 if a good dispersion was 
obtained and an interfacial zone between the matrix and 
CNT was established probably the composites will be an 
improvement in their thermal stability. However, this effect 
was not observed in the present work.

3.5.	 Electromagnetic properties

Figure  8 shows the reflectivity curves related to the 
electromagnetic properties of the nanocomposites formed 
with the epoxy resin and carbon nanotubes evaluated by 
waveguide technique. The black line, located at 0 dB 
corresponds to the evaluation of the reference material 
(aluminum plate) which is used in the reflectivity 
measurements, being this 100% reflector. The neat polymer 
matrix (without CNTs) placed on the aluminum plate 
presents a similar behavior of the reference material. Thus, 
the curves related to the metal plate and the polymer matrix 
coincides, because the epoxy resin is transparent in the 
evaluated frequency range (8.2 to 12.4 GHz).

The measurements of processed materials show 
maximum attenuation value of –25 dB at 11 GHz and -10 
dB at 9.5 GHz (attenuation of 99.7 and 90.0%, respectively) 

for NCT formulations with 0.5 and 1.0% (w/w), respectively. 
These curves show that both CNT formulations promoted 
the impedance matching with the air favoring the wave 
propagation into the material and its attenuation62. SEM 
analyses (Figures  1 and 2) show the presence of NTC 
agglomerates after the dispersion in the resin. According to 
literature63,64 these agglomerates act as electric conduction 
islands and favor the interaction of the electromagnetic wave 
with the material. It is also observed that the RAM samples 
evaluated behave as a narrow band absorber (resonance peak 
in the range of 9.5 and 11 GHz) in the evaluated frequency 
range (8.2 to 12.4 GHz).

The nanostructured composites with 0.1% (w/w) has 
a maximum of –3 dB (at 12 GHz), corresponding to 50% 
of absorption of the incident wave. This sample does not 
perform well in the frequency range tested (8.2-12.4 GHz). 
These results show that different formulations lead to 
different behaviors, due to different impedance matching 
values62, which may or not favor the radiation propagation 
into the material and its attenuation. Another factor that 
defined the obtained reflectivity curves and that might be 
taken into account is the thickness of the specimens62. Then, 
the obtained curves are typical for the studied nanostructured 
composite formulations considering the specimen thickness 
of 9.0 mm. Any change in this parameter can shift the curves 
for different frequency values.

Figure 9 shows the behavior of the complex permittivity 
and permeability of the nanostructured composites 
absorbing materials as function of frequency. The measured 
values of the real and imaginary parts of the electrical 
permittivity were 3.5 and 0.3 (Figure 9a) for material with 
CNT 0.1% (w/w), respectively; for the other materials, with 
0.5 and 1.0 % (w/w) the values are: 4.5 and 0.8 for the first 
formulation and 6.5 and 1.5, for the second (Figure 9c-b). 
The measured values of the real and imaginary parts of the 
magnetic permeability were 1.0 and 0.1 for all materials, as 
expected. As the processed materials are dielectric absorbers, 
the values of magnetic losses are so low that they can be 
disregarded (µ’=1, µ”≈0).

For definition63,64, the real relative permittivity values 
(ε = ε’ – jε”) are always higher than the unit. A material 
which presents value zero of dielectric loss it will have the 
values of the permittivity complex parameters ε’=1 e ε”=0. 

Figure 7. TGA curves of neat epoxy and nanostructured composites 
CNT/epoxy.

Figure  8. Attenuation of nanostructured composites processed 
with epoxy resin and different formulations of carbon nanotubes.
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So, it does not store energy (ε’=1) and, consequently, it does 
not present losses (ε”=0). Thus, the higher the imaginary 
component is (ε”), the higher the capacity of material loss 
will be. A material with low dielectric loss can store energy, 
but it will not dissipate a lot of the energy stored. On the 
other hand, a material with high value of dielectric loss, does 
not actually store energy, but a certain amount of the stored 
energy will be converted into thermal energy inside the 
material, that is, the material attenuates the electromagnetic 
energy instead of just storing it.

The permittivity of material with CNT 0.5% (w/w) has 
lower dielectric loss compared to material with 1.0% (w/w). 
This behavior is characteristic of dielectric materials with 
low electric conductivity. On the other hand, the material 
with 1.0% (w/w) has intrinsic attenuation of incident wave, 
i. e., an adequate electrical conductivity versus concentration 
of formulation; probably it reached the percolating limit 
of material. These results allow concluding that the 
maximum attenuation observed in Figure 8 for the sample 
with 0.5% (w/w) has a significant contribution of the wave 
phase cancelling thanks the adequate correlation among 
the impedance match, the used sample thickness and the 
evaluated frequency range.

4.	 Conclusions
A processing method was developed for preparing 

nanostructured composites containing varying weight 
fractions CNTs/epoxy resin, whose physical, chemical and 
electromagnetic properties are investigated in this work. 
The results are presented with respect to the variation of 
the microstructure as observed from scanning electron 
microscopy technique in which can be observed the 
presence of agglomerates of carbon nanotubes in the epoxy 
matrix. From the rheological analyses, it was observed the 
initial complex viscosity is increased with the nanotube 
contents increase. The elastic modulus, loss modulus, 
Tg and decomposition temperature are practically do not 
affected with the introduction of carbon nanotubes in the 
epoxy matrix.

The distinct behaviors of electromagnetic radiation 
attenuation of the processed materials suggest that the 
electric conduction characteristic is related to the amount of 
absorbing center present in these; changing the impedance of 
the absorber and defining, as a consequence, the attenuation 
behavior of the incident radiation. Thus, for the absorbing 
materials, most of the electromagnetic energy must be 
attenuated; and for that there must be a balance between the 
electric conductivity and the dielectric loss factor.

The correlation of the results obtained leads to the 
conclusion that the distribution of carbon nanotubes 
agglomerates in the epoxy resin favored the impedance 
matching of the prepared nanostructured composite. Based 
on the results obtained in this study, we conclude that the 
nanostructured composites CNT/epoxy produced have a 
good potential to be used as RAM, since they absorbed 50 
to 99.7% of the incident electromagnetic radiation, using 
only 0.5% (w/w) of CNT. The attenuation measured for the 
absorbing nanostructured composites containing carbon 
nanotubes can be explained by the fact that when this center 
absorbing is surrounded by a matrix, conduction paths are 
formed in the material, allowing the dissipation of energy 
due to electrical losses.
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