Accessibility / Report Error

Phenotypic variability in the shield morphology of wild- vs. lab-reared eumalacostracan larvae

Abstract

Morphological identification of planktic crustacean larvae is required in many scientific contexts, such as ecology or taxonomy. Due to a still low availability of genetic sequences for many ingroups of Eumalacostraca, this task is still more feasible by morphological methods. Our understanding of eumalacostracan larval morphology is challenged by phenotypic variability. We investigated four eumalacostracan ingroups: Galatheidae, Hippoidea, Raninidae and Stomatopoda. Representatives of all four groups develop through spine-bearing planktic larval stages. Incorporating dorsal and lateral shield outlines into three-dimensional shape analysis of the shields, we compare specimens from the wild with laboratory-reared specimens. Using graphical and statistical analysis methods, we find that at least the lateral morphology of the shields of Hippoidea and Raninidae seems to be too strongly dependent on phylogeny to show phenotypic variability with our current sample size, but Hippoidea do show phenotypic variability in their dorsal shield morphology. In Galatheidae and Stomatopoda, a clear difference in shield morphology can be found between wild-caught and laboratory-reared specimens. This difference likely represents phenotypic variability. The exact environmental signals causing this phenotypic variability are still unknown, but some candidates are discussed.

Keywords:
Galatheidae; Hippoidea; morphological diversity; Raninidae; Stomatopoda

INTRODUCTION

Identifying crustacean larvae is frequently required in many ecological contexts, such as diversity studies or diet analyses, as they make up a large part of the zooplankton (e.g., Lindley, 1998Leoni B 2017. Zooplankton predators and preys: Body size and stable isotope to investigate the pelagic food web in a deep lake (Lake Iseo, Northern Italy). Journal of Limnology, 76(1): 85-93.; Sharma et al., 2017Sharma BK; Noroh N and Sharma S 2017. Rotifers (Rotifera: Eurotatoria) from floodplain lakes of the Dibru Saikhowa Biosphere Reserve, upper Assam, northeast India: ecosystem diversity and biogeography. International Journal of Aquatic Biology, 5(2): 79-94. DOI: 10.22034/ijab.v5i2.281
https://doi.org/10.22034/ijab.v5i2.281...
; Sorell et al., 2017Siddiqui FA and Ghory FS 2006. Complete larval development of Emerita holthuisi Sankolli, 1965 (Crustacea: Decapoda: Hippidae) reared in the laboratory. Turkish Journal of Zoology, 30(2): 121-135.; MacLeod et al., 2018Linnaeus C 1758. Systema Naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Editio decima, reformata [10th revised edition]. Laurentius Salvius: Holmiae, vol. 1: 824 pp.; Bar-On and Milo, 2019Bar-On YM and Milo R 2019. The biomass composition of the oceans: a blueprint of our blue planet. Cell, 179(7): 1451-1454. DOI: 10.1016/j.cell.2019.11.018
https://doi.org/10.1016/j.cell.2019.11.0...
; da Silva et al., 2019da Silva GB; Hazin HG; Hazin FHV and Vaske T Jr. 2019. Diet composition of bigeye tuna (Thunnus obesus) and yellowfin tuna (Thunnus albacares) caught on aggregated schools in the western equatorial Atlantic Ocean. Journal of Applied Ichthyology, 35(5): 1111-1118. DOI: 10.1111/jai.13949
https://doi.org/10.1111/jai.13949...
). Despite the advances of genomic methods for species identification in the past years, morphological methods are still easier to apply and cheaper in these contexts (Brown et al., 2015Brown EA; Chain FJ; Crease TJ; MacIsaac HJ and Cristescu M 2015. Divergence thresholds and divergent biodiversity estimates: can metabarcoding reliably describe zooplankton communities? Ecology and Evolution, 5(11): 2234-2251. DOI: 10.1002/ece3.1485
https://doi.org/10.1002/ece3.1485...
; Bucklin et al., 2016Bucklin A, Lindeque PK; Rodriguez-Ezpeleta N; Albaina A and Lehtiniemi M 2016. Metabarcoding of marine zooplankton: prospects, progress and pitfalls. Journal of Plankton Research, 38(3): 393-400. DOI: 10.1093/plankt/fbw023
https://doi.org/10.1093/plankt/fbw023...
). Furthermore, for some crustacean larvae, widespread genetic identification is still hampered due to incomplete reference libraries (e.g., Heimeier et al., 2010Hayashi KI and Hamano T 1984. The complete larval development of Caridina japonica De Man (Decapoda, Caridea, Atyidae) reared in the laboratory. Zoological Science, 1(4): 571-589.; Tang et al., 2010Stuck KC and Truesdale FM 1986. Larval and early postlarval development of Lepidopa benedicti Schmitt, 1935 (Anomura: Albuneidae) reared in the laboratory. Journal of Crustacean Biology, 6(1): 89-110. DOI: 10.1163/193724086X00758
https://doi.org/10.1163/193724086X00758...
; Brandão et al., 2016Brandão MC; Freire AS and Burton RS 2016. Estimating diversity of crabs (Decapoda: Brachyura) in a no-take marine protected area of the SW Atlantic coast through DNA barcoding of larvae. Systematics and Biodiversity, 14(3): 288-302. DOI: 10.1080/14772000.2016.1140245
https://doi.org/10.1080/14772000.2016.11...
). Therefore, it is still important to have a fundamental understanding of the morphology and development of crustacean larvae to correctly identify species from wild samples. This information is often provided by laboratory-rearing studies supplying information on the developmental series of different species (e.g., Provenzano and Mannig, 1978Provenzano AJ Jr. and Manning RB 1978. Studies on development of stomatopod Crustacea II. The later larval stages of Gonodactylus oerstedii Hansen reared in the laboratory. Bulletin of Marine Science, 28(2): 297-315. ; Konishi, 1987Knight MD 1968. The larval development of Raninoides benedicti Rathbun (Brachyura, Raninidae), with notes on the Pacific records of Raninoides laevis (Latreille). Crustaceana, suppl. 2: 145-169.; Christiansen and Anger, 1990Christiansen ME and Anger K 1990. Complete larval development of Galathea intermedia Lilljeborg reared in laboratory culture (Anomura: Galatheidae). Journal of Crustacean Biology, 10(1): 87-111. DOI: 10.1163/193724090X00276
https://doi.org/10.1163/193724090X00276...
). However, larvae can exhibit differences when reared in the laboratory compared to growing up in the wild (e.g., Knight, 1967Kiørboe T 2011. How zooplankton feed: mechanisms, traits and trade‐offs. Biological Reviews, 86(2): 311-339. DOI: 10.1111/j.1469-185X.2010.00148.x
https://doi.org/10.1111/j.1469-185X.2010...
; Criales and Anger, 1986Criales MM and Anger K 1986. Experimental studies on the larval development of the shrimps Crangon crangon and C. allmanni. Helgoländer Meeresuntersuchungen, 40: 241-265. DOI: 10.1007
https://doi.org/10.1007...
; Morgan and Provenzano, 1979Morgan SG and Goy JW 1987. Reproduction and larval development of the mantis shrimp Gonodactylus bredini (Crustacea: Stomatopoda) maintained in the laboratory. Journal of Crustacean Biology, 7(4): 595-618. DOI: 10.1163/193724087X00379
https://doi.org/10.1163/193724087X00379...
; Braig et al., 2021Braig F; Zuluaga VP; Haug C and Haug JT 2021. Diversity of hippoidean crabs - considering ontogeny, quantifiable morphology and phenotypic plasticity. Nauplius, 29: e2021027. DOI: 10.1590/2358-2936e2021027
https://doi.org/10.1590/2358-2936e202102...
). Environmental conditions impact the life-history, survival rates and development (among others) of crustacean larvae, but studies on the impact on their morphology are scarce (e.g., Anger 2001Anger K 2001. The biology of decapod crustacean larvae. Lisse, A.A. Balkema Publishers. 420p.; 2006Anger K 2006. Contributions of larval biology to crustacean research: a review. Invertebrate Reproduction & Development, 49(3): 175-205. DOI: 10.1080/07924259.2006.9652207
https://doi.org/10.1080/07924259.2006.96...
; Spitzner et al., 2019Sorell JM; Varela JL; Goni N; Macías D; Arrizabalaga H and Medina A 2017. Diet and consumption rate of Atlantic bluefin tuna (Thunnus thynnus) in the Strait of Gibraltar. Fishery Research, 188: 112-120. DOI: 10.1016/j.fishres.2016.12.012
https://doi.org/10.1016/j.fishres.2016.1...
). Braig et al. (2021Braig F; Zuluaga VP; Haug C and Haug JT 2021. Diversity of hippoidean crabs - considering ontogeny, quantifiable morphology and phenotypic plasticity. Nauplius, 29: e2021027. DOI: 10.1590/2358-2936e2021027
https://doi.org/10.1590/2358-2936e202102...
) found that shield configuration and spine length of some decapodan larvae can be influenced by the environment, by applying methods of quantitative morphology. Other authors have mentioned similar observations before (e.g., Knight, 1968Knight MD 1968. The larval development of Raninoides benedicti Rathbun (Brachyura, Raninidae), with notes on the Pacific records of Raninoides laevis (Latreille). Crustaceana, suppl. 2: 145-169.; Furigo and Anger, pers. comm.) on a qualitative level.

Here, we investigate the morphological differences of selected eumalacostracan larvae from the laboratory and the wild. We focus on four different groups: Galatheidae (squat lobsters), Hippoidea (sand crabs), Raninidae (frog crabs), and Stomatopoda (mantis shrimps). The first three groups pass through a zoea phase during their development. The plesiomorphic (ancestral) condition for the zoea larva appears to have a shield without prominent spines as seen in most zoea larvae of Caridea (true shrimps) and many clawed lobsters (e.g., Hayashi and Hamano, 1984Haug JT; Haug C and Ehrlich M 2008. First fossil stomatopod larva (Arthropoda: Crustacea) and a new way of documenting Solnhofen fossils (Upper Jurassic, Southern Germany). Palaeodiversity, 1: 103-109.; Magalhães and Walker, 1988Magalhães C and Walker I 1988. Larval development and ecological distribution of central Amazonian palaemonid shrimps (Decapoda, Caridea). Crustaceana, 55(3): 279-292.; Thatje et al., 2001Tang RW; Yau C and Ng W 2010. Identification of stomatopod larvae (Crustacea: Stomatopoda) from Hong Kong waters using DNA barcodes. Molecular Ecology Resources, 10: 439-448. DOI: 10.1111/j.1755-0998.2009.02794.x
https://doi.org/10.1111/j.1755-0998.2009...
; Rötzer and Haug, 2015Ricklefs RE and Travis J 1980. A morphological approach to the study of avian community organization. The Auk, 97(2): 321-338. DOI: 10.1093/auk/97.2.321
https://doi.org/10.1093/auk/97.2.321...
). However, the three groups considered here all have developed zoea-type larvae with rather large spines (Fig. 1). The larval phase of mantis shrimps (Stomatopoda) is different from that of the other three (all ingroups of Decapoda) due to a more distant relationship, but includes larvae that are at least distantly comparable to zoea stage larvae (see discussion in Gurney, 1942Gurney R 1942. Larvae of decapod Crustacea. Ray Society, 129: 1-306.). Mantis shrimp larvae again have spiny shields, like those of the other three groups.

Figure 1.
Comparison of unidentified larvae of the four groups of Eumalacostraca, museum specimens under cross-polarized light. A-C: Representative of Galatheidae, specimen MNHN-IU-2014-5513B. A. Ventral view. B. Lateral view. C. Dorsal view. D-F: Representative of Hippoidea, specimen MNHN-IU-2014-5468 (after Rudolf et al., 2016Rötzer MAIN and Haug JT 2015. Larval development of the European lobster and how small heterochronic shifts lead to a more pronounced metamorphosis. International Journal of Zoology, art: 345172. DOI: 10.1155/2015/345172
https://doi.org/10.1155/2015/345172...
). D. Anterior view. E. Ventral view. F. Posterior view. G-H: Representative of Hippoidea, specimen NMHD-86486 (Old number: ZMUC-CRU-8682; after Rudolf et al., 2016Rudolf NR; Haug C and Haug JT 2016. Functional morphology of giant mole crab larvae: a possible case of defensive enrollment. Zoological Letters, 2: 17. DOI: 10.1186/s40851-016-0052-5
https://doi.org/10.1186/s40851-016-0052-...
). G. Dorsal view. H. Ventral view. I: Representative of Raninidae, specimen MNHN-IU-2014-5467, lateral view. J: Representative of Raninidae, specimen MNHN-IU-2014-5360, lateral view. K-L: Representative of Stomatopoda, specimen NHMD-916095 (Old number: Stat-3955-II-A). K. Ventral view. L. Dorsal view. M-O: Representative of Stomatopoda, specimen ZMUC-CRU-8660 (after Haug et al., 2016Haug C and Haug JT 2014. Defensive enrolment in mantis shrimp larvae (Malacostraca: Stomatopoda). Contributions to Zoology, 83: 185-194. DOI: 10.1163/18759866-08303003
https://doi.org/10.1163/18759866-0830300...
). M. Ventral view. N. Dorsal view. O. Lateral view.

Especially in these spines, we expect to find phenotypic variability (Braig et al., 2021Braig F; Zuluaga VP; Haug C and Haug JT 2021. Diversity of hippoidean crabs - considering ontogeny, quantifiable morphology and phenotypic plasticity. Nauplius, 29: e2021027. DOI: 10.1590/2358-2936e2021027
https://doi.org/10.1590/2358-2936e202102...
). Therefore, we investigate the morphological diversity (related to “disparity”; Hopkins and Gerber, 2017Hotelling H 1933. Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology, 24(6): 417-441. DOI: 10.1037/h0070888
https://doi.org/10.1037/h0070888...
) and potential phenotypic variability of the shield in dorsal and lateral view of these four eumalacostracan groups using quantitative morphology. We compare these aspects for planktic larvae caught in the wild and larvae reared in laboratory. The obtained results and implications are discussed in an ecological context.

MATERIAL AND METHODS

Material

Material for this study originated in parts from published literature, which provided images and reconstruction drawings of specimens. Additionally, specimens caught in the wild and stored in museum collections were directly investigated.

