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Polycrystalline structure is of paramount importance to materials science and engineering. It provides an 
important example of a space-filling irregular network structure that also occurs in foams as well as in certain 
biological tissues. Therefore, seeking an accurate description of the characteristics of polycrystals is of fundamental 
importance. Recently, one of the authors (MEG) published a paper in which a method was devised of representation 
of irregular networks by regular polyhedra with curved faces. In Glicksman’s method a whole class of irregular 
polyhedra with a given number of faces, N, is represented by a single symmetrical polyhedron with N curved 
faces. This paper briefly describes the topological and metric properties of these special polyhedra. They are then 
applied to two important problems of irregular networks: the dimensionless energy ‘cost’ of irregular networks, 
and the derivation of a 3D analogue of the von Neumann-Mullins equation for the growth rate of grains in a 
polycrystal. 
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1. Introduction

The polycrystalline structure is of paramount importance to 
materials science and engineering. It is an example of a space-filling 
irregular network structure that also occurs in foams as well as in 
certain biological tissues. The technological importance of polycrys-
tals derives from the fact that the majority of industrial crystalline 
materials are used as polycrystals. 

Therefore, accurate description of the characteristics of polycrys-
tals is of fundamental importance. A complete description of such 
a network involves the knowledge of the geometric characteristics 
of the individual crystals, of their crystallographic orientation, i.e., 
their crystallographic texture, of the nature of the interfaces between 
individual crystals, among others. Not only is it important to know 
these characteristics at one instance in time, but also to predict their 
dynamic behavior when such structures change as a function of time 
because of grain growth. 

Nevertheless, a purely geometric characterization of an irregular 
network of grains is not easy. One needs to know the volume and shape 
of the individual grains. This requires tedious and time-consuming 
experimental techniques such as serial sectioning, or even applying 
more demanding methods such as “disintegrating” the polycrystal, 
for example, by adding gallium to an aluminium polycrystal and 
inspecting the individual grains. In practice, one seldom does this, 
and, instead, often a single measurement is used: one determines just 
the “grain size” using either the ASTM number or the mean intercept 
length. Even if detailed measurements were available, making sense 
of a variety of irregular polyhedra would still be a daunting task.

Recently, one of the authors (MEG) has published a paper in 
which a method of representation of irregular networks by regular 
polyhedra with curved faces was devised1. In Glicksman’s method a 
whole class of irregular polyhedra with a given number of faces, N, is 
represented by a single symmetrical polyhedron with N faces. These 
polyhedra are ‘regular polyhedra’ with curved faces, constructed 
in such a way that they satisfy the average topological constraints 

imposed by a space filling network. Glicksman called these special 
regular polyhedra with curved faces ‘average N-hedra’ or ANHs. In 
this work they will be called “ANHs”, for brevity. This approach sig-
nificantly simplifies the mathematical treatment of irregular networks. 
The geometric properties of the ANHs can be calculated exactly, as 
closed-form expressions are available for all their important geometric 
and kinetic properties. The ANHs act as “proxies” for analyzing ir-
regular network grains, allowing rigorous treatment of several long-
standing problems2-5 pertaining to these networks.

This paper briefly describes the topological and metric proper-
ties of the ANHs. The ANH concept is then applied to two important 
problems of irregular networks: the dimensionless energy ‘cost’ of 
irregular networks (in essence their “stored” free energy) and the 
derivation of a 3D analogue of the von Neumann-Mullins equation, 
to predict the growth rates of polycrystals. This paper will focus on 
the properties of ANHs rather than on the detailed mathematical 
derivations that can be found elsewhere1-5. 

2. Construction of ANHs

A polycrystalline structure is not just an aggregate of contiguous 
polyhedra. The grain boundary energies or surface tensions impose 
certain topological constraints on the network polyhedra. These 
‘network’ conditions must be satisfied by the ANHs as well, if they 
represent the average behavior of space-filling grains.

