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Major problems with valve bioprostheses are associated with progressive structural deterioration and 
calcification, directly associated with the use of glutaraldehyde (GA). This work describes the effects of GA 
processing and borate/glutamic acid buffer treatment on the mechanical, thermal and morphological properties 
of 0.5% GA crosslinked bovine pericardium (BP). The results showed that while the treatment of 0.5% GA 
crosslinked BP with borate/glutamic acid significantly improves the mechanical properties, it had no visible 
effect on surface morphology. Better surface preservation was only achieved for BP pre-treated with a lower 
GA concentration followed by the conventional treatment (0.5% GA). Improvements in mechanical properties 
probably arises from structural changes probably involving the depolymerization of polymeric GA crosslinks and 
an increase electrostatic interaction due to covalent binding of glutamic acid to free carbonyl groups (Schiff base).
The results indicate that the treatment GA crosslinked BP with borate/glutamic acid buffer may be an attractive 
procedure for the manufacture of heart valve bioprostheses.
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1. Introduction

Major problems with valve bioprostheses failure are associ-
ated with progressive structural deterioration and calcification1,2. 
To minimize these problems, besides the classical procedure using 
glutaraldehyde (GA) many alternative processes were introduced 
for the manufacture bioprosthetic heart valves (BHV) and includes 
the crosslinking with azide3, epoxydes4, carbodiimides5 and diisocy-
anates6, the treatment with GA in non-aqueous solvents7, diphospho-
nates8 and α-amino oleic acid treatment9. One emerging technique 
applied to the fabrication of BHV valves is tissue engineering but 
still in its early development stage10,11. Although the major problems 
associated with the failure of GA crosslinked BHV are attributed to 
the chemical characteristics of GA solution used for processing, it 
still is reagent of choice for the crosslinking of natural tissue intended 
for BHV manufacture12.

At room temperature GA solutions are complex containing 
monomeric GA, mono and dehydrated forms, monomeric and poly-
meric cyclic hemiacetals and α and β-insaturated compounds with 
concentrations dependent on the temperature and pH13. The problems 
observed with BHV post implantation as a result of the complexicity 
of GA solutions are: 1) Impermeabilization of BP surfaces result-
ing from a polymeric network (Figure 1) which hinders the further 
crosslinking of the interstitium of the fiber leading to the formation 
chemically heterogeneous material14. This is in agreement with the 
fact that the number of unreacted ε-amino groups decreases with 
increasing concentrations of GA15. Associated to polymeric GA 
crosslinks there is also the systemic and localized cytotoxic effects 
observed post-implantation due to the slow release of free GA from 
the processed tissue16; 2) Incomplete glutaraldehyde binding to tissue 
proteins that beside the citotoxicity associated with the free aldehyde 
function, is also involved in the calcification process of BHV17. From 
the total monomeric GA covalently bound to the tissue approximately 

60% is thorough only one of the aldehyde function (Figure 1c)18. 
Therefore one of the approaches to reduce BHV calcification is fo-
cused on the neutralization of free aldehyde groups and the removal 
of glutaraldehyde residuals12.

Procedures to minimize the problems attributed to GA processed 
BHV observed post implantation includes the treatment with amino 
acids19, particularly with Glu20-22, ethanol23, ethanol: Glu24, citric 
acid25 and diamines15. From these treatments probably the first ex-
amples of a BHV developed under the concept of tissue engineering 
were those processed with GA followed by the treatment with Glu 
solutions in acid media that were characterized by low calcification 
levels associated with endothelial growth20-22. Calcification levels are 
compared to those described for BHV processed with GA followed 
by the treatment with α-amino-oleic acid26,27.

In spite of the favorable post implantation effects described for 
BHV processed with GA followed by the treatment with Glu, some 
properties of these materials have not yet been described since they 
were performed on commercially available commercial BHV. This 
work reports the study on the mechanical and thermal stability proper-
ties, the stability to collagenase hydrolysis and surface morphology 
by scanning electron microscopy of BP crosslinked with GA before 
and after the treatment with Glu solution.

2. Experimental

2.1. Solvents and reagents

Except for GA all reagents and solvents were ACS grade and 
collagenase type V, 435U.mg–1 was purchased from Sigma. GA, 
25% from Union Carbide was purified before use by treatment with 
activated charcoal28 and the criteria for acceptance was given by the 
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ratio from the absorbances 280/235 nm (acceptance: > 1.50). Bovine 
pericardium (BP) was kindly supplied by Braile Biomédica Ind. Com. 
e Repres. Ltda S.A.