Literature sources include: Lebour, 1930Lebour MV 1930. The larvae of the Plymouth Galatheidae. I. Munida banffica, Galathea strigosa and Galathea dispersa. Journal of the Marine Biological Association of the United Kingdom, 17(1): 175-188. DOI: 10.1017/S0025315400051821
https://doi.org/10.1017/S002531540005182...
; 1931Lebour MV 1931. The larvae of the Plymouth Galatheidae. II. Galathea squamifera and Galathea intermedia. Journal of the Marine Biological Association of the United Kingdom, 17(2): 385-390.; Johnson and Lewis, 1942Iwata H and Ukai Y 2002. SHAPE: A computer program package for quantitative evaluation of biological shapes based on elliptic Fourier descriptors. Journal of Heredity, 93: 384-385. DOI: 10.1093/jhered/93.5.384
https://doi.org/10.1093/jhered/93.5.384...
; Manning and Provenzano, 1963Manning RB 1991. Stomatopod Crustacea collected by the Galathea Expedition, 1950-1952, with a list of Stomatopoda known from depths below 400 meters. Smithsonian Contributions to Zoology, 521: 1-16.; Knight, 1967Kiørboe T 2011. How zooplankton feed: mechanisms, traits and trade‐offs. Biological Reviews, 86(2): 311-339. DOI: 10.1111/j.1469-185X.2010.00148.x
https://doi.org/10.1111/j.1469-185X.2010...
; 1968Knight MD 1968. The larval development of Raninoides benedicti Rathbun (Brachyura, Raninidae), with notes on the Pacific records of Raninoides laevis (Latreille). Crustaceana, suppl. 2: 145-169.; Fagetti and Campodonico, 1971Fagetti E and Campodonico I 1971. Larval development of the red crab Pleuroncodes monodon (Decapoda Anomura: Galatheidae) under laboratory conditions. Marine Biology, 8(1): 70-81. DOI: 10.1007/BF00349348
https://doi.org/10.1007/BF00349348...
; Sakai, 1971Rudolf NR; Haug C and Haug JT 2016. Functional morphology of giant mole crab larvae: a possible case of defensive enrollment. Zoological Letters, 2: 17. DOI: 10.1186/s40851-016-0052-5
https://doi.org/10.1186/s40851-016-0052-...
; Michel and Manning, 1972Manning RB and Provenzano AJ Jr. 1963. Studies on development of stomatopod Crustacea I. Early larval stages of Gonodactylus oerstedii Hansen. Bulletin of Marine Science, 13(3): 467-487.; Shanbhogue, 1975Seridji R 1995. On a collection of decapod larvae from the Gulf of Aqaba off the Jordanian coast, I. Thalassinidea and Anomura. Crustaceana, 68(8): 281-320. DOI: 10.1163/156854095X00494
https://doi.org/10.1163/156854095X00494...
; Rice and Ingle, 1977Rathbun MJ 1935. Preliminary descriptions of seven new species of oxystomatous and allied crabs. Proceedings of the Biological Society of Washington, 48: 1-4.; Provenzano and Manning, 1978Provenzano AJ Jr. and Manning RB 1978. Studies on development of stomatopod Crustacea II. The later larval stages of Gonodactylus oerstedii Hansen reared in the laboratory. Bulletin of Marine Science, 28(2): 297-315. ; Gamô, 1979Gamô S 1979. Notes on a giant stomatopod larva taken South-East of Mindanao, Philippines (Crustacea). Scientific Reports of the Yokohama National University, 2: 11-18.; Morgan and Provenzano, 1979Morgan SG and Goy JW 1987. Reproduction and larval development of the mantis shrimp Gonodactylus bredini (Crustacea: Stomatopoda) maintained in the laboratory. Journal of Crustacean Biology, 7(4): 595-618. DOI: 10.1163/193724087X00379
https://doi.org/10.1163/193724087X00379...
; Greenwood and Williams, 1984Greenwood JG and Williams BG 1984. Larval and early post-larval stages in the abbreviated development of Heterosquilla tricarinata (Claus, 1871) (Crustacea, Stomatopoda). Journal of Plankton Research, 6(4): 615-635. DOI: 10.1093/plankt/6.4.615
https://doi.org/10.1093/plankt/6.4.615...
; Stuck and Truesdale, 1986Spitzner F; Giménez L; Meth R; Harzsch S and Torres G 2019. Unmasking intraspecific variation in offspring responses to multiple environmental drivers. Marine Biology, 166(8): 1-13. DOI: 10.1007/s00227-019-3560-y
https://doi.org/10.1007/s00227-019-3560-...
; Morgan and Goy, 1987Morgan SG and Goy JW 1987. Reproduction and larval development of the mantis shrimp Gonodactylus bredini (Crustacea: Stomatopoda) maintained in the laboratory. Journal of Crustacean Biology, 7(4): 595-618. DOI: 10.1163/193724087X00379
https://doi.org/10.1163/193724087X00379...
; Seridji, 1988Sakai K 1971. The larval stages of Ranina ranina (Linnaeus) (Crustacea, Decapoda, Raninidae) reared in the laboratory, with a review of uncertain zoeal larvae attributed to Ranina. Publications of the Seto Marine Biological Laboratory, 19(2-3): 123-156.; Christiansen and Anger, 1990Christiansen ME and Anger K 1990. Complete larval development of Galathea intermedia Lilljeborg reared in laboratory culture (Anomura: Galatheidae). Journal of Crustacean Biology, 10(1): 87-111. DOI: 10.1163/193724090X00276
https://doi.org/10.1163/193724090X00276...
; Minagawa, 1990Michel A and Manning RB 1972. The pelagic larvae of Chorisquilla tuberculata (Borradaile, 1907) (Stomatopoda). Crustaceana, 22(2): 113-126.; Manning, 1991Manning RB 1991. Stomatopod Crustacea collected by the Galathea Expedition, 1950-1952, with a list of Stomatopoda known from depths below 400 meters. Smithsonian Contributions to Zoology, 521: 1-16.; Diaz, 1998Diaz GA 1998. Description of the last seven pelagic larval stages of Squilla sp. (Crustacea, Stomatopoda). Bulleting of Marine Science, 62(3): 753-762.; Konishi and Saito, 2000Konishi K 1987. Larval development of the Spiny Sand Crab Lophomastix japonica (Durufle, 1889) (Crustacea, Anomura, Albuneidae) under laboratory conditions. Publications of the Seto Marine Biological Laboratory, 32(1-3): 123-139.; Fujita et al., 2001Fujita Y; Baba K and Shokita S 2001. Larval development of Galathea inflata Potts, 1915 (Decapoda: Anomura: Galatheidae) described from laboratory-reared material. Crustacean Research, 30: 111-132. DOI: 10.18353/crustacea.30.0_111
https://doi.org/10.18353/crustacea.30.0_...
; Fujita and Shokita, 2005Fujita Y and Shokita S 2005. The complete larval development of Sadayoshia edwardsii (Decapoda: Anomura: Galatheidae) described from laboratory‐reared material. Journal of Natural History, 39(12): 865-886. DOI: 10.1080/00222930410001671264
https://doi.org/10.1080/0022293041000167...
; Siddiqi and Ghory, 2006Siddiqui FA and Ghory FS 2006. Complete larval development of Emerita holthuisi Sankolli, 1965 (Crustacea: Decapoda: Hippidae) reared in the laboratory. Turkish Journal of Zoology, 30(2): 121-135.; Fujita, 2007Fujita Y 2007. First zoeas of two shallow-water galatheids, Lauriea gardineri (Laurie, 1926) and Phylladiorhynchus integrirostris (Dana, 1853) (Crustacea: Decapoda: Anomura: Galatheidae). Proceedings of the Biological Society of Washington, 120(1): 74-85. DOI: 10.2988/0006-324X(2007)120[74:FZOTSG]2.0.CO;2
https://doi.org/10.2988/0006-324X(2007)1...
; Fonghoy, 2015Fonghoy C 2015. Ontogeny and larval development of sand crab, Emerita sp. (Decapoda: Anomura: Hippidae) reared in laboratory. Bangkok, Chulalongkorn University, Department of Marine Science, Master’s Thesis, 88p. Available at: Available at: http://cuir.car.chula.ac.th/handle/123456789/60930 Accessed on 15 February 2020. [Unpublished]
http://cuir.car.chula.ac.th/handle/12345...
; Rudolf et al., 2016Rötzer MAIN and Haug JT 2015. Larval development of the European lobster and how small heterochronic shifts lead to a more pronounced metamorphosis. International Journal of Zoology, art: 345172. DOI: 10.1155/2015/345172
https://doi.org/10.1155/2015/345172...
; Mujica et al., 2019Morgan SG and Provenzano AJ Jr. 1979. Development of pelagic larvae and postlarva of Squilla empusa (Crustacea, Stomatopoda), with an assessment of larval characters within the Squillidae. Fishery Bulletin, 77(1): 61-90.; Braig et al., 2021Braig F; Zuluaga VP; Haug C and Haug JT 2021. Diversity of hippoidean crabs - considering ontogeny, quantifiable morphology and phenotypic plasticity. Nauplius, 29: e2021027. DOI: 10.1590/2358-2936e2021027
https://doi.org/10.1590/2358-2936e202102...
. Further material was provided by museums and collections: ‘Museum für Naturkunde’ Berlin, ‘Natural History Museum of Denmark’ Copenhagen, ‘Senckenberg Naturmuseum’ Frankfurt, ‘Muséum national d’Historie naturelle’ Paris and ‘Centrum für Naturkunde’ Hamburg.