Any polyhedron must satisfy Euler’s formula relating number of 
edges, E, vertices, V and faces, N:

N – E + V = 2	 (1)

In a grain network, three faces always meet along a common 
edge, and four faces always meet at a common vertex. For an isolated 
polyhedron this is equivalent to requiring that two polyhedral faces 
meet along a common edge, and that three edges meet at a vertex. 
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Smith6 found an expression for the number of edges per face, p, for 
a polyhedron having trihedral vertices:

p N6 12
= - 	 (2)

Moreover, equilibrium conditions require that the three faces 
meet with dihedral angles equal to 2π/3 = 120°, and the edges 
meet at the common vertex with the tetrahedral angle equal to ar-
cos(‑ 1/3) ≅ 109.47°. These conditions are known as “Plateau rules,” 
which are overly restrictive, inasmuch as the polycrystal must be in 
full equilibrium at every edge and vertex. A much more general, and 
far less restrictive, condition is to require that the three faces meet with 
an average dihedral angle equal to 2π/3 = 120° and edges meet with 
the average tetrahedral angle equal to arcos(- 1/3) ≅ 109.47°. These 
average network conditions are obeyed by ANHs. The construction of 
an ANH may be exemplified by constructing a 4-hedron. The starting 
point for the construction of a symmetrical curved–face 4-hedron is a 
regular polyhedron with four flat faces: i.e., the regular tetrahedron. 
In order to make the tetrahedron satisfy the average network con-
straints the flat faces must be curved into spherical caps. When this 
is done the edges must also be curved. Figure 1 shows a schematic 
drawing of this ‘curved-face tetrahedron’. The angles between the 
normals at the center of the faces, α, remain the same after they have 
been curved, but the angle between normals adjacent to the edges 
are now smaller than α. If the faces are sufficiently curved, then this 
angle can be made to be equal to 60°, corresponding to an interior 
dihedral angle equal to 120°. It is also necessary to curve the edges 
so that they meet at the common vertex with the correct tetrahedral 
angle, 109.47°. 

This process can be repeated for all regular flat faced polyhedra. 
Unfortunately, not all regular polyhedra can be constructed. The 
reason for this restriction can be understood using Smith’s formula 
above. The number of edges per face, p, is determined by the number 
of faces. For a polyhedron to be constructible, p must evidently be 
an integer number. This only happens for N = 3,4,6 and 12, giving 
p = 2,3,4 and 5, respectively. All the constructible ANHs are illus-
trated in Figure 2. In Figure 2 the volumes of these ANHs are scaled 
so that the distance between nearest vertices, called the gauge, λ, is 
equal is all cases. 

This example shows why the ANHs must have curved faces. The 
curvature of these faces is an essential property demanded by the 
polycrystalline network. 

3. Properties of ANHs

Even though ANHs cannot be constructed for every value of 
N it is nonetheless possible to find all their topological and metric 
properties: curvature, volume, area, edge length1. These will be 
summarized here.

An ANH with N curved faces has 3(N - 2) edges and 2(N - 2) 
vertices. The radius of curvature of a face of an ANH, R, is:

csc cot sin csc sin cotR p2
1

2 6 2 2 2 2
a r ~ a ~ a r m= - - -b cl m

 
	 (3)

where λ is the metric gauge, or scale factor, chosen here as the 
distance between nearest neighbors vertices. The parameters are 
defined as:

•  α is the angle between normals at the center of the faces, it is 
also equal to the angle between face normals of the correspond-
ing flat faced polyhedron;

•  p is the average number of edges per face; and
•  ω is the angle by which an edge must be curved in order that 

three edges meet with the tetrahedral angle of 109.47°.

N3

N2

N1

/3

Figure 1. Geometry of the average 4-hedron. Depiction of the interfacial 
angle, α ≈ 109.5°, is shown between adjacent face-centered normals, N1 and 
N2. Owing to the curved face the face normals rotate and meet at the edge 
with an angle equal to 60° prescribed by equilibrium condition at the triple 
lines. Notice that the angle between face normals, 60°, is half the dihedral 
angle, 120°.

Figure 2. The four constructible ANHs of unit vertex to vertex distance. From 
left to right: N = 3, 4, 6, and 12, with their volumes approximately proportional 
to 0.350, 0.764, 2.11, and 9.25, respectively. Each unitary ANH in the interval 
3 ≤ N ≤ 13 consists of a fixed volume enclosed by N identical convex curved 
faces intersecting at identical curved edges of unit chordal length between 
vertices. Edges meet three at a time at identical trihedral vertices. Vertices 
are symmetrically disposed about the volume centroid. All ANHs for N ≥ 14 
have concave faces, and none are constructible. 

α, p and ω are given below as a function of the number of faces, 
N:

	 (4a)

p N6 12
= - 	 (4b)

	 (4c)

The formula for the number of edges per face, p, Equation 2, is 
repeated here for convenience.

