Acessibilidade / Reportar erro

Radiation Induced Synthesis of In2O3Nanoparticles - Part II: Synthesis of In2O3 Nanoparticles by Thermal Decomposition of Un-irradiated and γ-irradiated Indium Acetylacetonate

Abstract

Pure cubic phase, In2O3 nanoparticles with porous structure were synthesized by solid state thermal oxidation of un-irradiated and γ-irradiated indium acetyl acetonate in presence and absence of sodium dodecyl sulphate as surfactant. The as- synthesized In2O3nanoparticles were characterized by X-ray diffraction (XRD), fourier transformation infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transition electron microscopy (TEM) and thermogravimetry (TG). The shapes and morphologies of as- synthesized In2O3nanoparticles were highly affected by γ-irradiation of indium acetyl acetonate precursor and by addition of sodium dodecyl sulphate as surfactant. Calcination of un-irradiated indium acetyl acetonate precursor to 4 hours of 600 °C leads to the formation of spherical- shaped accumulative and merged In2O3 nanoparticles with porous structure, whereas irregular porous architectures composed of pure In2O3nanoparticles were obtained by using γ-irradiated indium acetylacetonate precursor. The as- prepared In2O3 nanoproducts exhibit photoluminescence emission (PL) property and display thermal stability in a wide range of temperature (25-800 °C) which suggest possible applications in nanoscale optoelectronic devices.

Keywords:
indium acetylacetonate; thermal decomposition; γ-irradiation; indium oxide nanoparticles

ABM, ABC, ABPol UFSCar - Dep. de Engenharia de Materiais, Rod. Washington Luiz, km 235, 13565-905 - São Carlos - SP- Brasil. Tel (55 16) 3351-9487 - São Carlos - SP - Brazil
E-mail: pessan@ufscar.br