In total, 266 larval specimens were documented in dorsal and/or lateral view: 62 specimens of Galatheidae, 49 specimens of Hippoidea, 18 specimens of Raninidae and 137 specimens of Stomatopoda. The composition of the groups considering sample origin (i.e., wild-caught or lab-reared) are given in Tab. 1. For a detailed list of all material used in this study, see App. 1 Appendix Appendix 1. Material used in this study. Where major group affiliation of a specimen was left as “unidentified”, the criterium was not used in the analysis. No major group species group species origin author year figure accession number museum geographic information cruise dorsal lateral gal_001 unknown unknown unknown wild / / MNHN-IU-2014-5463 MNHN Paris Hors campagne INVMAR, stat. 15A yes yes gal_002 unknown unknown unknown wild / / MNHN-IU-2014-5473A MNHN Paris yes yes gal_003 unknown unknown unknown wild / / MNHN-IU-2014-5473B MNHN Paris yes yes gal_004 unknown unknown unknown wild / / MNHN-IU-2014-5513A MNHN Paris Hors campagne INVMAR, stat. 309 yes yes gal_005 unknown unknown unknown wild / / MNHN-IU-2014-5513B MNHN Paris Hors campagne INVMAR, stat. 309 yes yes gal_006 unknown unknown unknown wild / / MNHN-IU-2014-5515 MNHN Paris Hors campagne INVMAR, stat. 311 yes yes gal_007 unknown unknown unknown wild / / MNHN-IU-2014-5516A MNHN Paris Hors campagne INVMAR, stat. 309 yes yes gal_009 unknown unknown unknown wild / / MNHN-IU-2014-5520 MNHN Paris yes yes gal_010 unidentified Galathea intermedia lab Christiansen and Anger 1990 fig. 1A yes yes gal_011 unidentified Galathea intermedia lab Christiansen and Anger 1990 fig. 1B yes yes gal_012 unidentified Galathea intermedia lab Christiansen and Anger 1990 fig. 1C yes yes gal_013 unidentified Galathea intermedia lab Christiansen and Anger 1990 fig. 1D yes yes gal_014 unidentified Pleuroncodes monodon lab Fagetti and Campodonico 1971 fig. 1.1 yes no gal_015 unidentified Pleuroncodes monodon lab Fagetti and Campodonico 1971 fig. 1.2 yes no gal_016 unidentified Pleuroncodes monodon lab Fagetti and Campodonico 1971 fig.1.3 yes no gal_017 unidentified Pleuroncodes monodon lab Fagetti and Campodonico 1971 fig. 1.4 yes no gal_018 unidentified Pleuroncodes monodon lab Fagetti and Campodonico 1971 fig. 3.39 yes no gal_019 unidentified Galathea inflata lab Fujita et al. 2001 fig. 1A yes yes gal_020 unidentified Galathea inflata lab Fujita et al. 2001 fig. 3A yes yes gal_021 unidentified Galathea inflata lab Fujita et al. 2001 fig. 5A yes yes gal_022 unidentified Galathea inflata lab Fujita et al. 2001 fig. 7A yes yes gal_023 unidentified Galathea inflata lab Fujita et al. 2001 fig. 9A yes yes gal_024 unidentified Galathea amboinensis lab Fujita et al. 2003 fig. 3A yes yes gal_025 unidentified Galathea amboinensis lab Fujita et al. 2003 fig. 3B yes yes gal_026 unidentified Galathea amboinensis lab Fujita et al. 2003 fig. 3D yes yes gal_027 unidentified Galathea amboinensis lab Fujita et al. 2003 fig. 3E yes yes gal_028 unidentified Munida rugosa lab Lebour 1930 Plate I A, B yes yes gal_029 unidentified Munida rugosa wild Lebour 1930 Plate I C yes no gal_030 unidentified Galathea strigosa lab Lebour 1930 Plate II A, B yes yes gal_031 unidentified Galathea strigosa wild Lebour 1930 Plate II C yes no gal_032 unidentified Galathea strigosa wild Lebour 1930 Plate II D yes no gal_033 unidentified Galathea strigosa wild Lebour 1930 Plate II E yes no gal_034 unidentified Galathea dispersa lab Lebour 1930 Plate III A yes no gal_035 unidentified Galathea dispersa wild Lebour 1930 Plate III B yes no gal_036 unidentified Galathea dispersa wild Lebour 1930 Plate III C yes no gal_037 unidentified Galathea dispersa wild Lebour 1930 Plate III D yes no gal_038 unidentified Galathea dispersa wild Lebour 1930 Plate III E yes no gal_039 unidentified Sadayoshia edwardsii lab Fujita and Shokita 2005 fig. 2A yes yes gal_040 unidentified Sadayoshia edwardsii lab Fujita and Shokita 2005 fig. 2C yes yes gal_041 unidentified Sadayoshia edwardsii lab Fujita and Shokita 2005 fig. 2E yes yes gal_042 unidentified Sadayoshia edwardsii lab Fujita and Shokita 2005 fig. 2F yes yes gal_043 unidentified Lauriea gardineri lab Fujita 2007 fig. 1B yes yes gal_044 unidentified Phylladiorhynchus integrirostris lab Fujita 2007 fig. 3B yes yes gal_045 unidentified Allogalathea elegans lab Fujita 2010 fig. 2A yes yes gal_046 unidentified Allogalathea elegans lab Fujita 2010 fig. 2B yes yes gal_047 unidentified Allogalathea elegans lab Fujita 2010 fig. 2C yes yes gal_048 unidentified Allogalathea elegans lab Fujita 2010 fig. 2D yes yes gal_049 unidentified Agononida incerta lab Konishi and Saito 2000 fig. 1A yes no gal_050 unidentified Munida striola lab Konishi and Saito 2000 fig. 3A yes no gal_051 unidentified Phylladiorhynchus pusillus wild Mujica et al. 2019 fig. 1 yes no gal_052 unidentified Phylladiorhynchus pusillus wild Mujica et al. 2019 fig. 1 yes no gal_053 unidentified Phylladiorhynchus pusillus wild Mujica et al. 2019 fig. 1 yes no gal_054 unidentified Phylladiorhynchus pusillus wild Mujica et al. 2019 fig. 1 yes no gal_055 unidentified Phylladiorhynchus pusillus wild Mujica et al. 2019 fig. 1 yes no gal_056 unidentified Galathea squamifera lab Lebour 1931 Plate 1A yes no gal_057 unidentified Galathea squamifera wild Lebour 1931 Plate 1B yes no gal_058 unidentified Galathea squamifera wild Lebour 1931 Plate 1C yes no gal_059 unidentified Galathea squamifera wild Lebour 1931 Plate 1D yes no gal_060 unidentified Galathea intermedia lab Lebour 1931 Plate 1F yes no gal_061 unidentified Galathea intermedia wild Lebour 1931 Plate 1G yes no gal_062 unidentified Galathea intermedia wild Lebour 1931 Plate 1H yes no hip_001 Hippidae Emerita analoga lab Johnson and Lewis 1942 Plate I 3 yes no hip_002 Hippidae Emerita analoga wild Johnson and Lewis 1942 Plate I 5 no yes hip_003 Blepharipodidae Blepharipoda occidentalis lab Johnson and Lewis 1942 Plate III yes yes hip_004 Blepharipodidae Blepharipoda occidentalis wild Johnson and Lewis 1942 Plate IV yes yes hip_005 Albuneidae Lepidopa myops lab Johnson and Lewis 1942 Plate V yes yes hip_006 Hippidae Emerita holthuisi lab Siddiqi and Ghory 2006 fig. 1a yes no hip_007 Hippidae Emerita holthuisi lab Siddiqi and Ghory 2006 fig. 2a yes no hip_008 Hippidae Emerita holthuisi lab Siddiqi and Ghory 2006 fig. 3a yes no hip_009 Hippidae Emerita holthuisi lab Siddiqi and Ghory 2006 fig. 4a yes no hip_010 Hippidae Emerita holthuisi lab Siddiqi and Ghory 2006 fig. 5a yes no hip_011 Hippidae Emerita holthuisi lab Siddiqi and Ghory 2006 fig. 6a yes no hip_012 Hippidae Emerita sp. lab Fonghoy 2015 fig. 25 yes yes hip_013 Hippidae Emerita sp. lab Fonghoy 2015 fig. 27 yes yes hip_014 Hippidae Emerita sp. lab Fonghoy 2015 fig. 29 yes yes hip_015 Hippidae Emerita sp. lab Fonghoy 2015 fig. 31 yes yes hip_016 Hippidae Emerita sp. lab Fonghoy 2015 fig. 33 yes yes hip_017 Hippidae Emerita sp. lab Fonghoy 2015 fig. 35 yes yes hip_018 Hippidae unknown unknown wild Braig et al. 2021 fig. 4A-B MNHN-IU-2014-5475A MNHN Paris 3°38'S 9°22'E, west of Gabun Ombango 1960, c. 12, station 301 yes no hip_019 Hippidae unknown unknown wild Braig et al. 2021 fig. 4C-D MNHN-IU-2014-5475B MNHN Paris 3°38'S 9°22'E, west of Gabun Ombango 1960, c. 12, station 301 yes no hip_020 Hippidae unknown unknown wild Braig et al. 2021 fig. 4E-H ZMH-K07448B CeNak Hamburg 20°S 73°W, west of Chile - yes yes hip_021 Hippidae unknown unknown wild Braig et al. 2021 fig. 3A-D ZMH-K07448A CeNak Hamburg 20°S 73°W, west of Chile - yes yes hip_022 Hippidae unknown unknown wild Braig et al. 2021 fig. 3E-F MNHN-IU-2014-5524A MNHN Paris 23°07'S - 43°11'W, south of Brazil Calypso 1961-62, station 108 yes yes hip_023 Hippidae unknown unknown wild Braig et al. 2021 fig. 3G-I MNHN-IU-2014-5524B MNHN Paris 23°07'S - 43°11'W, south of Brazil Calypso 1961-62, station 108 yes yes hip_024 Hippidae unknown unknown wild Braig et al. 2021 fig. 3J-L MNHN-IU-2014-5526 MNHN Paris 24°03'S - 46°22'W, south of Brazil Calypso 1961-62, station 139 yes yes hip_025 Hippidae unknown unknown wild Braig et al. 2021 fig. 1 ZMH-K16356 CeNak Hamburg Sansibar - yes yes hip_026 Albuneidae unknown unknown wild Braig et al. 2021 fig. 2A-C MNHN-IU-2014-5523 MNHN Paris 08°25'S - 34°48'W, east of Brazil Calypso 1961-62, station 26 yes yes hip_027 Albuneidae unknown unknown wild Braig et al. 2021 fig. 2D-F MNHN-IU-2014-5527 MNHN Paris 24°03'S - 46°22'W, south of Brazil Calypso 1961-62, station 139 yes yes hip_028 Albuneidae unknown unknown wild Braig et al. 2021 fig. 2G-H MNHN-IU-2014-5518 MNHN Paris - Calypso 1961-62, station 153 yes yes hip_029 Hippidae unknown unknown wild Rudolf et al. 2016 fig. 5 MNHN-IU-2014-5468 MNHN Paris yes no hip_030 Hippidae unknown unknown wild Rudolf et al. 2016 fig. 5 SMF-Mu_267 CeNak Hamburg yes no hip_031 Hippidae unknown unknown wild Rudolf et al. 2016 fig. 5 NHMD-86483 (Old number: ZMUC-CRU-8679) NHMD Copenhagen yes no hip_032 Hippidae unknown unknown wild Rudolf et al. 2016 fig. 5 NHMD-86484 (Old number: ZMUC-CRU-8680) NHMD Copenhagen yes no hip_033 Hippidae unknown unknown wild Rudolf et al. 2016 fig. 5 NHMD-86486 (Old number: ZMUC-CRU-8682) NHMD Copenhagen yes no hip_034 Hippidae unknown unknown wild Rudolf et al. 2016 fig. 5 NHMD-86487 (Old number: ZMUC-CRU-8683) NHMD Copenhagen yes yes hip_035 Hippidae unknown unknown wild Rudolf et al. 2016 fig. 5 NHMD-86488 (Old number: ZMUC-CRU-8684) NHMD Copenhagen yes no hip_036 Albuneidae Albunea carabus wild Seridji 1988 fig. 1a yes no hip_037 Albuneidae Albunea carabus wild Seridji 1988 fig. 2a yes no hip_038 Albuneidae Albunea carabus wild Seridji 1988 fig. 3a yes no hip_039 Albuneidae Lepidopa benedicti lab Stuck & Truesdale 1986 fig. 1 yes yes hip_040 Albuneidae Lepidopa benedicti lab Stuck & Truesdale 1986 fig. 2 yes no hip_041 Albuneidae Lepidopa benedicti lab Stuck & Truesdale 1986 fig. 3 yes no hip_042 Albuneidae Lepidopa benedicti lab Stuck & Truesdale 1986 fig. 4 yes yes hip_043 Hippidae Emerita rathbunae lab Knight 1967 fig. 1 no yes hip_044 Hippidae Emerita rathbunae lab Knight 1967 fig. 2 no yes hip_045 Hippidae Emerita rathbunae lab Knight 1967 fig. 3 no yes hip_046 Hippidae Emerita rathbunae wild Knight 1967 fig. 4, 7, 9 yes yes hip_047 Hippidae Emerita rathbunae wild Knight 1967 fig. 5 no yes hip_048 Hippidae Emerita rathbunae lab Knight 1967 fig. 6 yes no ran_001 unknown unknown unknown wild This paper Fig. 1 I MNHN-IU-2014-5467 MNHN Paris no yes ran_002 unknown unknown unknown wild This paper Fig. 1 J MNHN-IU-2014-5360 MNHN Paris 23° 20' 30.0012'' S ; 168° 5' 6.0252'' E SMIB 5, stat. DW101 no yes ran_003 Raninidae Raninoides benedicti lab Knight 1968 figs. 1, 5, 6 yes yes ran_004 Raninidae Raninoides benedicti lab Knight 1968 figs. 2, 7, 8 yes yes ran_005 Raninidae Raninoides benedicti lab Knight 1968 figs. 3, 9, 10 yes yes ran_006 Raninidae Raninoides benedicti lab Knight 1968 figs. 4, 11, 12 yes yes ran_007 Raninidae Ranina ranina lab Minagawa 1990 fig. 1 no yes ran_008 Raninidae Ranina ranina lab Minagawa 1990 fig. 2 no yes ran_009 Raninidae Ranina ranina lab Minagawa 1990 fig. 3 no yes ran_010 Raninidae Ranina ranina lab Minagawa 1990 fig. 4 no yes ran_011 Raninidae Ranina ranina lab Minagawa 1990 fig. 5 no yes ran_012 Raninidae Ranina ranina lab Minagawa 1990 fig. 6 no yes ran_013 Raninidae Ranina ranina lab Minagawa 1990 fig. 7 no yes ran_014 Raninidae Ranina ranina lab Minagawa 1990 fig. 8 no yes ran_015 Raninidae Ranina ranina wild Rice and Ingle 1977 fig. 1 no yes ran_016 Raninidae Ranina ranina lab Sakai 1971 fig. 1 no yes ran_017 Raninidae Ranina ranina lab Sakai 1971 fig. 2 no yes ran_018 Raninidae Ranina ranina lab Sakai 1971 fig. 3 no yes sto_001 unidentified Squilla sp. wild Diaz 1998 fig. 2 yes no sto_002 unidentified Squilla sp. wild Diaz 1998 fig. 4 yes no sto_003 unidentified Squilla sp. wild Diaz 1998 fig. 6 yes no sto_004 unidentified Squilla sp. wild Diaz 1998 fig. 8 yes no sto_005 unidentified Squilla sp. wild Diaz 1998 fig. 10 yes no sto_006 unidentified Squilla sp. wild Diaz 1998 fig. 12 yes no sto_007 unidentified Squilla sp. wild Diaz 1998 fig. 14 yes no sto_008 unidentified Lysiosquilla sp. wild Gamô 1979 fig. 1 KH79-1-5-1 5°38.8'N, 130°20.2'E - 5°28.0'N, 130°19.9'E KH-79-1 yes no sto_012 unidentified Gonodactylus bredini lab Morgan and Goy 1987 fig. 4 yes yes sto_013 unidentified Gonodactylus bredini lab Morgan and Goy 1987 fig. 5 yes yes sto_014 unidentified Gonodactylus bredini lab Morgan and Goy 1987 fig. 6 yes yes sto_015 unidentified Gonodactylus bredini lab Morgan and Goy 1987 fig. 7 yes yes sto_016 unidentified Gonodactylus bredini lab Morgan and Goy 1987 fig. 8 yes yes sto_017 unidentified Squilla empusa wild Morgan and Provenzano 1979 fig. 1A yes no sto_018 unidentified Squilla empusa wild Morgan and Provenzano 1979 fig. 1B yes no sto_019 unidentified Squilla empusa wild Morgan and Provenzano 1979 fig. 1C yes no sto_020 unidentified Squilla empusa wild Morgan and Provenzano 1979 fig. 12 yes no sto_021 unidentified Squilla empusa wild Morgan and Provenzano 1979 fig. 15 yes no sto_022 unidentified Squilla empusa wild Morgan and Provenzano 1979 fig. 17A yes no sto_023 unidentified Squilla empusa wild Morgan and Provenzano 1979 fig. 17B yes no sto_024 unidentified Squilla empusa wild Morgan and Provenzano 1979 fig. 19 yes no sto_025 unidentified Squilla empusa wild Morgan and Provenzano 1979 fig. 21 yes no sto_026 unidentified Gonodactylus oerstedii lab Provenzano and Manning 1978 fig. 2 yes yes sto_027 unidentified Gonodactylus oerstedii lab Provenzano and Manning 1978 fig. 3 yes yes sto_028 unidentified Gonodactylus oerstedii lab Provenzano and Manning 1978 fig. 4 yes yes sto_029 unidentified Gonodactylus chiragra wild Shanbhogue 1975 fig. 1A yes no sto_030 unidentified Gonodactylus sp. wild Shanbhogue 1975 fig. 1C yes no sto_031 unidentified Gonodactylus sp. wild Shanbhogue 1975 fig. 1E yes no sto_032 unidentified Gonodactylus sp. wild Shanbhogue 1975 fig. 1G yes no sto_033 unidentified Gonodactylus sp. wild Shanbhogue 1975 fig. 1J yes no sto_034 unidentified Pseudosquilla ciliata wild Shanbhogue 1975 fig. 2A yes no sto_035 unidentified Pseudosquilla sp. wild Shanbhogue 1975 fig. 2C yes no sto_036 unidentified Acanthosquilla multifasciata wild Shanbhogue 1975 fig. 2G yes no sto_037 unidentified Lysiosquilla duvaucelli? wild Shanbhogue 1975 fig. 3A yes no sto_038 unidentified Lysiosquilla sp. wild Shanbhogue 1975 fig. 3E yes no sto_039 unidentified Alima hieroglyphica wild Shanbhogue 1975 fig. 4A yes no sto_040 unidentified Alima sp. wild Shanbhogue 1975 fig. 4C yes no sto_041 unidentified Harpiosquilla harpax wild Shanbhogue 1975 fig. 5A yes no sto_042 unidentified Harpiosquilla sp. wild Shanbhogue 1975 fig. 5C yes no sto_043 unidentified Harpiosquilla sp. wild Shanbhogue 1975 fig. 5E yes no sto_044 unidentified Miyakella nepa wild Shanbhogue 1975 fig. 5H yes no sto_045 unidentified Oratosquilla gonypetes wild Shanbhogue 1975 fig. 6A yes no sto_046 unidentified Oratosquilla woodmansoni wild Shanbhogue 1975 fig. 6B yes no sto_047 unidentified Oratosquilla sp. wild Shanbhogue 1975 fig. 6C yes no sto_048 unidentified Oratosquilla sp. wild Shanbhogue 1975 fig. 7C yes no sto_252 unidentified unknown unknown wild / / 23_09_1903_X01E MfN Berlin yes no sto_253 unidentified unknown unknown wild / / 20500 MfN Berlin yes no sto_257 unidentified unknown unknown wild Haug et al. 2016 fig. 1 NHMD-86459 (Old number: ZMUC-CRU-8655) NHMD Copenhagen yes no sto_258 unidentified unknown unknown wild / / NHMD-232158 NHMD Copenhagen yes yes sto_259 unidentified unknown unknown wild / / NHMD-916092 NHMD Copenhagen yes no sto_260 unidentified unknown unknown wild / / NHMD-273050 NHMD Copenhagen yes no sto_261 unidentified unknown unknown wild / / 1192_VII_A NHMD Copenhagen yes no sto_262 unidentified unknown unknown wild / / NHMD-916093 NHMD Copenhagen yes no sto_264 unidentified unknown unknown wild / / NHMD-232168 NHMD Copenhagen yes yes sto_265 unidentified unknown unknown wild Haug et al. 2018 fig. 1 NHMD-232175 NHMD Copenhagen yes yes sto_267 unidentified unknown unknown wild / / NHMD-916094 NHMD Copenhagen yes yes sto_268 unidentified unknown unknown wild / / NHMD-232176 NHMD Copenhagen yes yes sto_269 unidentified unknown unknown wild Haug et al. 2016 fig. 8 NHMD-86472 (Old number: ZMUC-CRU-8668) NHMD Copenhagen yes no sto_270 unidentified unknown unknown wild This Paper Fig. 1 K-L NHDM-916095 (Old number: Stat-3955-II-A) NHMD Copenhagen yes no sto_271 unidentified unknown unknown wild / / NHMD-232173 (Old number: Stat-3955-II-B) NHMD Copenhagen yes yes sto_272 unidentified unknown unknown wild / / NHMD-916096 NHMD Copenhagen yes no sto_274 unidentified unknown unknown wild / / NHMD-232181 NHMD Copenhagen yes yes sto_276 unidentified unknown unknown wild / / NHMD-916097 NHMD Copenhagen yes no sto_277 unidentified unknown unknown wild / / NHMD-232161 NHMD Copenhagen yes yes sto_278 unidentified unknown unknown wild Haug et al. 2018 fig. 5 NHMD-232162 NHMD Copenhagen yes yes sto_279 unidentified unknown unknown wild / / NHMD-86475 NHMD Copenhagen yes no sto_280 unidentified unknown unknown wild / / NHMD-232163 NHMD Copenhagen yes yes sto_281 unidentified unknown unknown wild / / NHMD-916098 NHMD Copenhagen yes no sto_282 unidentified unknown unknown wild / / NHMD-232165 NHMD Copenhagen yes yes sto_284 unidentified unknown unknown wild Haug et al. 2016 fig. 5 NHMD-86470 (Old number: ZMUC-CRU-8666) NHMD Copenhagen yes yes sto_285 unidentified unknown unknown wild Haug et al. 2016 fig. 8 NHMD-86471 (Old number: ZMUC-CRU-8667) NHMD Copenhagen yes yes sto_287 unidentified unknown unknown wild Haug et al. 2016 fig. 8 NHMD-86468 (Old number: ZMUC-CRU-8664) NHMD Copenhagen yes no sto_289 unidentified unknown unknown wild / / NHMD-232171 NHMD Copenhagen no yes sto_290 unidentified unknown unknown wild / / NHMD-232160 NHMD Copenhagen yes yes sto_296 unidentified unknown unknown wild / / MNHN-IU-2014-5493C MNHN Paris yes yes sto_297 unidentified unknown unknown wild / / MNHN-IU-2014-5495 MNHN Paris yes yes sto_298 unidentified unknown unknown wild / / MNHN-IU-2014-5498 MNHN Paris yes yes sto_299 unidentified unknown unknown wild / / MNHN-IU-2014-5499 MNHN Paris yes yes sto_300 unidentified unknown unknown wild / / MNHN-IU-2014-5493B MNHN Paris yes yes sto_301 unidentified unknown unknown wild / / MNHN-IU-2014-5509 MNHN Paris yes no sto_302 unidentified unknown unknown wild / / MNHN-IU-2014-5474 MNHN Paris 20° 32' 42'' S ; 55° 40' 53.9976'' E MD32 (REUNION), stat. CP146 yes yes sto_303 unidentified unknown unknown wild / / MNHN-IU-2014-5476 MNHN Paris yes yes sto_304 unidentified unknown unknown wild / / MNHN-IU-2014-5477 MNHN Paris yes yes sto_305 unidentified unknown unknown wild / / MNHN-IU-2014-5488 MNHN Paris yes yes sto_306 unidentified unknown unknown wild / / MNHN-IU-2014-5489 MNHN Paris yes yes sto_307 unidentified unknown unknown wild / / MNHN-IU-2014-5493A MNHN Paris yes yes sto_308 unidentified unknown unknown wild / / MNHN-IU-2014-5494 MNHN Paris yes yes sto_309 unidentified unknown unknown wild / / MNHN-IU-2014-5500 MNHN Paris yes yes sto_311 unidentified unknown unknown wild / / MNHN-IU-2014-5507 MNHN Paris yes yes sto_312 unidentified unknown unknown wild / / MNHN-IU-2014-5511 MNHN Paris yes yes sto_313 unidentified Oratosquilla oratoria lab Hamano 1986 fig. 4 yes yes sto_314 unidentified Oratosquilla oratoria lab Hamano 1986 fig. 5 yes yes sto_315 unidentified Oratosquilla oratoria lab Hamano 1986 fig. 6 yes yes sto_316 unidentified Oratosquilla oratoria lab Hamano 1986 fig. 7 yes yes sto_317 unidentified Oratosquilla oratoria lab Hamano 1986 fig. 8 yes yes sto_318 unidentified Oratosquilla oratoria lab Hamano 1986 fig. 9 yes yes sto_319 unidentified Oratosquilla oratoria lab Hamano 1986 fig. 10 yes yes sto_320 unidentified Oratosquilla oratoria lab Hamano 1986 fig. 11 yes yes sto_321 unidentified Oratosquilla oratoria lab Hamano 1986 fig. 12 yes yes sto_322 unidentified Oratosquilla oratoria lab Hamano 1986 fig. 13 yes yes sto_338 unidentified Squilla hieroglyphica wild Alikunhi 1944 fig. 1 yes no sto_339 unidentified Heterosquilla tricarinata lab Greenwood and Williams 1984 fig. 1 yes no sto_340 unidentified Heterosquilla tricarinata lab Greenwood and Williams 1984 fig. 1 yes no sto_341 unidentified Heterosquilla tricarinata lab Greenwood and Williams 1984 fig. 1 yes no sto_342 unidentified Gonodactylus oerstedii lab Manning and Provenzano 1963 fig. 1 yes yes sto_343 unidentified Gonodactylus oerstedii lab Manning and Provenzano 1963 fig. 3 yes yes sto_344 unidentified Gonodactylus oerstedii lab Manning and Provenzano 1963 fig. 5 yes yes sto_345 unidentified Gonodactylus oerstedii lab Manning and Provenzano 1963 fig. 7 yes yes sto_346 unidentified Chorisquilla tuberculata wild Michel and Manning 1972 fig. 1 yes yes sto_347 unidentified Chorisquilla tuberculata wild Michel and Manning 1972 fig. 3 yes yes sto_348 unidentified Gonodactylus bredini lab Morgan and Goy 1987 fig. 1 yes yes sto_349 unidentified Gonodactylus bredini lab Morgan and Goy 1987 fig. 2 yes yes sto_350 unidentified Gonodactylus bredini lab Morgan and Goy 1987 fig. 3 yes yes sto_351 unidentified Acanthosquilla sp. wild Shanbhogue 1975 fig. 2E yes no sto_352 unidentified Coroniderichthus sp. wild Shanbhogue 1975 fig. 3H yes no sto_353 unidentified Coroniderichthus sp. wild Shanbhogue 1975 fig. 3J yes no sto_354 unidentified Clorida laterilli wild Shanbhogue 1975 fig. 4E yes no sto_355 unidentified Squilla sp. wild Townsley 1953 fig. 22A yes no sto_356 unidentified Squilla sp. wild Townsley 1953 fig. 22B yes no sto_357 unidentified Squilla sp. wild Townsley 1953 fig. 22C yes no sto_358 unidentified Squilla sp. wild Townsley 1953 fig. 22D yes no sto_359 unidentified Pseudosquilla ciliata wild Townsley 1953 fig. 23A yes no sto_360 unidentified Pseudosquilla ciliata wild Townsley 1953 fig. 23B yes yes sto_361 unidentified Pseudosquilla ciliata wild Townsley 1953 fig. 23D no yes sto_362 unidentified Lysiosquilla sp. wild Townsley 1953 fig. 25B no yes sto_363 unidentified Coronida sp. wild Townsley 1953 fig. 26A no yes sto_364 unidentified Coronida sp. wild Townsley 1953 fig. 27A yes no sto_365 unidentified Odontodactylus sp. wild Townsley 1953 fig. 28A no yes sto_366 unidentified Odontodactylus sp. wild Townsley 1954 fig. 28B no yes sto_367 unidentified Oratosquilla oratoria lab Hamano 1986 fig. 3 yes yes sto_368 unidentified unknown unknown wild / / MNHN-IU-2014-5481 MNHN Paris yes yes sto_369 unidentified unknown unknown wild / / MNHN-IU-2014-5483B MNHN Paris yes no sto_370 unidentified unknown unknown wild / / MNHN-IU-2014-5487 MNHN Paris yes yes sto_371 unidentified unknown unknown wild / / MNHN-IU-2014-5502 MNHN Paris yes no sto_372 unidentified unknown unknown wild / / MNHN-IU-2014-5510 MNHN Paris yes yes sto_373 unidentified unknown unknown wild Haug and Haug 2014 fig. 4 NHMD-88528 (Old number: ZMUC-CRU-20243) NHMD Copenhagen yes yes . If an individual was caught in the wild (e.g., plankton sampling) and preserved and then documented either by us or by an author in the literature, it would be classified as “wild-caught”. Specimens that originated from lab-rearing, i.e., when a gravid female was caught in the wild and its eggs were reared in the laboratory, and the consecutive stages were documented in the literature, they were classified as “lab-reared”.

Table 1.
Group composition (wild-caught and laboratory specimens given in numbers) as well as number of species identified in the data set. Current number of accepted species of the group (WoRMS Editorial Board, 2021WoRMS Editorial Board 2021. World register of marine species. Available at: Available at: http://www.marinespecies.org at VLIZ . Accessed on 28 February 2021. DOI: 10.14284/170
http://www.marinespecies.org at VLIZ...
) and the resulting taxonomic coverage of the group by our data in percent.