The radius of curvature of a face allows two important quantities 
to be calculated: the mean curvature, H, and the Gaussian or total 
curvature, K. The mean curvature of an interface is the average of its 
two principal curvatures, k

1
 and k

2
. For a spherical surface of radius 

R the principal curvatures are equal, so that:

H k k R R R2
1

2
1 1 1 1

1 2= + = + =^ bh l 	 (5)

The mean curvature is important because it is related to the in-
terface velocity, v, in cases of curvature-driven interface movement 
by means of the well-known expression:

v = – γMH	 (6)
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The minus sign applies because H is positive for convex surfaces 
and the interface always migrates towards the curvature center on 
the concave side. 

The Gaussian curvature of an interface is the product of its two 
principal curvatures. Full discussion of the fundamental significance 
of the Gaussian curvature is beyond the scope of this paper. For a 
spherical surface of radius R the Gaussian curvature is:

K
R
1

2= 	 (7)

The mean curvature of the face of an ANH can be better visual-
ized in Figure 3 where it is plotted against the number of faces. For 
comparative purposes the scaling factor, λ, was taken to have unit 
value for all ANHs. The mean curvature is positive for N < 13 and 
negative for N > 14. The exact point at which H changes sign is 
N = N

C
. N

C
 is given by:

. ...
arctan tan

N 2
2 12

13 397332571438C
3 r

r ,= + 	 (8)

The ANH possessing N
C
 faces is called the ‘critical’ ANH or 

N
C
‑hedron. All faces of the N

C
-hedron possess zero mean curvature; 

in other words, they are flat. If it were possible to construct a network 
just using N

C
-hedra there would be no pressure difference across the 

flat interfaces or, equivalently, the chemical potential would remain 
steady throughout the polycrystal. Interface motions would cease, 
as the pressure difference across flat interfaces is zero. Such a net-
work would therefore have the minimum free energy, and it would 
be in state of metastable equilibrium. Although the N

C
-hedron is 

not constructible, one can calculate its properties exactly as will be 
shown below.

For N < N
C
 the ANHs have convex faces, see Figure 2, and their 

interfaces tend to migrate towards the centroid of the ANHs, so that, 
the ANHs tends to shrink and disappear. The opposite is true for 
N > N

C
. The interfaces are concave and they tend to move away from 

the center of the ANHs and thus ANHs with N > N
C
 tend to grow.

Volume, area, and edge length are other important properties of 
the ANHs. The area, A, is given by:

A = g(N)4πR2	 (9a)

	  (9b)

where Ω = 2π - 3arccos(-1/3) ≅ 0.551287. The volume, V, is:

( )V f N R
3

4 3r
= 	 (10a)

( ) arccos arcsin cos tan arcsin cosf N N N
p p2 16

2 2 57 3
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3
2

3
22

3

r
r r

= + - - + -d de n no	 (10b)

The total edge length is:

( )L N R2
3 22

3

~= - 	 (11)

These expressions, however, cannot be used to find the area and 
volume of the critical ANH, because R itself is infinite. Each of the 
metrical quantities listed above may be calculated by direct geo-
metrical methods5:
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4. Dimensionless Energy ‘Cost’ of Polycrystals 

Following Cox and Fortes7, we define a dimensionless energy 
cost, G(N), to construct a polyhedron with N faces, 

	 (15)

The dimensionless energy cost, Equation 15, may be interpreted as 
(one-half) the surface free energy required to create an isolated N-faced 
polyhedron of arbitrary size scale, given that G(N) is independent of 
the polyhedron’s gauge or linear metric, λ. By summing G(N) for all 
the polyhedral cells comprising a space-filling polycrystal, one arrives 
at an estimate of the dimensionless excess free energy of the grain 
boundary network. The sum of G(N) for all polyhedral grains, divided 
by the number of grains, yields the average dimensionless surface 
energy per grain to construct the polycrystal, < G >, namely,