2.2. Crosslinking of bovine pericardium with GA

Conventional processing: 12 fresh BP with a thickness between 
0.25 and 0.30 mm were fixed in circular plastic supports (16 cm 
in diameter) followed by crosslinking with 0.5% GA solution in 

0.13 mol.L–1 phosphate buffer solution, pH 7.40, (PB) for a period of 
10 days according to the routine procedure used by Braile Biomédica 
Ind. Com. e Repres. Ltda S.A for the manufacture of commercial 
BHV28.

Pre-treatment with 0.05% GA solution followed by conven-
tional processing: 6 fresh BP as described for the conventional 
processing were treated for 48 hours with a 0.05% GA in PB fol-
lowed by six washes with the same buffer. The resulting material 
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Figure 1. Thermogram of bovine pericardium materials after crosslinking with glutaraldehyde (GA) under different conditions: a) 0.5% GA for 10 days; 
b) 0.5% GA for 10 days followed by glutamic acid/borate buffer; c) Pre-treatment with GA 0.05% + 0.5% GA for 10; d) Pre-treatment with GA 0.05% + 0.5% 
GA for 10 days followed by glutamic acid/borate buffer.
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was crosslinked with GA by the conventional processing and stored 
in the refrigerator until use.

Treatment with glutamic acid: 6 samples random samples 
removed from BP were crosslinked as described above and after 
washes with PB buffer and individually treated with a solution made 
2.5 10–2 mol.L–1/Glu and 5.0 x 10–3 mol.L–1 sodium borate. After 
adjusting the pH to alkaline conditions with 0.1 mol.L–1 sodium 
hydroxide the reaction was allowed to stand for 24 hours at room 
temperature. After this period the samples were washed 6x with PB 
and kept in the refrigerator.

2.3. Material characterization

Stability to collagenase hydrolysis29: six 8 mm discs were 
removed from BP crosslinked by the conventional processing, 
with pre-treatment with 0.05% GA before and after Glu treatment, 
totalizing 24 x 8 mm discs. After the removal of the excess buffer 
with filter paper they were frozen in liquid nitrogen, introduced in 
screw cap tube and lyophilized until constant weight. The average 
weight of the discs was 30 mg. To each tube was added a calculated 
volume of a solution of collagenase (Sigma - type V, 435 U.mg–1) 
in 5.0 x 10–2 mol.L–1 5 Tris-HCl/10 x 10–2 CaCl

2
.2H

2
O mol.L–1, pH 

7.4 in such a way that in all tubes the enzyme concentration was 
17.4 U.mg–1 of BP. The reaction was performed for 144 hours at 37 °C 
and stopped by heating the tubes in boiling water for 5 minutes. After 
centrifugation the supernatant was discarded, the remaining residue 
frozen in liquid nitrogen, lyophilized and weighted. The extent of 
hydrolysis was calculated by the relationship: (initial mass- mass of 
residue after lyophylization) / initial mass x 100.

Denaturation temperature (Td): Td was determined on com-
puter-interfaced differential scanning calorimeter (DSC) from TA 
Instruments, model DSC-2010, USA after calibration with indium 
standard. BP samples of about 10 mg were previously equilibrated in 
PB buffer and introduced in sealed aluminum pans. The rate of heating 
was 5 °C/min from 25 to 150 °C under nitrogen atmosphere.

Scanning Electron Microscopy (SEM): BP Samples of ap-
proximately 1 cm in diameter equilibrated in PB buffer were washed 
3x with deionized water to remove excess salt. After lyophylization 
photomicrographs were obtained in a Zeiss® SEM 960 electron scan-
ning microscope operating at 20 keV after sputter coating with gold 
in a Balsers mod. SDC 050 equipment.

Mechanical properties28: These were evaluated by Braile Bi-
omédica Ind. Com. e Repres. Ltda according to ASTM-638 in a MTS 
equipment, Model Qtest/1L, serial nº M-206170/102398.

3. Result and Discussion

The values for the tensile strength, elongation and toughness 
for BP crosslinked with 0.5% GA before and after the exposition to 
Glu/borate buffer (Table 1) were respectively 1.7 ± 0.4 Kgf.mm–2, 
14.2 ± 4.4% and 1379 ± 6.6 and, 2.2 ± 0.4 Kgf.mm–2,12.8 ± 2.3% and 
15.5 ± 5.0 suggesting that, except for an increase of approximately 
30% observed in the tensile strength, no others significant changes 
were observed in mechanical properties after the exposition of 0.5% 
GA crosslinked BP to Glu/borate buffer. Elongations for materials 
before and after the exposure to Glu/borate buffer were similar and 
of respectively 14.2 ± 4.4 and 12.8 ± 2.3. Nevertheless, significant 
increases in tensile strength and toughness were observed for BP 
previously crosslinked with 0.05% GA + conventional processing 
(0.5% GA for 10 days) (Table 1) followed by Glu/borate buffer, in 
comparison to materials crosslinked only with 0.5% GA.