The four groups of crustaceans here were chosen firstly because data on specimens of these groups from the wild was available in high quality from multiple collections by our own documentation. This meant that we could ensure multiple images in different orientations of the same specimen, as well as a wider geographic coverage of specimens, which was a necessity for the study. Furthermore, we only chose groups with planktic and spiny larvae, as this was the trait we assumed to show variation from previous studies. Including more groups in the analysis would be desirable, but due to the state of documentation in the literature it is currently not possible. Larvae are rarely depicted in more than one orientation so that creating a sufficient sample size was hardly possible for more than the four groups presented here.

Data generation

For the documentation of specimens provided by museum collections, a macro-photography set-up was used. The specimens were photographed using a Canon Rebel T3i digital camera with a MP-E 65 mm macro lens. To reduce light-reflection induced artefacts, cross-polarized light was used, provided by a Canon Macro Twin Flash MT-24 or a Meike FC 100 LED ring light equipped with polarization filters and a cross-polarized filter in front of the camera lens (for a detailed description see Haug and Haug, 2014Gurney R 1942. Larvae of decapod Crustacea. Ray Society, 129: 1-306.; Eiler et al., 2016Eiler SM; Haug C and Haug JT 2016. Detailed description of a giant polychelidan eryoneicus-type larva with modern imaging techniques (Eucrustacea, Decapoda, Polychelida). Spixiana, 39: 39-60.). The specific components of this setup varied, but the principles and methodology remained the same throughout the documentation process.

In such high-resolution set-ups, specimens were recorded as stacks of images with changing in-focus layers. For larger specimens, multiple images were taken per specimen to cover the entire organism. To create sharp images from the focus stacks, we used the free software CombineZP (Alan Hadley, GNU), which combines the sharp (in-focus) regions of each image of a focus stack into one sharp image (Haug et al., 2008Haug C; Wagner P; Bjarsch JM; Braig F and Haug JT 2018. A new “extreme” type of mantis shrimp larva. Nauplius, 26: e2018019. DOI: 10.1590/2358-2936e2018019
https://doi.org/10.1590/2358-2936e201801...
). In cases in which the specimen was documented via multiple stacks, the sharp images resulting from these stacks were then stitched together to full images, using the Photomerge function of Photoshop CS4 or CS6 (Haug et al., 2008Haug C; Wagner P; Bjarsch JM; Braig F and Haug JT 2018. A new “extreme” type of mantis shrimp larva. Nauplius, 26: e2018019. DOI: 10.1590/2358-2936e2018019
https://doi.org/10.1590/2358-2936e201801...
).

We used Adobe Illustrator CS2 to manually reconstruct the outline of shields in dorsal and lateral view (see App. 1 Appendix Appendix 1. Material used in this study. Where major group affiliation of a specimen was left as “unidentified”, the criterium was not used in the analysis. No major group species group species origin author year figure accession number museum geographic information cruise dorsal lateral gal_001 unknown unknown unknown wild / / MNHN-IU-2014-5463 MNHN Paris Hors campagne INVMAR, stat. 15A yes yes gal_002 unknown unknown unknown wild / / MNHN-IU-2014-5473A MNHN Paris yes yes gal_003 unknown unknown unknown wild / / MNHN-IU-2014-5473B MNHN Paris yes yes gal_004 unknown unknown unknown wild / / MNHN-IU-2014-5513A MNHN Paris Hors campagne INVMAR, stat. 309 yes yes gal_005 unknown unknown unknown wild / / MNHN-IU-2014-5513B MNHN Paris Hors campagne INVMAR, stat. 309 yes yes gal_006 unknown unknown unknown wild / / MNHN-IU-2014-5515 MNHN Paris Hors campagne INVMAR, stat. 311 yes yes gal_007 unknown unknown unknown wild / / MNHN-IU-2014-5516A MNHN Paris Hors campagne INVMAR, stat. 309 yes yes gal_009 unknown unknown unknown wild / / MNHN-IU-2014-5520 MNHN Paris yes yes gal_010 unidentified Galathea intermedia lab Christiansen and Anger 1990 fig. 1A yes yes gal_011 unidentified Galathea intermedia lab Christiansen and Anger 1990 fig. 1B yes yes gal_012 unidentified Galathea intermedia lab Christiansen and Anger 1990 fig. 1C yes yes gal_013 unidentified Galathea intermedia lab Christiansen and Anger 1990 fig. 1D yes yes gal_014 unidentified Pleuroncodes monodon lab Fagetti and Campodonico 1971 fig. 1.1 yes no gal_015 unidentified Pleuroncodes monodon lab Fagetti and Campodonico 1971 fig. 1.2 yes no gal_016 unidentified Pleuroncodes monodon lab Fagetti and Campodonico 1971 fig.1.3 yes no gal_017 unidentified Pleuroncodes monodon lab Fagetti and Campodonico 1971 fig. 1.4 yes no gal_018 unidentified Pleuroncodes monodon lab Fagetti and Campodonico 1971 fig. 3.39 yes no gal_019 unidentified Galathea inflata lab Fujita et al. 2001 fig. 1A yes yes gal_020 unidentified Galathea inflata lab Fujita et al. 2001 fig. 3A yes yes gal_021 unidentified Galathea inflata lab Fujita et al. 2001 fig. 5A yes yes gal_022 unidentified Galathea inflata lab Fujita et al. 2001 fig. 7A yes yes gal_023 unidentified Galathea inflata lab Fujita et al. 2001 fig. 9A yes yes gal_024 unidentified Galathea amboinensis lab Fujita et al. 2003 fig. 3A yes yes gal_025 unidentified Galathea amboinensis lab Fujita et al. 2003 fig. 3B yes yes gal_026 unidentified Galathea amboinensis lab Fujita et al. 2003 fig. 3D yes yes gal_027 unidentified Galathea amboinensis lab Fujita et al. 2003 fig. 3E yes yes gal_028 unidentified Munida rugosa lab Lebour 1930 Plate I A, B yes yes gal_029 unidentified Munida rugosa wild Lebour 1930 Plate I C yes no gal_030 unidentified Galathea strigosa lab Lebour 1930 Plate II A, B yes yes gal_031 unidentified Galathea strigosa wild Lebour 1930 Plate II C yes no gal_032 unidentified Galathea strigosa wild Lebour 1930 Plate II D yes no gal_033 unidentified Galathea strigosa wild Lebour 1930 Plate II E yes no gal_034 unidentified Galathea dispersa lab Lebour 1930 Plate III A yes no gal_035 unidentified Galathea dispersa wild Lebour 1930 Plate III B yes no gal_036 unidentified Galathea dispersa wild Lebour 1930 Plate III C yes no gal_037 unidentified Galathea dispersa wild Lebour 1930 Plate III D yes no gal_038 unidentified Galathea dispersa wild Lebour 1930 Plate III E yes no gal_039 unidentified Sadayoshia edwardsii lab Fujita and Shokita 2005 fig. 2A yes yes gal_040 unidentified Sadayoshia edwardsii lab Fujita and Shokita 2005 fig. 2C yes yes gal_041 unidentified Sadayoshia edwardsii lab Fujita and Shokita 2005 fig. 2E yes yes gal_042 unidentified Sadayoshia edwardsii lab Fujita and Shokita 2005 fig. 2F yes yes gal_043 unidentified Lauriea gardineri lab Fujita 2007 fig. 1B yes yes gal_044 unidentified Phylladiorhynchus integrirostris lab Fujita 2007 fig. 3B yes yes gal_045 unidentified Allogalathea elegans lab Fujita 2010 fig. 2A yes yes gal_046 unidentified Allogalathea elegans lab Fujita 2010 fig. 2B yes yes gal_047 unidentified Allogalathea elegans lab Fujita 2010 fig. 2C yes yes gal_048 unidentified Allogalathea elegans lab Fujita 2010 fig. 2D yes yes gal_049 unidentified Agononida incerta lab Konishi and Saito 2000 fig. 1A yes no gal_050 unidentified Munida striola lab Konishi and Saito 2000 fig. 3A yes no gal_051 unidentified Phylladiorhynchus pusillus wild Mujica et al. 2019 fig. 1 yes no gal_052 unidentified Phylladiorhynchus pusillus wild Mujica et al. 2019 fig. 1 yes no gal_053 unidentified Phylladiorhynchus pusillus wild Mujica et al. 2019 fig. 1 yes no gal_054 unidentified Phylladiorhynchus pusillus wild Mujica et al. 2019 fig. 1 yes no gal_055 unidentified Phylladiorhynchus pusillus wild Mujica et al. 2019 fig. 1 yes no gal_056 unidentified Galathea squamifera lab Lebour 1931 Plate 1A yes no gal_057 unidentified Galathea squamifera wild Lebour 1931 Plate 1B yes no gal_058 unidentified Galathea squamifera wild Lebour 1931 Plate 1C yes no gal_059 unidentified Galathea squamifera wild Lebour 1931 Plate 1D yes no gal_060 unidentified Galathea intermedia lab Lebour 1931 Plate 1F yes no gal_061 unidentified Galathea intermedia wild Lebour 1931 Plate 1G yes no gal_062 unidentified Galathea intermedia wild Lebour 1931 Plate 1H yes no hip_001 Hippidae Emerita analoga lab Johnson and Lewis 1942 Plate I 3 yes no hip_002 Hippidae Emerita analoga wild Johnson and Lewis 1942 Plate I 5 no yes hip_003 Blepharipodidae Blepharipoda occidentalis lab Johnson and Lewis 1942 Plate III yes yes hip_004 Blepharipodidae Blepharipoda occidentalis wild Johnson and Lewis 1942 Plate IV yes yes hip_005 Albuneidae Lepidopa myops lab Johnson and Lewis 1942 Plate V yes yes hip_006 Hippidae Emerita holthuisi lab Siddiqi and Ghory 2006 fig. 1a yes no hip_007 Hippidae Emerita holthuisi lab Siddiqi and Ghory 2006 fig. 2a yes no hip_008 Hippidae Emerita holthuisi lab Siddiqi and Ghory 2006 fig. 3a yes no hip_009 Hippidae Emerita holthuisi lab Siddiqi and Ghory 2006 fig. 4a yes no hip_010 Hippidae Emerita holthuisi lab Siddiqi and Ghory 2006 fig. 5a yes no hip_011 Hippidae Emerita holthuisi lab Siddiqi and Ghory 2006 fig. 6a yes no hip_012 Hippidae Emerita sp. lab Fonghoy 2015 fig. 25 yes yes hip_013 Hippidae Emerita sp. lab Fonghoy 2015 fig. 27 yes yes hip_014 Hippidae Emerita sp. lab Fonghoy 2015 fig. 29 yes yes hip_015 Hippidae Emerita sp. lab Fonghoy 2015 fig. 31 yes yes hip_016 Hippidae Emerita sp. lab Fonghoy 2015 fig. 33 yes yes hip_017 Hippidae Emerita sp. lab Fonghoy 2015 fig. 35 yes yes hip_018 Hippidae unknown unknown wild Braig et al. 2021 fig. 4A-B MNHN-IU-2014-5475A MNHN Paris 3°38'S 9°22'E, west of Gabun Ombango 1960, c. 12, station 301 yes no hip_019 Hippidae unknown unknown wild Braig et al. 2021 fig. 4C-D MNHN-IU-2014-5475B MNHN Paris 3°38'S 9°22'E, west of Gabun Ombango 1960, c. 12, station 301 yes no hip_020 Hippidae unknown unknown wild Braig et al. 2021 fig. 4E-H ZMH-K07448B CeNak Hamburg 20°S 73°W, west of Chile - yes yes hip_021 Hippidae unknown unknown wild Braig et al. 2021 fig. 3A-D ZMH-K07448A CeNak Hamburg 20°S 73°W, west of Chile - yes yes hip_022 Hippidae unknown unknown wild Braig et al. 2021 fig. 3E-F MNHN-IU-2014-5524A MNHN Paris 23°07'S - 43°11'W, south of Brazil Calypso 1961-62, station 108 yes yes hip_023 Hippidae unknown unknown wild Braig et al. 2021 fig. 3G-I MNHN-IU-2014-5524B MNHN Paris 23°07'S - 43°11'W, south of Brazil Calypso 1961-62, station 108 yes yes hip_024 Hippidae unknown unknown wild Braig et al. 2021 fig. 3J-L MNHN-IU-2014-5526 MNHN Paris 24°03'S - 46°22'W, south of Brazil Calypso 1961-62, station 139 yes yes hip_025 Hippidae unknown unknown wild Braig et al. 2021 fig. 1 ZMH-K16356 CeNak Hamburg Sansibar - yes yes hip_026 Albuneidae unknown unknown wild Braig et al. 2021 fig. 2A-C MNHN-IU-2014-5523 MNHN Paris 08°25'S - 34°48'W, east of Brazil Calypso 1961-62, station 26 yes yes hip_027 Albuneidae unknown unknown wild Braig et al. 2021 fig. 2D-F MNHN-IU-2014-5527 MNHN Paris 24°03'S - 46°22'W, south of Brazil Calypso 1961-62, station 139 yes yes hip_028 Albuneidae unknown unknown wild Braig et al. 2021 fig. 2G-H MNHN-IU-2014-5518 MNHN Paris - Calypso 1961-62, station 153 yes yes hip_029 Hippidae unknown unknown wild Rudolf et al. 2016 fig. 5 MNHN-IU-2014-5468 MNHN Paris yes no hip_030 Hippidae unknown unknown wild Rudolf et al. 2016 fig. 5 SMF-Mu_267 CeNak Hamburg yes no hip_031 Hippidae unknown unknown wild Rudolf et al. 2016 fig. 5 NHMD-86483 (Old number: ZMUC-CRU-8679) NHMD Copenhagen yes no hip_032 Hippidae unknown unknown wild Rudolf et al. 2016 fig. 5 NHMD-86484 (Old number: ZMUC-CRU-8680) NHMD Copenhagen yes no hip_033 Hippidae unknown unknown wild Rudolf et al. 2016 fig. 5 NHMD-86486 (Old number: ZMUC-CRU-8682) NHMD Copenhagen yes no hip_034 Hippidae unknown unknown wild Rudolf et al. 2016 fig. 5 NHMD-86487 (Old number: ZMUC-CRU-8683) NHMD Copenhagen yes yes hip_035 Hippidae unknown unknown wild Rudolf et al. 2016 fig. 5 NHMD-86488 (Old number: ZMUC-CRU-8684) NHMD Copenhagen yes no hip_036 Albuneidae Albunea carabus wild Seridji 1988 fig. 1a yes no hip_037 Albuneidae Albunea carabus wild Seridji 1988 fig. 2a yes no hip_038 Albuneidae Albunea carabus wild Seridji 1988 fig. 3a yes no hip_039 Albuneidae Lepidopa benedicti lab Stuck & Truesdale 1986 fig. 1 yes yes hip_040 Albuneidae Lepidopa benedicti lab Stuck & Truesdale 1986 fig. 2 yes no hip_041 Albuneidae Lepidopa benedicti lab Stuck & Truesdale 1986 fig. 3 yes no hip_042 Albuneidae Lepidopa benedicti lab Stuck & Truesdale 1986 fig. 4 yes yes hip_043 Hippidae Emerita rathbunae lab Knight 1967 fig. 1 no yes hip_044 Hippidae Emerita rathbunae lab Knight 1967 fig. 2 no yes hip_045 Hippidae Emerita rathbunae lab Knight 1967 fig. 3 no yes hip_046 Hippidae Emerita rathbunae wild Knight 1967 fig. 4, 7, 9 yes yes hip_047 Hippidae Emerita rathbunae wild Knight 1967 fig. 5 no yes hip_048 Hippidae Emerita rathbunae lab Knight 1967 fig. 6 yes no ran_001 unknown unknown unknown wild This paper Fig. 1 I MNHN-IU-2014-5467 MNHN Paris no yes ran_002 unknown unknown unknown wild This paper Fig. 1 J MNHN-IU-2014-5360 MNHN Paris 23° 20' 30.0012'' S ; 168° 5' 6.0252'' E SMIB 5, stat. DW101 no yes ran_003 Raninidae Raninoides benedicti lab Knight 1968 figs. 1, 5, 6 yes yes ran_004 Raninidae Raninoides benedicti lab Knight 1968 figs. 2, 7, 8 yes yes ran_005 Raninidae Raninoides benedicti lab Knight 1968 figs. 3, 9, 10 yes yes ran_006 Raninidae Raninoides benedicti lab Knight 1968 figs. 4, 11, 12 yes yes ran_007 Raninidae Ranina ranina lab Minagawa 1990 fig. 1 no yes ran_008 Raninidae Ranina ranina lab Minagawa 1990 fig. 2 no yes ran_009 Raninidae Ranina ranina lab Minagawa 1990 fig. 3 no yes ran_010 Raninidae Ranina ranina lab Minagawa 1990 fig. 4 no yes ran_011 Raninidae Ranina ranina lab Minagawa 1990 fig. 5 no yes ran_012 Raninidae Ranina ranina lab Minagawa 1990 fig. 6 no yes ran_013 Raninidae Ranina ranina lab Minagawa 1990 fig. 7 no yes ran_014 Raninidae Ranina ranina lab Minagawa 1990 fig. 8 no yes ran_015 Raninidae Ranina ranina wild Rice and Ingle 1977 fig. 1 no yes ran_016 Raninidae Ranina ranina lab Sakai 1971 fig. 1 no yes ran_017 Raninidae Ranina ranina lab Sakai 1971 fig. 2 no yes ran_018 Raninidae Ranina ranina lab Sakai 1971 fig. 3 no yes sto_001 unidentified Squilla sp. wild Diaz 1998 fig. 2 yes no sto_002 unidentified Squilla sp. wild Diaz 1998 fig. 4 yes no sto_003 unidentified Squilla sp. wild Diaz 1998 fig. 6 yes no sto_004 unidentified Squilla sp. wild Diaz 1998 fig. 8 yes no sto_005 unidentified Squilla sp. wild Diaz 1998 fig. 10 yes no sto_006 unidentified Squilla sp. wild Diaz 1998 fig. 12 yes no sto_007 unidentified Squilla sp. wild Diaz 1998 fig. 14 yes no sto_008 unidentified Lysiosquilla sp. wild Gamô 1979 fig. 1 KH79-1-5-1 5°38.8'N, 130°20.2'E - 5°28.0'N, 130°19.9'E KH-79-1 yes no sto_012 unidentified Gonodactylus bredini lab Morgan and Goy 1987 fig. 4 yes yes sto_013 unidentified Gonodactylus bredini lab Morgan and Goy 1987 fig. 5 yes yes sto_014 unidentified Gonodactylus bredini lab Morgan and Goy 1987 fig. 6 yes yes sto_015 unidentified Gonodactylus bredini lab Morgan and Goy 1987 fig. 7 yes yes sto_016 unidentified Gonodactylus bredini lab Morgan and Goy 1987 fig. 8 yes yes sto_017 unidentified Squilla empusa wild Morgan and Provenzano 1979 fig. 1A yes no sto_018 unidentified Squilla empusa wild Morgan and Provenzano 1979 fig. 1B yes no sto_019 unidentified Squilla empusa wild Morgan and Provenzano 1979 fig. 1C yes no sto_020 unidentified Squilla empusa wild Morgan and Provenzano 1979 fig. 12 yes no sto_021 unidentified Squilla empusa wild Morgan and Provenzano 1979 fig. 15 yes no sto_022 unidentified Squilla empusa wild Morgan and Provenzano 1979 fig. 17A yes no sto_023 unidentified Squilla empusa wild Morgan and Provenzano 1979 fig. 17B yes no sto_024 unidentified Squilla empusa wild Morgan and Provenzano 1979 fig. 19 yes no sto_025 unidentified Squilla empusa wild Morgan and Provenzano 1979 fig. 21 yes no sto_026 unidentified Gonodactylus oerstedii lab Provenzano and Manning 1978 fig. 2 yes yes sto_027 unidentified Gonodactylus oerstedii lab Provenzano and Manning 1978 fig. 3 yes yes sto_028 unidentified Gonodactylus oerstedii lab Provenzano and Manning 1978 fig. 4 yes yes sto_029 unidentified Gonodactylus chiragra wild Shanbhogue 1975 fig. 1A yes no sto_030 unidentified Gonodactylus sp. wild Shanbhogue 1975 fig. 1C yes no sto_031 unidentified Gonodactylus sp. wild Shanbhogue 1975 fig. 1E yes no sto_032 unidentified Gonodactylus sp. wild Shanbhogue 1975 fig. 1G yes no sto_033 unidentified Gonodactylus sp. wild Shanbhogue 1975 fig. 1J yes no sto_034 unidentified Pseudosquilla ciliata wild Shanbhogue 1975 fig. 2A yes no sto_035 unidentified Pseudosquilla sp. wild Shanbhogue 1975 fig. 2C yes no sto_036 unidentified Acanthosquilla multifasciata wild Shanbhogue 1975 fig. 2G yes no sto_037 unidentified Lysiosquilla duvaucelli? wild Shanbhogue 1975 fig. 3A yes no sto_038 unidentified Lysiosquilla sp. wild Shanbhogue 1975 fig. 3E yes no sto_039 unidentified Alima hieroglyphica wild Shanbhogue 1975 fig. 4A yes no sto_040 unidentified Alima sp. wild Shanbhogue 1975 fig. 4C yes no sto_041 unidentified Harpiosquilla harpax wild Shanbhogue 1975 fig. 5A yes no sto_042 unidentified Harpiosquilla sp. wild Shanbhogue 1975 fig. 5C yes no sto_043 unidentified Harpiosquilla sp. wild Shanbhogue 1975 fig. 5E yes no sto_044 unidentified Miyakella nepa wild Shanbhogue 1975 fig. 5H yes no sto_045 unidentified Oratosquilla gonypetes wild Shanbhogue 1975 fig. 6A yes no sto_046 unidentified Oratosquilla woodmansoni wild Shanbhogue 1975 fig. 6B yes no sto_047 unidentified Oratosquilla sp. wild Shanbhogue 1975 fig. 6C yes no sto_048 unidentified Oratosquilla sp. wild Shanbhogue 1975 fig. 7C yes no sto_252 unidentified unknown unknown wild / / 23_09_1903_X01E MfN Berlin yes no sto_253 unidentified unknown unknown wild / / 20500 MfN Berlin yes no sto_257 unidentified unknown unknown wild Haug et al. 2016 fig. 1 NHMD-86459 (Old number: ZMUC-CRU-8655) NHMD Copenhagen yes no sto_258 unidentified unknown unknown wild / / NHMD-232158 NHMD Copenhagen yes yes sto_259 unidentified unknown unknown wild / / NHMD-916092 NHMD Copenhagen yes no sto_260 unidentified unknown unknown wild / / NHMD-273050 NHMD Copenhagen yes no sto_261 unidentified unknown unknown wild / / 1192_VII_A NHMD Copenhagen yes no sto_262 unidentified unknown unknown wild / / NHMD-916093 NHMD Copenhagen yes no sto_264 unidentified unknown unknown wild / / NHMD-232168 NHMD Copenhagen yes yes sto_265 unidentified unknown unknown wild Haug et al. 2018 fig. 1 NHMD-232175 NHMD Copenhagen yes yes sto_267 unidentified unknown unknown wild / / NHMD-916094 NHMD Copenhagen yes yes sto_268 unidentified unknown unknown wild / / NHMD-232176 NHMD Copenhagen yes yes sto_269 unidentified unknown unknown wild Haug et al. 2016 fig. 8 NHMD-86472 (Old number: ZMUC-CRU-8668) NHMD Copenhagen yes no sto_270 unidentified unknown unknown wild This Paper Fig. 1 K-L NHDM-916095 (Old number: Stat-3955-II-A) NHMD Copenhagen yes no sto_271 unidentified unknown unknown wild / / NHMD-232173 (Old number: Stat-3955-II-B) NHMD Copenhagen yes yes sto_272 unidentified unknown unknown wild / / NHMD-916096 NHMD Copenhagen yes no sto_274 unidentified unknown unknown wild / / NHMD-232181 NHMD Copenhagen yes yes sto_276 unidentified unknown unknown wild / / NHMD-916097 NHMD Copenhagen yes no sto_277 unidentified unknown unknown wild / / NHMD-232161 NHMD Copenhagen yes yes sto_278 unidentified unknown unknown wild Haug et al. 2018 fig. 5 NHMD-232162 NHMD Copenhagen yes yes sto_279 unidentified unknown unknown wild / / NHMD-86475 NHMD Copenhagen yes no sto_280 unidentified unknown unknown wild / / NHMD-232163 NHMD Copenhagen yes yes sto_281 unidentified unknown unknown wild / / NHMD-916098 NHMD Copenhagen yes no sto_282 unidentified unknown unknown wild / / NHMD-232165 NHMD Copenhagen yes yes sto_284 unidentified unknown unknown wild Haug et al. 2016 fig. 5 NHMD-86470 (Old number: ZMUC-CRU-8666) NHMD Copenhagen yes yes sto_285 unidentified unknown unknown wild Haug et al. 2016 fig. 8 NHMD-86471 (Old number: ZMUC-CRU-8667) NHMD Copenhagen yes yes sto_287 unidentified unknown unknown wild Haug et al. 2016 fig. 8 NHMD-86468 (Old number: ZMUC-CRU-8664) NHMD Copenhagen yes no sto_289 unidentified unknown unknown wild / / NHMD-232171 NHMD Copenhagen no yes sto_290 unidentified unknown unknown wild / / NHMD-232160 NHMD Copenhagen yes yes sto_296 unidentified unknown unknown wild / / MNHN-IU-2014-5493C MNHN Paris yes yes sto_297 unidentified unknown unknown wild / / MNHN-IU-2014-5495 MNHN Paris yes yes sto_298 unidentified unknown unknown wild / / MNHN-IU-2014-5498 MNHN Paris yes yes sto_299 unidentified unknown unknown wild / / MNHN-IU-2014-5499 MNHN Paris yes yes sto_300 unidentified unknown unknown wild / / MNHN-IU-2014-5493B MNHN Paris yes yes sto_301 unidentified unknown unknown wild / / MNHN-IU-2014-5509 MNHN Paris yes no sto_302 unidentified unknown unknown wild / / MNHN-IU-2014-5474 MNHN Paris 20° 32' 42'' S ; 55° 40' 53.9976'' E MD32 (REUNION), stat. CP146 yes yes sto_303 unidentified unknown unknown wild / / MNHN-IU-2014-5476 MNHN Paris yes yes sto_304 unidentified unknown unknown wild / / MNHN-IU-2014-5477 MNHN Paris yes yes sto_305 unidentified unknown unknown wild / / MNHN-IU-2014-5488 MNHN Paris yes yes sto_306 unidentified unknown unknown wild / / MNHN-IU-2014-5489 MNHN Paris yes yes sto_307 unidentified unknown unknown wild / / MNHN-IU-2014-5493A MNHN Paris yes yes sto_308 unidentified unknown unknown wild / / MNHN-IU-2014-5494 MNHN Paris yes yes sto_309 unidentified unknown unknown wild / / MNHN-IU-2014-5500 MNHN Paris yes yes sto_311 unidentified unknown unknown wild / / MNHN-IU-2014-5507 MNHN Paris yes yes sto_312 unidentified unknown unknown wild / / MNHN-IU-2014-5511 MNHN Paris yes yes sto_313 unidentified Oratosquilla oratoria lab Hamano 1986 fig. 4 yes yes sto_314 unidentified Oratosquilla oratoria lab Hamano 1986 fig. 5 yes yes sto_315 unidentified Oratosquilla oratoria lab Hamano 1986 fig. 6 yes yes sto_316 unidentified Oratosquilla oratoria lab Hamano 1986 fig. 7 yes yes sto_317 unidentified Oratosquilla oratoria lab Hamano 1986 fig. 8 yes yes sto_318 unidentified Oratosquilla oratoria lab Hamano 1986 fig. 9 yes yes sto_319 unidentified Oratosquilla oratoria lab Hamano 1986 fig. 10 yes yes sto_320 unidentified Oratosquilla oratoria lab Hamano 1986 fig. 11 yes yes sto_321 unidentified Oratosquilla oratoria lab Hamano 1986 fig. 12 yes yes sto_322 unidentified Oratosquilla oratoria lab Hamano 1986 fig. 13 yes yes sto_338 unidentified Squilla hieroglyphica wild Alikunhi 1944 fig. 1 yes no sto_339 unidentified Heterosquilla tricarinata lab Greenwood and Williams 1984 fig. 1 yes no sto_340 unidentified Heterosquilla tricarinata lab Greenwood and Williams 1984 fig. 1 yes no sto_341 unidentified Heterosquilla tricarinata lab Greenwood and Williams 1984 fig. 1 yes no sto_342 unidentified Gonodactylus oerstedii lab Manning and Provenzano 1963 fig. 1 yes yes sto_343 unidentified Gonodactylus oerstedii lab Manning and Provenzano 1963 fig. 3 yes yes sto_344 unidentified Gonodactylus oerstedii lab Manning and Provenzano 1963 fig. 5 yes yes sto_345 unidentified Gonodactylus oerstedii lab Manning and Provenzano 1963 fig. 7 yes yes sto_346 unidentified Chorisquilla tuberculata wild Michel and Manning 1972 fig. 1 yes yes sto_347 unidentified Chorisquilla tuberculata wild Michel and Manning 1972 fig. 3 yes yes sto_348 unidentified Gonodactylus bredini lab Morgan and Goy 1987 fig. 1 yes yes sto_349 unidentified Gonodactylus bredini lab Morgan and Goy 1987 fig. 2 yes yes sto_350 unidentified Gonodactylus bredini lab Morgan and Goy 1987 fig. 3 yes yes sto_351 unidentified Acanthosquilla sp. wild Shanbhogue 1975 fig. 2E yes no sto_352 unidentified Coroniderichthus sp. wild Shanbhogue 1975 fig. 3H yes no sto_353 unidentified Coroniderichthus sp. wild Shanbhogue 1975 fig. 3J yes no sto_354 unidentified Clorida laterilli wild Shanbhogue 1975 fig. 4E yes no sto_355 unidentified Squilla sp. wild Townsley 1953 fig. 22A yes no sto_356 unidentified Squilla sp. wild Townsley 1953 fig. 22B yes no sto_357 unidentified Squilla sp. wild Townsley 1953 fig. 22C yes no sto_358 unidentified Squilla sp. wild Townsley 1953 fig. 22D yes no sto_359 unidentified Pseudosquilla ciliata wild Townsley 1953 fig. 23A yes no sto_360 unidentified Pseudosquilla ciliata wild Townsley 1953 fig. 23B yes yes sto_361 unidentified Pseudosquilla ciliata wild Townsley 1953 fig. 23D no yes sto_362 unidentified Lysiosquilla sp. wild Townsley 1953 fig. 25B no yes sto_363 unidentified Coronida sp. wild Townsley 1953 fig. 26A no yes sto_364 unidentified Coronida sp. wild Townsley 1953 fig. 27A yes no sto_365 unidentified Odontodactylus sp. wild Townsley 1953 fig. 28A no yes sto_366 unidentified Odontodactylus sp. wild Townsley 1954 fig. 28B no yes sto_367 unidentified Oratosquilla oratoria lab Hamano 1986 fig. 3 yes yes sto_368 unidentified unknown unknown wild / / MNHN-IU-2014-5481 MNHN Paris yes yes sto_369 unidentified unknown unknown wild / / MNHN-IU-2014-5483B MNHN Paris yes no sto_370 unidentified unknown unknown wild / / MNHN-IU-2014-5487 MNHN Paris yes yes sto_371 unidentified unknown unknown wild / / MNHN-IU-2014-5502 MNHN Paris yes no sto_372 unidentified unknown unknown wild / / MNHN-IU-2014-5510 MNHN Paris yes yes sto_373 unidentified unknown unknown wild Haug and Haug 2014 fig. 4 NHMD-88528 (Old number: ZMUC-CRU-20243) NHMD Copenhagen yes yes for availability of dorsal and lateral outlines per specimen; Fig. 2). The only exception to this was the group Raninidae, for which no dorsal data was available. To eliminate the influence of left-right asymmetry on the data set in dorsal view, we only reconstructed the left or right half of the shield, depending on which one was preserved better, and then duplicated and mirrored it in anterior-posterior axis and stitched it together to form a whole symmetric shield.