< > ( )G n G N1
i

i

i n

1
=

=

=

! 	 (16)
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Figure 3. Mean curvature, H = 1/(Rλ) vs. number of faces on ANHs. The 
values of N cover the practical range encountered in network structures such as 
polycrystals and foams. The mean curvature divides the population of ANHs: 
for N ≤ 13 the mean curvatures are positive, implying shrinkage, whereas for 
N ≥ 14 the mean curvatures are negative, implying growth. It is interesting 
to note that none of the ANH’s have exactly zero mean curvature, so that in 
three dimensions network cells are, on average, either shrinking or growing; 
i.e., none are conditionally stable polyhedra. 
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Figure 4 displays a composite plot of many dimensionless en-
ergy costs, G, vs. the number of faces, N, calculated for a variety 
of constructible irregular polyhedra. Areas and volumes for these 
(constructible) polyhedra were obtained by high-accuracy simula-
tions performed by Cox* using Brakke’s Evolver program8, and then 
converted to dimensionless energy costs via Equation 15. The values 
calculated for all integer unitary ANHs in the range 4 ≤ N ≤ 34 are 
also shown. The G-values for the ANHs were calculated on the basis 
of their theoretically derived areas and volumes shown in section 3. 
Note the near-perfect agreement achieved between the simulated and 
theoretical G-values for the three constructible ANHs that appear on 
this plot, where N = 4, 6, and 12.

Two important observations can be made from Figure 4. The 
first is that the range of values assumed by the dimensionless energy 
costs is narrow—amounting to only 2.6% of the average value. The 
second observation is that the G-values for the set of ANHs shown 
form a sharp lower bound to the lowest values calculated from Cox’s 
Surface Evolver data for a selection of constructible polyhedra in each 
topological class. The most efficient constructible integer polyhedra 
fall as close as within approximately 0.1% of the dimensionless 
energy cost of their corresponding ANHs. In not a single instance, 
however, does any constructible polyhedron have a lower dimension-
less energy cost than its ANH counterpart. Where the ANHs happen 
to be constructible, the simulation data and the analytical value agree 
within the numerical tolerance of the Evolver program.

As a result, one can conclude that ANHs provide both a lower 
bound to the energy cost and an excellent approximation to construct-
ible irregular polyhedra. In other words, these figures are consistent 

with the idea that ANHs provide an accurate representation or close 
‘proxies’ of irregular polyhedra.

Of special significance is the dimensionless energy cost for the 
critical ANH,

	 (17)

If one imagines a network constructed entirely of critical ANHs 
its dimensionless energy cost would be < G > = G

c
. The critical ANH 

value, 2.62718, is lower than the dimensionless energy cost of tiling 
space with Kelvin’s classical tetrakaidecahedron9, G = 2.65737, and 
with Weaire-Phelan’s more recent duplex tiling10, G = 2.64417. The 
Weaire-Phelan tiling consists of two, irregular pentagonal dodecahe-
dra and six tetrakaidecahedra. When combined into a unit cell, these 
eight polyhedra pack to form a duplex unit cell with the average 
value of < N > = 13.5 faces. Kelvin’s and Weaire-Phelan’s tiling are 
illustrated in Figure 5. The dimensionless energy cost of the critical 
ANH is significantly smaller than the others. Glicksman and Rios5 
have recently shown that the critical ANH has the lowest possible 
dimensionless energy cost among other possibilities of tiling space.

5. 3D Analogue of von Neumann-Mullins Equation

Polycrystalline networks are often subjected to some kind of 
processing involving heating to temperatures sufficiently high to as-
sist the movement of the curved interfaces. As a result, grain growth 
takes place. During grain growth grains with convex faces, N < N

c
, 

shrink and grains with N > N
c
 grow.

The von Neumann-Mullins expression11,12, valid in two dimen-
sions, for the growth/shrinkage of an individual grain, is well known 
for many years,

( )dt
da 6c= -nM 	 (18)

where a is the area and n is the number of sides of a two-dimensional 
grain; M and γ - are the grain boundary mobility and grain boundary 
free energy per unit of length. Grains with less than six sides shrink, 
whereas grains with more than six sides grow.

An expression analogous to von Neumann-Mullins, but valid in 
three spatial dimensions, has been sought for over fifty years1,13-16. 
Such an expression may be obtained based on the assumption that 
a polycrystalline network can be represented, albeit abstractly, by 
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Figure 4. Dimensionless energy cost, G, vs. number of faces on a polyhedral 
cell, N. Data are shown for a narrow (≈ 2.6%) range of G-values for ANH’s 
(black diamonds); for a selection of constructible irregular polyhedra and 
ANHs (crosses and open squares, respectively), as measured by Cox� using 
computer simulation; for Kelvin’s orthic tetrakaidecahedron at N = 14; for the 
Weaire-Phelan duplex tiling at N = 13.5; and for the critical ANH at N = 13.397. 
The G-values for highly symmetric ANHs form a lower bound for every class 
of polyhedra tested in various topological face combinations. The range of 
G‑values exhibited by various polyhedra with a fixed number of faces increases 
with N, as many more topological combinations become possible.