In this case, the values determined tensile strength and toughness 
were respectively 2.5 ± 0.8 Kgf.mm–2 and 20.5 ± 5.0 and 1.4 ± 0.6 
and 10.4 ± 4.7 corresponding in the same order to 78.5 and 96.1% 

increase in these properties. These results indicate that the exposure 
BP previously crosslinked with 0.05% GA followed by 0.5% GA and 
Glu/borate buffer significantly improves the mechanical properties 
of BP intended for the manufacture of BHV.

Although the changes in mechanical properties would sug-
gest changes in structure, particularly in the case of BP previously 
crosslinked with 0.05% GA followed by 0.5% GA for 10 days, 
this was not confirmed by differential scanning calorimetry data 
(Table 2) since no significant change were detected in Td values for 
BP processed under the same conditions before or after the exposure 
to Glu/borate buffer. Td values for BP crosslinked with 0.5% GA 
before and after the exposition to Glu/borate buffer (Table 2) were 
respectively 87.7 ± 0.5 and 87.8 ± 0.9 °C in comparison to 90.5 ± 
0.8 and 90.2 ± 0.5 °C determined for BP previously crosslinked with 
0.05% GA.

The slightly higher values in Td values (around 2.0 °C) observed 
for BP previously treated with 0.05% GA are in agreement with the 
exposure of BP to higher GA concentrations that gives rise to more 
thermal stable materials14,29 .As shown by the DSC profiles (Figure 1), 
independent from processing conditions, all resulting materials were 
homogeneous in the sense that only one thermal transition was ob-
served in all cases ND and apparently no significant changes in the 
structure of BP crosslinked with GA were induced by the exposure 
to Glu/borate buffer.

The only difference observed in the thermograms was that, inde-
pendent from the crosslinking conditions relative to GA concentra-
tion, the width of the transitions for BP materials exposed to Glu/
borate buffer was smaller. While for BP exposed to Glu/borate buffer 
the width of the transition averaged 2.7 °C for non exposed materials 
this values was 4.9 °C suggesting on a comparative basis that materials 
exposed to Glu/borate buffer are more homogeneous.

Evidences of structural changes induced by exposure of GA 
crosslinked BP to Glu/borate buffer were detected by collagenase 
hydrolysis of the materials under study (Table 2). While no differ-
ences were observed in the extent of collagenase hydrolysis of PB 
previously crosslinked with 0.05% GA followed by 0.5% GA, before 
(8.9 ± 0.4%) or after exposure to Glu/borate buffer (8.8 ± 0.9%) for 
PB crosslinked only with 0.5% GA the extent of hydrolysis after ex-
posure to Glu/borate were respectively 15.4 ± 0.5% and 9.2 ± 0.6% 
suggesting the occurrence of changes in GA crosslinked BP that 

Table 1. Mechanical propertiesa of bovine pericardium crosslinked with 
glutaraldehyde under different conditions and with or without exposure to 
glutamic acid treatment.

 Crosslinking conditions

With 0.5% + GA for 
10 days

With 0.05% GA + 
0.5% GA for 10 days

BG AG BG AG

Parameters 

Tensile strength 
(kgf.mm–2)

1.7 ± 05 2.2 ± 0.5 1.4 ± 0.6 2.5 ± 0.8

Elongation (%) 14.2 ± 4.4 12. 8± 2.3 16.2 ± 2.4 15.8 ± 2.0

Toughness 13.8 ± 6.6 15.5 ± 5.0 10.4 ± 4.7 20.5 ± 4.8

BG/AG Ratios

Tensile Strength 1.3 1.7

Elongation (%) 0.9 1.0

Toughness 1.1 1.9
aValues correspond to the average of six independent determinations. bBG and 
AG, before and after the treatment with Glu/borate buffer.
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results in a material more stable to collagenase hydrolysis. These 
changes may be responsible for the increase observed in mechani-
cal properties in BP crosslinked with GA after the exposure to Glu/
borate buffer (Table 1).

The results above suggests that the changes in chemical char-
acteristics and/or structure observed in GA crosslinked PB after 
the exposure to Glu/borate buffer may results from two independ-
ent effects: a) the first associated with the cleavage of polymeric 
GA crosslinks (Figure 2b-a’) which are known to be formed after 
the processing of native tissue with GA solutions13,16,30,31 which 
are cleaved under acidic20-22,25 or basic conditions32; b) the second 
associated with the neutralization of remaining free aldehyde 
groups within the PB matrix as a result of Schiff base formation 
by reaction of the carbonyl function with α-amino group of Glu 
(Figure 2d-a’ and b’).