Figure 2.
Schematic figure of data generation process. s1: Reconstructing one half of the shield of a specimen; s2: duplicating, mirroring, and removing background; s3: chain coding the shield; s4: checking of graphical interpretation of chain code for accuracy; s5: transforming chain code into elliptic Fourier descriptor; s6: principal component analysis of elliptic Fourier descriptors of all specimens.

Morphometric conversion

To analyse the outlines of the specimens, an elliptic Fourier transformation was performed on the scaled reconstruction drawings (Fig. 2). Following Iwata and Ukai (2002Hopkins MJ and Gerber S 2017. Morphological disparity. p. 1-12. In: Nuño de la Rosa, L. and Müller, G.B. (eds), Evolutionary Developmental Biology. Springer International Publishing.) and Braig et al. (2019Braig F; Haug JT; Schädel M and Haug C 2019. A new thylacocephalan crustacean from the Upper Jurassic lithographic limestones of southern Germany and the diversity of Thylacocephala. Palaeodiversity, 12: 69-87. DOI: 10.18476/pale.v12.a6
https://doi.org/10.18476/pale.v12.a6...
) we used the SHAPE software (© National Agricultural Research Organization of Japan) to first transform the outlines into vectorised objects, called chain codes. These chain codes consist of numeric values representing the vectorised shape and are then transformed into normalised elliptic Fourier descriptors (EFDs). This step is based on the Fourier transformation of functions, though not applied to functions, but to shapes of natural objects (Iwata and Ukai 2002Hopkins MJ and Gerber S 2017. Morphological disparity. p. 1-12. In: Nuño de la Rosa, L. and Müller, G.B. (eds), Evolutionary Developmental Biology. Springer International Publishing.; Braig et al., 2019Braig F; Haug JT; Schädel M and Haug C 2019. A new thylacocephalan crustacean from the Upper Jurassic lithographic limestones of southern Germany and the diversity of Thylacocephala. Palaeodiversity, 12: 69-87. DOI: 10.18476/pale.v12.a6
https://doi.org/10.18476/pale.v12.a6...
). This step includes alignment, normalization, and scaling, which is important to decrease the influence of size difference in specimens on the analysis.

We decided on the outline-based approach in favor of landmarks, as high-quality landmarks were hard to select for shields apart from spine tips. Furthermore, outline approaches have been found to be equally efficient as landmark approaches (Dujardin et al., 2014Dujardin JP; Kaba D; Solano P; Dupraz M; McCoy KD and Jaramillo-O N 2014. Outline-based morphometrics, an overlooked method in arthropod studies? Infection, Genetics and Evolution, 28: 704-714.).