� Cox SJ. Trinity College, Dublin, Ireland, Personal Communication; 2004.

(a) (b)

Figure 5. a) Kelvin’s “relaxed” tetrakaidecahedra. Illustration suggests how 
the flatfaced version of these polyhedra would stack by translation to tessellate 
3-d space and form a body-centered cubic (BCC) lattice. BCC lattice points 
would be located at the centroids of each Kelvin cell; and b) The Weaire-
Phelan duplex tiling. This tiling consists of eight stacked polyhedra: two 
irregular pentagonal dodecahedra (shown as open frames)each isolated by six 
medial tetrakaidecahedra (shown as solid polyhedra). Figures adapted from 
http://www.susqu.edu/brakke/kelvin/kelvin.html and http://www.queenhill.
demon.co.uk/polyhedra/wp/wp.htm.
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ANHs. This expression can be obtained by noticing that the interface 
velocity is given as:

v A dt
dV1

= 	 (19)

From Equations 6 and 19:

dt
dV M HAc=- 	 (20)

Both H and A are known as a function of number of faces for the 
ANHs, Equations 5 and 9. Equation 20 can be put in a more conven-
ient form, in which the rate of volume change depends only on the 
number of faces. This can be done noticing that:

dt
dV V dt

dV
2
3 3

1 3
2

= 	 (21)

so that:

	 (22)

In Equation 22 the scale factor, λ, cancels out and the right hand 
side is a function of the number of faces, only:

	 (23)

where g(N) and f(N) are defined above, Equations 9b and 10b.
Equation 23 is the ANH-based 3-dimensional version of the 

von Neumann-Mullins equation. A plot of Equations 23 is shown 
in Figure 6 along with data from several computer simulations of 
evolving isotropic 3-dimensional networks. The agreement between 
the analytic theory and data from the simulations of Cox and Fortes7 
is excellent, especially where the data are for constructible ANHs. 
It is interesting that even the rate data shown in Figure 6, simulated 
from irregular isotropic networks, are in agreement with the present 
theory. The close correspondence between the growth rates predicted 
for ANHs and those found in simulations of irregular 3-dimensional 
networks is doubtless due to the robust character of the topological 
averages incorporated in the set of ANHs. In other words, ANHs act 
as accurate proxies for all the irregular polyhedra in a polycrystal 
exhibiting N faces. Thus, they provide good estimates within each 
topological class for the average face curvature, surface area, and 
volume, all of which are relevant to determining the growth rate 
within each class of grains.

The dependency of the growth rate on the number of faces in 3D 
is a rather more complicated function than the elegant (n - 6) factor 

in 2D, derived in 1952 by von Neumann6. Simpler, linearized forms 
can be obtained for 3D by recognizing that dV2/3/dt itself is nearly 
linear in the variable N1/2. Thus, one may write in lieu of the exact 
expression, Equation 23, the linear form:

M dt
dV A B N1 3

2

c = + 	 (24)

It is important to insure that the linearized approximation for 
dV2/3/dt, Equation 24, vanishes at precisely the same value of N 
where the exact expression, Equations 23 vanishes. Specifically, one 
can show that the root of Equation 23 occurs at the critical value, 
N

c
. This constraint on Equation 24 may be applied by choosing the 

constant A in the form

A B Nc=- 	 (25)

As a consequence of inserting Equations 25 into Equation 24, 
one is left with a linear kinetic equation for the growth of ANHs 
containing only a single parameter, B, viz.,

M dt
dV N1

c
3
2

c = -_ iNB 	 (26)

Fitting the one-parameter expression, Equation 26, to discrete 
kinetic data from the exact expression, Equation 23, over the in-
terval from 3 ≤ N ≤ 49 yields the result that B ≈ 2.2709 ≈ 9/4, with 
an associated regression coefficient R = 0.99991. Figure 7 shows 
the discrete function dV2/3/dt plotted against N1/2 together with the 
straight line representing Equation 26.Thus, one finds that the linear 
kinetic law in 3D for the scale-independent rate of volume change 
for ANHs is described as

dt
dV M N N4

9
c

3
2

c, -_ i	 (27)

Equations 26 or 27 are the 3D analogues to Equation 18 in 2D. 
The rate of area change vanishes in 2D for a polygon with six sides, 
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whereas in 3D the rate of change of area and volume vanishes for 
the critical ANH with ≈ 13.39 faces. 
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