Table 2. Denaturation temperature and stability to collagenase hydrolysisa of 
bovine pericardium crosslinked with glutaraldehyde under different condi-
tions, with or without the exposure to glutamic acid/borate buffer.

Property Crosslinking procedure

With 0.5% + GA for 
10 days

With 0.05% GA + 
0.5% GA for 10 days

BGb AG BG AG

Td (°C) 87.7 ± 0.5 87.8 ± 0.9 90.5 ± 0.8 90.2 ± 0.5

Hydrolysis (%) 15.4 ± 0.5 9.2 ± 0.6 8.9 ± 0.4 8.8 ± 0.9
aValues correspond to the average of six independent determinations; bBG 
and AG, before and after the treatment with Glu/borate buffer. Higher 
values in Td values (around 2.0 °C) observed for BP previously treated 
with.
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Figure 2. Schematic representation of the reaction glutaraldehyde (GA) solutions a) with natural tissues leading to b) desirable monomeric GA type of crosslinks 
a’) polymeric GA crosslinks in red; b’) bivalent monomeric glutaraldehyde type of crosslink; and c’) residual free aldehyde groups from incomplete initial GA 
reaction or resulting from the c) depolymerization process and d) its neutralization by glutamic acid.
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This chain of chemical events promotes an increase of two 
covalently bound carboxyl group/Glu residue resulting in an increase 
electrostatic interaction that could partially explain the improvements 
on the mechanical properties (Table 1). This increase may be signifi-
cative since it has been described that from all covalently bound GA, 
60% still preserves one free aldehyde group18.

Coincidentally and in support to the chain of chemical events 
(Figure 2) proposed to explain the changes in properties described 
for GA crosslinked BP after exposure to Glu/Borate buffer is that 
most processes introduced to reduce BHV calcification were only 
effective12 when GA crosslinked BP were exposed to: a) to acidic pH, 
a condition which is known to remove GA polymeric crosslinks25; 
b) treatment under acidic or alkaline26 pH associated with reagents 
that neutralize the exceeding carbonyl function such as, Glu20-22, 
ethanol/Glu24, diamines15 and 2-amino-oleic acid26 existent free al-
dehyde groups. In support to this is the fact that the treatment of GA 
crosslinked BP with Glu in neutral pH has no effect on the reduction 
of calcification levels19. Under this condition the α-amino group of 
Glu is almost 100% in the form of the conjugated acid and not avail-
able to function as a nucleophyle.

With respect to BP surface morphology micrographs of Figure 3a 
and b showed that independent from the exposure to Glu/borate buffer 

the surface of material crosslinked with 0.5% GA were characterized 
by the presence of a pore like structure associated with the exposition 
of collagen fibers.

On the other hand BP materials previously crosslinked with 
0.05% were characterized by a more homogeneous type of structure 
(Figure 3c and d). These results suggest that while the exposure 
of crosslinked BP to Glu/borate buffer is an important procedure 
to prepare BP materials with improved mechanical properties, the 
previous crosslinking of BP with lower concentration may be an 
important step for the preservation of the integrity BP surface as a 
result of a more homogenous crosslink formation with respect to BP 
native structure.

4. Conclusions

The results showed that while the treatment of 0.5% GA 
crosslinked BP with borate/glutamic acid significantly improves the 
mechanical properties, it had no visible effect on surface morphology. 
Better surface preservation was only achieved for BP pre-treated with 
a lower GA concentration followed by the conventional treatment 
(0.5% GA). Improvements in mechanical properties probably arises 
from structural changes as shown by collagenase results and probably 

Figure 3. Scanning electron microscopy of bovine pericardium after crosslinking with glutaraldehyde (GA): a) 0.5% GA for 10 days; b) 0.5% GA for 10 days 
+ glutamic acid/borate buffer; c) Pretreatment with GA 0.05% + 0.5% GA for 10 days; and d) Pre-treatment with GA 0.05% + 0.5% GA for 10 days + glutamic 
acid/borate buffer.
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involves the depolymerization of polymeric GA crosslinks and an 
increase electrostatic interaction due to covalent binding of glutamic 
acid to free carbonyl groups (Schiff base). These results indicate that 
the processing of BP as described in this work may be of potential 
use not only for the manufacture of BHV but also to other collagen 
biomaterials with high demand in mechanical properties.
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