Statistical analysis

The EFDs representing the specimens were then analysed with a principal component analysis (PCA; e.g., Hotelling, 1933Heimeier D; Lavery S and Sewell MA 2010. Using DNA barcoding and phylogenetics to identify Antarctic invertebrate larvae: Lessons from a large scale study. Marine Genomics, 3(3-4 ): 165-177. DOI: 10.1016/j.margen.2010.09.004
https://doi.org/10.1016/j.margen.2010.09...
; as featured in the SHAPE software package). Component loadings of the PCA are not given numerically using this method, but graphically to understand the change in shield shape. The mean shield shape as well as +/- 2 standard deviations of the mean shield shape in one or the other direction for each principal component are depicted. This imbalance can sometimes create positive/negative shapes which are impossible in nature. Such over-exaggerated shapes occur when some extreme forms are expressed in one direction, but not in the other. Then the extreme form is extrapolated for the other side of the respective component. Therefore, some shapes depicted by the component loadings do not actually exist in the data set, these are always marked as such in the figures. All further investigation of the data set was conducted in the R-statistics environment (ver. 4.1.0; R Core Team, 2021R Core Team 2021. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at: Available at: https://www.R-project.org/ . Accessed on 6 July 2021.
https://www.R-project.org/...
) using the interface R-Studio. Packages used were dispRity (ver. 1.6.0; Guillerme, 2018Guillerme T 2018. dispRity: A modular R package for measuring disparity. Methods in Ecology and Evolution, 9(7): 1755-1763. DOI: 10.1111/2041-210X.13022
https://doi.org/10.1111/2041-210X.13022...
), ggplot2 (ver. 3.3.5; Wickham, 2016Wickham H 2016. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag, New York.), RColorBrewer (ver. 1.1-2; Neuwirth, 2014Neuwirth E 2014. RColorBrewer: ColorBrewer Palettes. R package version 1.1-2. Available at: Available at: https://CRAN.R-project.org/package=RColorBrewer Accessed on 6 July 2021.
https://CRAN.R-project.org/package=RColo...
), readxl (ver. 1.3.1; Wickham and Bryan, 2019Wickham H and Bryan J 2019. readxl: Read Excel Files. R package version 1.3.1. Available at : Available at : https://CRAN.R-project.org/package=readxl Accessed on 6 July 2021.
https://CRAN.R-project.org/package=readx...
), and vegan (ver.2.5-7; Oksanen et al., 2020Oksanen J; Blanchet FG; Friendly M; Kindt R; Legendre P; McGlinn D; Minchin PR; O’Hara RB; Simpson GL; Solymos P; Henry M; Stevens H; Szoecs E and Wagner H 2020. vegan: Community Ecology Package. R package version 2.5-7. Available at: Available at: https://CRAN.R-project.org/package=vegan Accessed on 6 July 2021.
https://CRAN.R-project.org/package=vegan...
). Part of the R-code is after Guillerme et al. (2020Guillerme T; Puttick MN; Marcy AE and Weisbecker V 2020. Shifting spaces: Which disparity or dissimilarity measurement best summarize occupancy in multidimensional spaces? Ecology and Evolution, 10(14): 7261-7275. DOI: 10.1002/ece3.6452
https://doi.org/10.1002/ece3.6452...
), full R-code is provided in App. 2 Appendix 2. R-code used in this study. # R-Code of Braig, F., Haug, C. & Haug, J. T. # Geometric morphometrics uncover phenotypic variability in the shields of wild- # vs. lab-reared eumalacostracan larvae # START WORKFLOW --------------------------------------------------------------- library(ggplot2) library(MASS) library(car) library(vegan) library(tidyverse) library(RColorBrewer) library(dispRity) set.seed(1234) # DATA SETS ------------------------------------------------------------------ # gal_dor <- Dorsal data set of Galatheidae # gal_lat <- Lateral data set of Galatheidae # gal_dorlat <- Dorsal and Lateral data set of Galatheidae combined # hip_dor <- Dorsal data set of Hippoidea # hip_lat <- Lateral data set of Hippoidea # hip_dorlat <- Dorsal and Lateral data set of Hippoidea combined # ran_lat <- Lateral data set of Raninidae # sto_dor <- Dorsal data set of Stomatopoda # sto_lat <- Lateral data set of Stomatopoda # sto_dorlat <- Dorsal and Lateral data set of Stomatopoda combined # PLOTS ------------------------------------------------------------------------ #Plot 2 PC's as basic as possible ggplot(gal_dor, aes(x=PC1, y=PC2, color=origin)) + geom_point() #Plot 2 PC's accoridng to origin with labels and ellipses ggplot(gal_lat, aes(x = PC1, y = PC2, color = origin, label = no)) + geom_point() + scale_color_manual(values=c("purple", "orange")) + geom_text(aes(label=no), hjust = 0, vjust = 1, show.legend = FALSE) + stat_ellipse(geom = 'polygon', alpha = .1, aes(fill = origin)) + scale_fill_manual(values = c("purple", "orange")) + coord_fixed (ratio = 1, xlim = NULL, ylim = NULL, expand = TRUE) + theme_gray() # MORPHOLOGICAL DIVERSITY ANALYSIS---------------------------------------------- data <- data.frame(gal_dor[, 6:18]) #Only numerical data rownames(data) <- 1:nrow(data) galdor_subsets <- custom.subsets(data, group = list("lab" = c(1:35), "wild" = c(36:61))) galdor_bootstrapped <- boot.matrix(data = galdor_subsets, bootstraps = 10000) disparity.metric <- function(matrix) mean(dispRity::displacements(matrix)) galdor_disparity <- dispRity(data = galdor_bootstrapped, metric = disparity.metric) summary(galdor_disparity) plot(galdor_disparity) plot(galdor_disparity, type = "preview") test.dispRity(galdor_disparity, test = adonis.dispRity) #Passing on to # ANOVA function from package package vegan test.dispRity(galdor_disparity, test = t.test, correction = "bonferroni") .

The individual component scores for the different PCAs were visualised using their origin (i.e., wild-caught or lab-reared) for color coding and in the cases of Hippoidea and Raninidae using their phylogeny for symbol coding. To enable interpretation of the morphology beyond only one orientation, the first principal component of the dorsal data set was plotted against the first principal component of the lateral data set. This allowed us to graphically interpret a more complete morphological variation of the animals, not just looking at variation of one orientation (i.e., dorsal or lateral) akin to a 3D representation. All resulting plots are used as proxies for the respective morphospaces. Morphospaces are multi-dimensional spaces that describe the morphology and phenotypic configuration of organisms (Ricklefs and Travis, 1980Rice AL and Ingle RW 1977. “Ship-Wrecked” Raninid and portunid larvae from the south-western Indian Ocean (Decapoda, Brachyura). Crustaceana, 32(1): 94-97.; Gould, 1991Gould SJ 1991. The disparity of the Burgess Shale arthropod fauna and the limits of cladistic analysis: why we must strive to quantify morphospace. Paleobiology, 17: 411-423. DOI: 10.1017/S0094837300010745
https://doi.org/10.1017/S009483730001074...
; Mitteroecker and Huttegger, 2009Minagawa M 1990. Complete larval development of the red frog crab Ranina ranina (Crustacea, Decapoda, Raninidae) reared in the laboratory. Nippon Suisan Gakkaishi, 56(4): 577-589. DOI: 10.2331/suisan.56.577
https://doi.org/10.2331/suisan.56.577...
). For visual inspection they are reduced to two dimensions, that being the first two principal components. For quantification, all effective components are used. “Effective” in this case means that the proportion of total variation described by each of these principal components had a value larger than 1/(number of total analyzed components), in this case 1/99.

Quantification of morphological diversity between groups in the morphospace was achieved by calculating “average displacement” of groups as outlined by Guillerme et al. (2020Guillerme T; Puttick MN; Marcy AE and Weisbecker V 2020. Shifting spaces: Which disparity or dissimilarity measurement best summarize occupancy in multidimensional spaces? Ecology and Evolution, 10(14): 7261-7275. DOI: 10.1002/ece3.6452
https://doi.org/10.1002/ece3.6452...
). Hereby, the ratio between the position of an observation in relation to the centroid of the observations’ group and the centre of the morphospace is calculated as displacement. This measure is then averaged for all observations of a group. The significance of the grouping variable (i.e. lab vs. wild) was tested using PERMANOVA (multivariate analysis of variance; Anderson, 2001Anderson MJ 2001. A new method for non-parametric multivariate analysis of variance. Australian Ecology, 26: 32-46. DOI: 10.1111/j.1442-9993.2001.01070.pp.x
https://doi.org/10.1111/j.1442-9993.2001...
). Advantageous of this approach is that all dimensions or principal components of a data set can be considered simultaneously.

RESULTS

Results of the morphological analysis of Galatheidae

The analysis of Galatheidae resulted in two PCAs, one of the dorsal and one of the lateral data set, with thirteen and twelve effective principal components, respectively, showing the morphological diversity of shield shapes apparent in the data sets. For visual inspection of morphological diversity, we only looked at the first two principal components of every data set due to limitations of graphical representation and the fact that the first two principal components covered most of the variation for all data sets (Galatheidae: dorsal PC1+2 = 80 %, lateral PC1+2 = 75 %; Hippoidea: dorsal PC1+2 = 85 %, lateral PC1+2 = 83 %; Raninidae: lateral PC1+2 = 84 %; Stomatopoda: dorsal PC1+2 = 70 %, lateral PC1+2 = 60 %). Therefore, a precise description is given on the first two components for every data set. The remaining principal components of the data sets will not be explained in detail, but graphical component loadings are given in the appendix (App. 3 Appendix 3. Principal components of Galatheidae from principal component analysis on the shield outline and percentage of total variation in the data set explained by each principal component. A: Dorsal data set. B: Lateral data set. ).

For the morphospace of the dorsal data set, PC1 described the width of the shield and length of spines. Positive values represented rather slim shields with a long rostrum and deep posterior notch, while negative values described wide shields with short rostrum and shallow posterior notch. PC2 described the prominence of the eye notch and posterior spines. Positive values described a wide rostrum base and a deep posterior notch, while negative values described a slim rostrum base and shallow posterior notch, with deep eye notches (Fig. 3A). Specimens from the plankton seemed to plot into the top right of the morphospace, indicating slimmer shields with relatively longer spines. Specimens from laboratory-rearings plotted into the bottom left of the morphospace, indicating bulkier shields with relatively short spines (Fig. 3A).

Figure 3.
Plot of principal components from the PCA on the SHAPE analysis of shield outlines of Galatheidae. A: PC1 plotted against PC2, both from the dorsal analysis. Shapes included are from graphical component loadings and depict the mean shape of the principal component and +/-2 standard deviations of the mean shape. B: PC1 plotted against PC2, both from the lateral analysis. Shapes included are from graphical component loadings and depict the mean shape of the principal component and +/-2 standard deviations of the mean shape.

For the morphospace of the lateral data set, PC1 described the height of the shield, length of spines and prominence of the eye notch. Positive values represented a high shield with a short rostrum and a prominent, strongly inclined, eye notch, while negative values described slim shields with a long rostrum and more pronounced posterior spines and a shallow eye notch that almost appears missing. PC2 described the dorsal outline of the shield. Positive values described a weaker eye notch and posterior dorso-ventrally widened shield (dorsally convex outline), while negative values described a larger and pronounced eye notch and posteriorly slimmer shields (dorsally straighter outline; Fig. 3B). Specimens from the wild plotted on the left side of the morphospace, indicating slimmer shields with longer spines. Specimens from laboratory-rearings plotted on the right side of the morphospace, indicating bulkier shields with relatively short spines but more pronounced eye notches (Fig. 3B).

When incorporating both orientations by plotting PC1 of the dorsal data set against PC1 of the lateral data set, this separation became more apparent (Fig. 4A). Wild-caught specimens plotted on the center to bottom right of the morphospace, indicating slim, flat, and spiny shields. Lab-reared specimens plotted on the top left of the morphospace, indicating bulky and less spiny shields.

Figure 4.
Plot of principal components from the PCA on the SHAPE analysis of shield outlines of Galatheidae and Hippoidea. A: PC1 of the dorsal analysis plotted against PC1 of the lateral analysis of Galatheidae. Shapes included are from graphical component loadings and depict the mean shape of the principal component and +/-2 standard deviations of the mean shape. Color coding: dark grey: shapes of PC1 from the dorsal analysis; light grey: shapes of PC1 of the lateral analysis. B: PC1 of the dorsal analysis plotted against PC1 of the lateral analysis of Hippoidea. Shapes included are from graphical component loadings and depict the mean shape of the principal component and +/-2 standard deviations of the mean shape. Color coding: dark grey: shapes of PC1 from the dorsal analysis; light grey: shapes of PC1 of the lateral analysis; dark red: impossible shapes of PC1 from the dorsal analysis; light red: impossible shapes of PC1 of the lateral analysis.

The morphological diversity analysis of the shields supported the graphical interpretation. Both the dorsal and lateral data set showed a significant influence of the sample origin on the position of the group within the morphospace (Tab. 2).

Table 2.
Results of permutational multivariate analysis of variance (PERMANOVA) on “average displacement” scores of wild-caught vs. laboratory specimens. Significant p-values are marked in bold. Abb.: F: pseudo F-statistic; R²: proportion of explained variation.

Results of the morphological analysis of Hippoidea

The analysis of Hippoidea resulted in two PCAs, one of the dorsal and one of the lateral data set, with eight and ten effective principal components respectively (for component loadings see App. 4 Appendix 4. Principal components of Hippoidea from principal component analysis on the shield outline and percentage of total variation in the data set explained by each principal component. A: Dorsal data set. B: Lateral data set. ).

For the morphospace of the dorsal data set, PC1 described the width of the shield and direction of posterior spines. Positive values described a wide shield in triangular shape with more laterally protruding posterior spines, while negative values described a slim shield with posteriorly protruding posterior spines. PC2 described the presence of posterior spines. Positive values describe an overly thin shield with triangular shape and steep protruding posterior spines, while negative values described a wider elliptic shield with no posterior spines (Fig. 5A). Specimens from the wild seemed to plot rather on the top right of the morphospace, indicating shields with relatively longer spines which also protrude in steeper angles. Specimens from laboratory-rearings plotted rather on the left and bottom of the morphospace, indicating slimmer shields with relatively short spines, especially considering posterior spines (Fig. 5A).

Figure 5.
Plot of principal components from the PCA on the SHAPE analysis of shield outlines of Hippoidea. A: PC1 and PC2 of the dorsal analysis plotted against each other. Shapes included are from graphical component loadings and depict the mean shape of the principal component and +/-2 standard deviations of the mean shape. Color coding: dark grey: possible shapes of dorsal analysis; red: impossible shapes of dorsal analysis. B: PC1 and PC2 of the lateral analysis plotted against each other. Shapes included are from graphical component loadings and depict the mean shape of the principal component and +/-2 standard deviations of the mean shape. Color coding: light grey: possible shapes of lateral analysis; light red: impossible shapes of lateral analysis.

For the morphospace of the lateral data set, PC1 described the overall configuration of the spines. Positive values described a slim shield with a long rostrum and posteriorly protruding posterior spines. Negative values described a higher shield with ventrally protruding posterior spines. PC2 described the dorsal outline of the shield and the rostrum. Positive values described a higher shield (dorsally strongly convex) with shorter rostrum, while negative values described a slimmer shield shape without ventral spines and a longer rostrum (Fig. 5B). Here, no separation between lab-reared and wild-caught specimens was visible. Instead, a separation into the major ingroups of Hippoidea became apparent. Hippidae plotted on the left side of the morphospace, Blepharipodidae in the middle and Albuneidae on the right (Fig. 5B).

When incorporating both orientations, this phylogenetic separation of the three ingroups of Hippoidea was again visible. Larvae of Albuneidae plotted on the top left of the morphospace, larvae of Hippidae on the bottom right and larvae of Blepharipodidae in between (Fig. 4B).

The morphological diversity analysis of the shields showed that only in the dorsal data set, sample origin had a significant influence on the position of the groups within the morphospace (Tab. 2).

Results of the morphological analysis of Raninidae

Due to a lack of dorsal data for specimens, the analysis of Raninidae resulted only in a PCA of the lateral data set with ten effective principal components (for component loadings see App. 5 Appendix 5.: Principal components of Raninidae from principal component analysis on the lateral shield outline and percentage of total variation in the data set explained by each principal component. ).

PC1 of the lateral data set described the height of the shield. Positive values represented a flat shield with long rostrum and posterior spine, while negative values described a high shield with a ventrally prominent eye notch. PC2 described the bending of the shield. Positive values described a smaller shield with convex spines, while negative values described a larger shield with concave spines (Fig. 6). Here, no separation due to sample origin could be seen. Instead, a clear separation between the two species in the data set could be seen (Fig. 6). Representatives of Ranina ranina (Linnaeus, 1758Lindley JA 1998. Diversity, biomass and production of decapod crustacean larvae in a changing environment. Invertebrate Reproduction and Development, 33(2-3): 209-219. DOI: 10.1017/S0025315400050918
https://doi.org/10.1017/S002531540005091...
) and Raninoides benedictiRathbun, 1935R Core Team 2021. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at: Available at: https://www.R-project.org/ . Accessed on 6 July 2021.
https://www.R-project.org/...
plotted in two discrete clusters. The former plotted on the right of the morphospace due to its smaller shield and longer spines. The latter plotted on the left of the morphospace due to its larger shield and shorter spines.

Figure 6.
Plot of principal components from the PCA on the SHAPE analysis of shield outlines of Raninidae. PC1 and PC2 of the lateral analysis plotted against each other. Shapes included are from graphical component loadings and depict the mean shape of the principal component and +/-2 standard deviations of the mean shape. Color coding: dark grey: possible shapes of the lateral analysis; red: impossible shapes of the lateral analysis.

The morphological diversity analysis of the shields showed no significant influence of the sample origin on the position of the groups within the morphospace (Tab. 2).

Results of the morphological analysis of Stomatopoda

The analysis of Stomatopoda resulted in two PCAs, one of the dorsal and one of the lateral data set, with thirteen and fifteen effective principal components, respectively (for component loadings see App. 6 Appendix 6. Principal components of Stomatopoda from principal component analysis on the shield outline and percentage of total variation in the data set explained by each principal component. A: Dorsal data set. B: Lateral data set. ).

For the morphospace of the dorsal data set, PC1 described the width of the shield. Positive values described a slim shield with a long rostrum and deep posterior notch, while negative values described a wide shield with short rostrum and short posterior spines. PC2 described the prominence of spines. Positive values described a rectangular shield shape with short spines, while negative values described a more triangular shape with longer spines (Fig. 7A). Wild-caught specimens extend to the bottom-left and top-left corners of the morphospace, indicating wide shields with steep protruding spines and wide shields with additional anterior spines, respectively. Lab-reared specimens mostly plot in the center of the morphospace, indicating medium sized shields with relatively small spines (Fig. 7A).

Figure 7.
Plot of principal components (PCs) from the principal component analysis (PCA) on the SHAPE analysis of shield outlines of Stomatopoda. Shapes included are from graphical component loadings and depict the mean shape of the principal component and +/-2 standard deviations of the mean shape. A: PC1 plotted against PC2 from the dorsal analysis. B: PC1 plotted against PC2 from the lateral analysis. Color coding: dark grey: possible shapes of the dorsal analysis; red: impossible shapes of the dorsal analysis; light grey: possible shapes of lateral analysis; light red: impossible shapes of lateral analysis.

For the morphospace of the lateral data set, PC1 described the presence of dorsal and posterior spines. Positive values described a shield with a dorsal spine but lack of posterior spines, while negative values described a shield without a dorsal spine but posterior spines present. PC2 described how flat the shield was. Positive values described a slim shield with long and straight rostrum and posterior spines, while negative values described a higher shield with a convex rostrum and prominent eye notch (Fig. 7B). Here, an imbalance of the sample sizes for wild vs. lab specimens of three to one becomes apparent (Fig. 7B). Lab-reared specimens plot mostly in the center of the morphospace and in the bottom left, indicating flatter shields, with smaller rostrum and dorsal spine to bulky shields with extended posterior spines. Wild-caught specimens plot in the top two quarters of the morphospace and the bottom right, indicating shields with extended posterior and dorsal spines to flat shields with smaller dorsal spines and long rostrums (Fig. 7B).

When incorporating both orientations, sample sizes were more balanced. The group of wild-caught larvae plotted diagonally across the morphospace from the top left of the morphospace to the bottom right (Fig. 8). This indicated wide shields and dorsal spines on the top left and slim shields with long spines on the bottom right. The lab-reared larvae plotted on the bottom right of the morphospace also indicating slim shields with long spines. Some outliers made an exception for the lab-reared specimens, plotting on the bottom middle of the morphospace (Fig. 8).

Figure 8.
Plot of principal components from the PCA on the SHAPE analysis of shield outlines of Stomatopoda. PC1 of the dorsal analysis plotted against PC1 of the lateral analysis. Shapes included are from graphical component loadings and depict the mean shape of the principal component and +/-2 standard deviations of the mean shape. Color coding: dark grey: shapes of PC1 from the dorsal analysis; light grey: shapes of PC1 of the lateral analysis; dark red: impossible shapes of PC1 from the dorsal analysis; light red: impossible shapes of PC1 of the lateral analysis.

The morphological diversity analysis of the shields showed a significant influence of the sample origin on the position of the groups within the morphospace, both for the dorsal and lateral data set (Tab. 2).

DISCUSSION

Limitations of the approach

Gathering data for this analysis posed a challenge, as high-quality depictions of larvae in more than one orientation in literature were scarce. Often, only one orientation was available, reconstruction drawings in the literature were of low quality (e.g., Seridji, 1995Seridji R 1988. Some planktonic larval stages of Albunea carabus (L., 1758) (Crustacea, Decapoda, Anomura). Journal of Natural History, 22(5): 1293-1300. DOI: 10.1080/00222938800770791
https://doi.org/10.1080/0022293880077079...
), or scales were missing, rendering potential material useless for this study. This affected the total sample size of Raninidae the most. The group Stomatopoda was affected, as well. Due to our previous work with the group (e.g., Haug et al., 2016Haug C; Ahyong ST; Wiethase JH; Olesen J and Haug JT 2016. Extreme morphologies of mantis shrimp larvae. Nauplius, 24: e2016020. DOI: 10.1590/2358-2936e2016020
https://doi.org/10.1590/2358-2936e201602...
; 2018Haug C; Wagner P; Bjarsch JM; Braig F and Haug JT 2018. A new “extreme” type of mantis shrimp larva. Nauplius, 26: e2018019. DOI: 10.1590/2358-2936e2018019
https://doi.org/10.1590/2358-2936e201801...
), we had a large sample size for wild-caught specimens from our own documentation efforts, but a comparatively small sample size for laboratory specimens. A result of not every specimen having a depiction of both orientations, was that the dorsal or lateral data sets included more specimens than the combined one.

Another issue was low taxonomic coverage. Across groups, the taxonomic coverage ranges between 5 to 10 percent, mostly because specimens from museum collections (mostly wild-caught material) could not be identified to species level. Therefore, the number of actual taxonomic diversity covered is likely higher for each group than stated here. In the data set of Stomatopoda, many specimens are wild-caught, originating from museum collections and could not be identified to species level. The inability to associate larvae with adults is a general problem for mantis shrimps (Tang et al., 2010Stuck KC and Truesdale FM 1986. Larval and early postlarval development of Lepidopa benedicti Schmitt, 1935 (Anomura: Albuneidae) reared in the laboratory. Journal of Crustacean Biology, 6(1): 89-110. DOI: 10.1163/193724086X00758
https://doi.org/10.1163/193724086X00758...
). This taxonomic uncertainty led to a correlation of phylogeny and sample origin for mantis shrimps in our analysis.

Phylogenetic diversity also influenced the data, especially for Hippoidea. To reduce the effect, a smaller ingroup could be chosen, e.g., Hippidae instead of Hippoidea. However, the current availability of data in the literature makes this approach not feasible (e.g., only 13 specimens of Hippidae were available in dorsal and lateral view).

Expressed morphological diversity of larvae

The graphical analysis of the dorsal and lateral data set of Galatheidae showed separation between specimens from the wild and the lab. Wild-caught larvae show slimmer shields with longer rostrums and longer posterior spines (Figs. 3, 4). Laboratory-reared larvae show shorter rostrums and shorter poster spines with wider shields and less variation in morphology (Figs. 3, 4). This expressed phenotypic variability of the group Galatheidae agrees with our expectation. The statistical analysis, incorporating all principal components of a data set into one analysis, also showed that sample origin had a significant effect on the position of groups within the respective morphospaces (Tab. 2).

The graphical analysis of the dorsal and lateral data set of Hippoidea did not show a strong separation between lab-reared and wild-caught larvae. Wild-caught larvae show shields with laterally protruding spines, lab-reared specimens show more posteriorly protruding spines and especially forms with no posterior visible spines in dorsal view (Fig. 5). This difference in morphology of the groups is in line with an earlier observation of Braig et al. (2021Braig F; Zuluaga VP; Haug C and Haug JT 2021. Diversity of hippoidean crabs - considering ontogeny, quantifiable morphology and phenotypic plasticity. Nauplius, 29: e2021027. DOI: 10.1590/2358-2936e2021027
https://doi.org/10.1590/2358-2936e202102...
). A stronger separation in the data sets is actually caused by the shield configuration of the three ingroups, which becomes apparent when coding for phylogenetic ingroups of Hippoidea (Fig. 4B). Larvae of Albuneidae have two posterior dorsal spines reaching posteriorly, while those of Hippidae have posterior ventral spines reaching ventrally (Knight, 1967Kiørboe T 2011. How zooplankton feed: mechanisms, traits and trade‐offs. Biological Reviews, 86(2): 311-339. DOI: 10.1111/j.1469-185X.2010.00148.x
https://doi.org/10.1111/j.1469-185X.2010...
; Stuck and Truesdale, 1986Spitzner F; Giménez L; Meth R; Harzsch S and Torres G 2019. Unmasking intraspecific variation in offspring responses to multiple environmental drivers. Marine Biology, 166(8): 1-13. DOI: 10.1007/s00227-019-3560-y
https://doi.org/10.1007/s00227-019-3560-...
). Larvae of Blepharipodidae lastly have no posterior spines (Johnson and Lewis, 1942Iwata H and Ukai Y 2002. SHAPE: A computer program package for quantitative evaluation of biological shapes based on elliptic Fourier descriptors. Journal of Heredity, 93: 384-385. DOI: 10.1093/jhered/93.5.384
https://doi.org/10.1093/jhered/93.5.384...
; Fig. 4B). The statistical analysis showed a significant effect of sample origin on the group position within the morphospace of the dorsal data set, but not the lateral data set.

The graphical analysis of the Raninidae data set did not reveal any phenotypic variability. A lack of dorsal data was added to the fact that only two identified species made up the data set, Ranina ranina and Raninoides benedicti. The morphological differences between those two species were discerned by the analysis of the lateral data set when adding phylogenetic coding (Fig. 6). Representatives of R. benedicti showed prominent shields and short spines, while representatives of R. ranina showed slimmer shields and longer spines. The statistical analysis showed no significant effect of sample origin (Tab. 2).

The graphical analysis of the dorsal and the lateral data set of Stomatopoda showed, respectively, a larger morphological diversity expressed by wild-caught larvae compared to laboratory-reared larvae (Figs. 7, 8). While wild-caught specimens expressed dorsal spines and wider shields as well as slimmer shields and longer spines, lab-reared specimens mostly showed slim shields with small dorsal spines. Therefore, the difference between groups mostly lies within the dorsal and lateral spines that wild-caught larvae express more dominantly than lab-reared ones. The statistical analysis showed a significant effect of sample origin on the group position within the morphospace of the dorsal and lateral data sets (Tab. 2).

Observations from literature

In the literature, phenotypic variability of Galatheidae has been mentioned considering larval development, which has been described to be variable and can lead to a different number of larval stages (e.g., Christiansen and Anger, 1990Christiansen ME and Anger K 1990. Complete larval development of Galathea intermedia Lilljeborg reared in laboratory culture (Anomura: Galatheidae). Journal of Crustacean Biology, 10(1): 87-111. DOI: 10.1163/193724090X00276
https://doi.org/10.1163/193724090X00276...
).

The developmental cycle in Hippoidea has been generally described as variable (Knight, 1967Kiørboe T 2011. How zooplankton feed: mechanisms, traits and trade‐offs. Biological Reviews, 86(2): 311-339. DOI: 10.1111/j.1469-185X.2010.00148.x
https://doi.org/10.1111/j.1469-185X.2010...
). Especially concerning comparison between wild-caught and lab-reared larvae, the former having been described to be further developed compared to the latter, when looking at equivalent larval stages (Knight, 1967Kiørboe T 2011. How zooplankton feed: mechanisms, traits and trade‐offs. Biological Reviews, 86(2): 311-339. DOI: 10.1111/j.1469-185X.2010.00148.x
https://doi.org/10.1111/j.1469-185X.2010...
). Yet, this increased maturity of wild-caught larvae concerned the setation on some appendages and general body growth, not the shield specifically.

For Raninidae, phenotypic variability has been reported in the literature. Knight (1968Knight MD 1967. The larval development of the sand crab Emerita rathbunae Schmitt (Decapoda, Hippidae). Pacific Science, 21: 58-76.) mentioned that representatives of R. benedicti from the wild have longer spines on the shield than those reared in the laboratory. This observation coincides with our expectation of phenotypic variability between wild-caught and lab-reared larvae. However, we could not replicate this observation quantitatively in our analysis. Laboratory specimens of Raninidae have also been reported to be smaller than wild-caught larvae of the same larval stage (Knight, 1968Knight MD 1967. The larval development of the sand crab Emerita rathbunae Schmitt (Decapoda, Hippidae). Pacific Science, 21: 58-76.).

Phenotypic variability in eumalacostracan larvae

The phenotypic variability found in five of the seven data sets does mostly match with our expectations. For Galatheidae, specimens from the wild express longer spines than laboratory-caught specimens. For Hippoidea, at least dorsally, wild-caught specimens show longer, more laterally protruding posterior spines. For Stomatopoda, wild-caught specimens show wider shields with dorsal spines. Therefore, the overall pattern of the groups seems to be indeed a more prominently spiny appearance for plankton specimens.

The driver behind this phenotypic variability is still unclear. It however seems to be the case that larvae become larger in the wild than in the lab (Knight, 1967Kiørboe T 2011. How zooplankton feed: mechanisms, traits and trade‐offs. Biological Reviews, 86(2): 311-339. DOI: 10.1111/j.1469-185X.2010.00148.x
https://doi.org/10.1111/j.1469-185X.2010...
; 1968Knight MD 1967. The larval development of the sand crab Emerita rathbunae Schmitt (Decapoda, Hippidae). Pacific Science, 21: 58-76.). A larger body size makes it easier for visual predators, such as juvenile fishes, to spot the larvae (O’Brien, 1987O’Brien WJ 1979. The predator-prey interaction of planktivorous fish and zooplankton: recent research with planktivorous fish and their zooplankton prey shows the evolutionary thrust and parry of the predator-prey relationship. American scientist, 67(5): 572-581.; Anger, 2001Anger K 2001. The biology of decapod crustacean larvae. Lisse, A.A. Balkema Publishers. 420p.; Kiørboe, 2011Johnson MW and Lewis WM 1942. Pelagic larval stages of the sand crabs Emerita analoga (Stimpson), Blepharipoda occidentalis Randall, and Lepidopa myops Stimpson. The Biological Bulletin, 83(1): 67-87.). Therefore, larger spines could be a defensive mechanism against predation. Using spines as a defensive mechanism was already described in some crab zoeas (Morgan, 1990Morgan SG 1990. Impact of planktivorous fishes on dispersal, hatching, and morphology of estuarine crab larvae. Ecology, 71(5): 1639-1652. DOI: 10.2307/1937574
https://doi.org/10.2307/1937574...
). On the other hand, reaching a certain size threshold can protect from predation by different predators (O’Brien, 1979O’Brien WJ 1979. The predator-prey interaction of planktivorous fish and zooplankton: recent research with planktivorous fish and their zooplankton prey shows the evolutionary thrust and parry of the predator-prey relationship. American scientist, 67(5): 572-581.; Leonie, 2017Lebour MV 1931. The larvae of the Plymouth Galatheidae. II. Galathea squamifera and Galathea intermedia. Journal of the Marine Biological Association of the United Kingdom, 17(2): 385-390.). These size thresholds can be reached faster by increasing relative spine length.

A larger body size also has the effect of increasing body weight and therefore faster sinking rates of the larvae. To counteract this, the larva would either have to spend more energy on locomotion to maintain its position in the water column or increase its hydrostatic updrift. The latter could be achieved by larger spines as well (Anger, 2001Anger K 2001. The biology of decapod crustacean larvae. Lisse, A.A. Balkema Publishers. 420p.). Lastly, the larger spines could be a general side effect of larger body size. However, it was also mentioned that spines in some groups were relatively longer as well, not just absolutely (Knight, 1968Knight MD 1967. The larval development of the sand crab Emerita rathbunae Schmitt (Decapoda, Hippidae). Pacific Science, 21: 58-76.). Here, a connection could be seen to the relative development of the larvae. Authors before have observed that larvae from the wild would be further developed than larvae from the lab (Knight, 1967Knight MD 1967. The larval development of the sand crab Emerita rathbunae Schmitt (Decapoda, Hippidae). Pacific Science, 21: 58-76.; Christiansen and Anger, 1990Christiansen ME and Anger K 1990. Complete larval development of Galathea intermedia Lilljeborg reared in laboratory culture (Anomura: Galatheidae). Journal of Crustacean Biology, 10(1): 87-111. DOI: 10.1163/193724090X00276
https://doi.org/10.1163/193724090X00276...
). Relatively longer spines could be one expression of this maturity.

A discrepancy in observed morphological differences is that while larvae of Galatheidae from the wild show slim shields rather than wide ones (Fig. 4A), larvae of Stomatopoda from the wild do also show wide shield forms. These wide shields often belong to “extreme types” of mantis shrimp larvae (“balloon shaped” or “flying saucer shaped”; Haug et al., 2016Haug C and Haug JT 2014. Defensive enrolment in mantis shrimp larvae (Malacostraca: Stomatopoda). Contributions to Zoology, 83: 185-194. DOI: 10.1163/18759866-08303003
https://doi.org/10.1163/18759866-0830300...
; 2018Haug C; Wagner P; Bjarsch JM; Braig F and Haug JT 2018. A new “extreme” type of mantis shrimp larva. Nauplius, 26: e2018019. DOI: 10.1590/2358-2936e2018019
https://doi.org/10.1590/2358-2936e201801...
), of which there are not as many in the lab-reared data set. Such extreme shapes have not been described in Galatheidae so far. We cannot exclude that these “extreme types” of mantis shrimp larvae are representatives of species only found in the wild-caught sample, making it a phylogenetic signal rather than due to sample origin. But the lab-reared data set covers all larger ingroups of Stomatopoda and has larvae from both ‘spearer’ and ‘smasher’-type mantis shrimps (two types of mantis shrimps are usually differentiated due to the morphology of the adult major raptorial appendages; Patek et al., 2004Patek SN; Korff WL and Caldwell RL 2004. Deadly strike mechanism of a mantis shrimp. Nature, 428: 819-820. DOI: 10.1038/428819a
https://doi.org/10.1038/428819a...
; Patek and Caldwell, 2005Patek SN and Caldwell RL 2005. Extreme impact and cavitation forces of a biological hammer: strike forces of the peacock mantis shrimp Odontodactylus scyllarus. Journal of Experimental Biology, 208: 3655-3664. DOI: 10.1242/jeb.01831
https://doi.org/10.1242/jeb.01831...
). Therefore, this seems insufficient to be the sole explanation of the observed morphological diversity.

CONCLUSION

Some of the investigated eumalacostracan larvae show phenotypic variability in their shield morphology. This variability especially concerns shield spines, which are more prominent in wild-caught larvae than in lab-reared larvae. Possible reasons could be decreasing predation pressure or increasing hydrostatic updrift, but further studies are needed to evaluate these possibilities. In the groups where we could not find such patterns, strong phylogenetic signals could be identified as a reason. Larger sample sizes of smaller phylogenetic groups are needed in these cases to investigate phenotypic variability. However, this approach is so far not possible due to a lack of material in the literature. This unavailability of morphological data is somewhat puzzling, since crustacean larvae make up a large part of the zooplankton and are important components in food webs. Yet, morphological data on its larger representatives is not widely available. We therefore hope that this study emphasizes the importance of careful documentation and consideration of larval material and stimulates the accumulation of more quantifiable data.

ACKNOWLEDGEMENTS

We thank all students from LMU Munich who helped provide data for this study, especially Amir Fotouhi and Victor Posada Zuluaga for the data on Hippoidea, and Ian Haase for the data on Raninidae and Stomatopoda. We are grateful to all museum curators and collection managers for providing access to the material, namely Oliver Coleman (Berlin), Jørgen Olesen, Danny Eibye-Jacobsen, and Tom Schiøtte (all Copenhagen), the curating people from the crustacean collection at the Senckenberg Naturmuseum Frankfurt, Laure Corbari (Paris), Martin Schwentner (now Vienna, formerly Hamburg) and Nancy Mercado Salas (Hamburg). We thank two anonymous reviewers whose comments greatly improved the manuscript. We thank all providers of free software and Open-Access tools. We are grateful to Prof. J. Matthias Starck, LMU Munich, for long-standing support.

REFERENCES

  • Anderson MJ 2001. A new method for non-parametric multivariate analysis of variance. Australian Ecology, 26: 32-46. DOI: 10.1111/j.1442-9993.2001.01070.pp.x
    » https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x
  • Anger K 2001. The biology of decapod crustacean larvae Lisse, A.A. Balkema Publishers. 420p.
  • Anger K 2006. Contributions of larval biology to crustacean research: a review. Invertebrate Reproduction & Development, 49(3): 175-205. DOI: 10.1080/07924259.2006.9652207
    » https://doi.org/10.1080/07924259.2006.9652207
  • Bar-On YM and Milo R 2019. The biomass composition of the oceans: a blueprint of our blue planet. Cell, 179(7): 1451-1454. DOI: 10.1016/j.cell.2019.11.018
    » https://doi.org/10.1016/j.cell.2019.11.018
  • Braig F; Haug JT; Schädel M and Haug C 2019. A new thylacocephalan crustacean from the Upper Jurassic lithographic limestones of southern Germany and the diversity of Thylacocephala. Palaeodiversity, 12: 69-87. DOI: 10.18476/pale.v12.a6
    » https://doi.org/10.18476/pale.v12.a6
  • Braig F; Zuluaga VP; Haug C and Haug JT 2021. Diversity of hippoidean crabs - considering ontogeny, quantifiable morphology and phenotypic plasticity. Nauplius, 29: e2021027. DOI: 10.1590/2358-2936e2021027
    » https://doi.org/10.1590/2358-2936e2021027
  • Brandão MC; Freire AS and Burton RS 2016. Estimating diversity of crabs (Decapoda: Brachyura) in a no-take marine protected area of the SW Atlantic coast through DNA barcoding of larvae. Systematics and Biodiversity, 14(3): 288-302. DOI: 10.1080/14772000.2016.1140245
    » https://doi.org/10.1080/14772000.2016.1140245
  • Brown EA; Chain FJ; Crease TJ; MacIsaac HJ and Cristescu M 2015. Divergence thresholds and divergent biodiversity estimates: can metabarcoding reliably describe zooplankton communities? Ecology and Evolution, 5(11): 2234-2251. DOI: 10.1002/ece3.1485
    » https://doi.org/10.1002/ece3.1485
  • Bucklin A, Lindeque PK; Rodriguez-Ezpeleta N; Albaina A and Lehtiniemi M 2016. Metabarcoding of marine zooplankton: prospects, progress and pitfalls. Journal of Plankton Research, 38(3): 393-400. DOI: 10.1093/plankt/fbw023
    » https://doi.org/10.1093/plankt/fbw023
  • Christiansen ME and Anger K 1990. Complete larval development of Galathea intermedia Lilljeborg reared in laboratory culture (Anomura: Galatheidae). Journal of Crustacean Biology, 10(1): 87-111. DOI: 10.1163/193724090X00276
    » https://doi.org/10.1163/193724090X00276
  • Criales MM and Anger K 1986. Experimental studies on the larval development of the shrimps Crangon crangon and C. allmanni. Helgoländer Meeresuntersuchungen, 40: 241-265. DOI: 10.1007
    » https://doi.org/10.1007
  • da Silva GB; Hazin HG; Hazin FHV and Vaske T Jr. 2019. Diet composition of bigeye tuna (Thunnus obesus) and yellowfin tuna (Thunnus albacares) caught on aggregated schools in the western equatorial Atlantic Ocean. Journal of Applied Ichthyology, 35(5): 1111-1118. DOI: 10.1111/jai.13949
    » https://doi.org/10.1111/jai.13949
  • Diaz GA 1998. Description of the last seven pelagic larval stages of Squilla sp. (Crustacea, Stomatopoda). Bulleting of Marine Science, 62(3): 753-762.
  • Dujardin JP; Kaba D; Solano P; Dupraz M; McCoy KD and Jaramillo-O N 2014. Outline-based morphometrics, an overlooked method in arthropod studies? Infection, Genetics and Evolution, 28: 704-714.
  • Eiler SM; Haug C and Haug JT 2016. Detailed description of a giant polychelidan eryoneicus-type larva with modern imaging techniques (Eucrustacea, Decapoda, Polychelida). Spixiana, 39: 39-60.
  • Fagetti E and Campodonico I 1971. Larval development of the red crab Pleuroncodes monodon (Decapoda Anomura: Galatheidae) under laboratory conditions. Marine Biology, 8(1): 70-81. DOI: 10.1007/BF00349348
    » https://doi.org/10.1007/BF00349348
  • Fonghoy C 2015. Ontogeny and larval development of sand crab, Emerita sp. (Decapoda: Anomura: Hippidae) reared in laboratory. Bangkok, Chulalongkorn University, Department of Marine Science, Master’s Thesis, 88p. Available at: Available at: http://cuir.car.chula.ac.th/handle/123456789/60930 Accessed on 15 February 2020. [Unpublished]
    » http://cuir.car.chula.ac.th/handle/123456789/60930
  • Fujita Y 2007. First zoeas of two shallow-water galatheids, Lauriea gardineri (Laurie, 1926) and Phylladiorhynchus integrirostris (Dana, 1853) (Crustacea: Decapoda: Anomura: Galatheidae). Proceedings of the Biological Society of Washington, 120(1): 74-85. DOI: 10.2988/0006-324X(2007)120[74:FZOTSG]2.0.CO;2
    » https://doi.org/10.2988/0006-324X(2007)120[74:FZOTSG]2.0.CO;2
  • Fujita Y and Shokita S 2005. The complete larval development of Sadayoshia edwardsii (Decapoda: Anomura: Galatheidae) described from laboratory‐reared material. Journal of Natural History, 39(12): 865-886. DOI: 10.1080/00222930410001671264
    » https://doi.org/10.1080/00222930410001671264
  • Fujita Y; Baba K and Shokita S 2001. Larval development of Galathea inflata Potts, 1915 (Decapoda: Anomura: Galatheidae) described from laboratory-reared material. Crustacean Research, 30: 111-132. DOI: 10.18353/crustacea.30.0_111
    » https://doi.org/10.18353/crustacea.30.0_111
  • Gamô S 1979. Notes on a giant stomatopod larva taken South-East of Mindanao, Philippines (Crustacea). Scientific Reports of the Yokohama National University, 2: 11-18.
  • Gould SJ 1991. The disparity of the Burgess Shale arthropod fauna and the limits of cladistic analysis: why we must strive to quantify morphospace. Paleobiology, 17: 411-423. DOI: 10.1017/S0094837300010745
    » https://doi.org/10.1017/S0094837300010745
  • Greenwood JG and Williams BG 1984. Larval and early post-larval stages in the abbreviated development of Heterosquilla tricarinata (Claus, 1871) (Crustacea, Stomatopoda). Journal of Plankton Research, 6(4): 615-635. DOI: 10.1093/plankt/6.4.615
    » https://doi.org/10.1093/plankt/6.4.615
  • Guillerme T 2018. dispRity: A modular R package for measuring disparity. Methods in Ecology and Evolution, 9(7): 1755-1763. DOI: 10.1111/2041-210X.13022
    » https://doi.org/10.1111/2041-210X.13022
  • Guillerme T; Puttick MN; Marcy AE and Weisbecker V 2020. Shifting spaces: Which disparity or dissimilarity measurement best summarize occupancy in multidimensional spaces? Ecology and Evolution, 10(14): 7261-7275. DOI: 10.1002/ece3.6452
    » https://doi.org/10.1002/ece3.6452
  • Gurney R 1942. Larvae of decapod Crustacea. Ray Society, 129: 1-306.
  • Haug C and Haug JT 2014. Defensive enrolment in mantis shrimp larvae (Malacostraca: Stomatopoda). Contributions to Zoology, 83: 185-194. DOI: 10.1163/18759866-08303003
    » https://doi.org/10.1163/18759866-08303003
  • Haug C; Ahyong ST; Wiethase JH; Olesen J and Haug JT 2016. Extreme morphologies of mantis shrimp larvae. Nauplius, 24: e2016020. DOI: 10.1590/2358-2936e2016020
    » https://doi.org/10.1590/2358-2936e2016020
  • Haug C; Wagner P; Bjarsch JM; Braig F and Haug JT 2018. A new “extreme” type of mantis shrimp larva. Nauplius, 26: e2018019. DOI: 10.1590/2358-2936e2018019
    » https://doi.org/10.1590/2358-2936e2018019
  • Haug JT; Haug C and Ehrlich M 2008. First fossil stomatopod larva (Arthropoda: Crustacea) and a new way of documenting Solnhofen fossils (Upper Jurassic, Southern Germany). Palaeodiversity, 1: 103-109.
  • Hayashi KI and Hamano T 1984. The complete larval development of Caridina japonica De Man (Decapoda, Caridea, Atyidae) reared in the laboratory. Zoological Science, 1(4): 571-589.
  • Heimeier D; Lavery S and Sewell MA 2010. Using DNA barcoding and phylogenetics to identify Antarctic invertebrate larvae: Lessons from a large scale study. Marine Genomics, 3(3-4 ): 165-177. DOI: 10.1016/j.margen.2010.09.004
    » https://doi.org/10.1016/j.margen.2010.09.004
  • Hotelling H 1933. Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology, 24(6): 417-441. DOI: 10.1037/h0070888
    » https://doi.org/10.1037/h0070888
  • Hopkins MJ and Gerber S 2017. Morphological disparity. p. 1-12. In: Nuño de la Rosa, L. and Müller, G.B. (eds), Evolutionary Developmental Biology Springer International Publishing.
  • Iwata H and Ukai Y 2002. SHAPE: A computer program package for quantitative evaluation of biological shapes based on elliptic Fourier descriptors. Journal of Heredity, 93: 384-385. DOI: 10.1093/jhered/93.5.384
    » https://doi.org/10.1093/jhered/93.5.384
  • Johnson MW and Lewis WM 1942. Pelagic larval stages of the sand crabs Emerita analoga (Stimpson), Blepharipoda occidentalis Randall, and Lepidopa myops Stimpson. The Biological Bulletin, 83(1): 67-87.
  • Kiørboe T 2011. How zooplankton feed: mechanisms, traits and trade‐offs. Biological Reviews, 86(2): 311-339. DOI: 10.1111/j.1469-185X.2010.00148.x
    » https://doi.org/10.1111/j.1469-185X.2010.00148.x
  • Knight MD 1967. The larval development of the sand crab Emerita rathbunae Schmitt (Decapoda, Hippidae). Pacific Science, 21: 58-76.
  • Knight MD 1968. The larval development of Raninoides benedicti Rathbun (Brachyura, Raninidae), with notes on the Pacific records of Raninoides laevis (Latreille). Crustaceana, suppl. 2: 145-169.
  • Konishi K 1987. Larval development of the Spiny Sand Crab Lophomastix japonica (Durufle, 1889) (Crustacea, Anomura, Albuneidae) under laboratory conditions. Publications of the Seto Marine Biological Laboratory, 32(1-3): 123-139.
  • Konishi K and Saito T 2000. Larvae of the deep-sea squat lobsters, Agononida incerta (Henderson, 1888) and Munida striola Macpherson and Baba, 1993 with notes on larval morphology of the family (Crustacea: Anomura: Galatheidae). Zoological Science, 17(7): 1021-1029. DOI: 10.2108/zsj.17.1021
    » https://doi.org/10.2108/zsj.17.1021
  • Lebour MV 1930. The larvae of the Plymouth Galatheidae. I. Munida banffica, Galathea strigosa and Galathea dispersa. Journal of the Marine Biological Association of the United Kingdom, 17(1): 175-188. DOI: 10.1017/S0025315400051821
    » https://doi.org/10.1017/S0025315400051821
  • Lebour MV 1931. The larvae of the Plymouth Galatheidae. II. Galathea squamifera and Galathea intermedia. Journal of the Marine Biological Association of the United Kingdom, 17(2): 385-390.
  • Leoni B 2017. Zooplankton predators and preys: Body size and stable isotope to investigate the pelagic food web in a deep lake (Lake Iseo, Northern Italy). Journal of Limnology, 76(1): 85-93.
  • Lindley JA 1998. Diversity, biomass and production of decapod crustacean larvae in a changing environment. Invertebrate Reproduction and Development, 33(2-3): 209-219. DOI: 10.1017/S0025315400050918
    » https://doi.org/10.1017/S0025315400050918
  • Linnaeus C 1758. Systema Naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis Editio decima, reformata [10th revised edition]. Laurentius Salvius: Holmiae, vol. 1: 824 pp.
  • MacLeod J; Keller W and Paterson AM 2018. Crustacean zooplankton in lakes of the far north of Ontario, Canada. Polar Biology, 41(6): 1257-1267. DOI: 10.1007/s00300-018-2282-9
    » https://doi.org/10.1007/s00300-018-2282-9
  • Magalhães C and Walker I 1988. Larval development and ecological distribution of central Amazonian palaemonid shrimps (Decapoda, Caridea). Crustaceana, 55(3): 279-292.
  • Manning RB 1991. Stomatopod Crustacea collected by the Galathea Expedition, 1950-1952, with a list of Stomatopoda known from depths below 400 meters. Smithsonian Contributions to Zoology, 521: 1-16.
  • Manning RB and Provenzano AJ Jr. 1963. Studies on development of stomatopod Crustacea I. Early larval stages of Gonodactylus oerstedii Hansen. Bulletin of Marine Science, 13(3): 467-487.
  • Michel A and Manning RB 1972. The pelagic larvae of Chorisquilla tuberculata (Borradaile, 1907) (Stomatopoda). Crustaceana, 22(2): 113-126.
  • Minagawa M 1990. Complete larval development of the red frog crab Ranina ranina (Crustacea, Decapoda, Raninidae) reared in the laboratory. Nippon Suisan Gakkaishi, 56(4): 577-589. DOI: 10.2331/suisan.56.577
    » https://doi.org/10.2331/suisan.56.577
  • Mitteroecker P and Huttegger SM 2009. The concept of morphospaces in evolutionary and developmental biology: mathematics and metaphors. Biological Theory, 4(1): 54-67. DOI: 10.1162/biot.2009.4.1.54
    » https://doi.org/10.1162/biot.2009.4.1.54
  • Morgan SG 1990. Impact of planktivorous fishes on dispersal, hatching, and morphology of estuarine crab larvae. Ecology, 71(5): 1639-1652. DOI: 10.2307/1937574
    » https://doi.org/10.2307/1937574
  • Morgan SG and Goy JW 1987. Reproduction and larval development of the mantis shrimp Gonodactylus bredini (Crustacea: Stomatopoda) maintained in the laboratory. Journal of Crustacean Biology, 7(4): 595-618. DOI: 10.1163/193724087X00379
    » https://doi.org/10.1163/193724087X00379
  • Morgan SG and Provenzano AJ Jr. 1979. Development of pelagic larvae and postlarva of Squilla empusa (Crustacea, Stomatopoda), with an assessment of larval characters within the Squillidae. Fishery Bulletin, 77(1): 61-90.
  • Mujica A; González-Cornejo F; Meerhoff E and Yannicelli B 2019. Larval development of Phylladiorhynchus pusillus (Henderson, 1885) (Decapoda, Anomura, Galatheidae). Latin American Journal of Aquatic Research, 47(5): 774-783. DOI: 10.3856/vol47-issue5-fulltext-6
    » https://doi.org/10.3856/vol47-issue5-fulltext-6
  • Neuwirth E 2014. RColorBrewer: ColorBrewer Palettes R package version 1.1-2. Available at: Available at: https://CRAN.R-project.org/package=RColorBrewer Accessed on 6 July 2021.
    » https://CRAN.R-project.org/package=RColorBrewer
  • O’Brien WJ 1979. The predator-prey interaction of planktivorous fish and zooplankton: recent research with planktivorous fish and their zooplankton prey shows the evolutionary thrust and parry of the predator-prey relationship. American scientist, 67(5): 572-581.
  • O’Brien WJ 1987. Planktivory by freshwater fish: Thrust and parry in the pelagia, p. 3-17. In: Kerfoot, W.C. and Sih, A. (eds), Predation, direct and indirect impacts on aquatic communities University Press of New England.
  • Oksanen J; Blanchet FG; Friendly M; Kindt R; Legendre P; McGlinn D; Minchin PR; O’Hara RB; Simpson GL; Solymos P; Henry M; Stevens H; Szoecs E and Wagner H 2020. vegan: Community Ecology Package. R package version 2.5-7. Available at: Available at: https://CRAN.R-project.org/package=vegan Accessed on 6 July 2021.
    » https://CRAN.R-project.org/package=vegan
  • Patek SN and Caldwell RL 2005. Extreme impact and cavitation forces of a biological hammer: strike forces of the peacock mantis shrimp Odontodactylus scyllarus. Journal of Experimental Biology, 208: 3655-3664. DOI: 10.1242/jeb.01831
    » https://doi.org/10.1242/jeb.01831
  • Patek SN; Korff WL and Caldwell RL 2004. Deadly strike mechanism of a mantis shrimp. Nature, 428: 819-820. DOI: 10.1038/428819a
    » https://doi.org/10.1038/428819a
  • Provenzano AJ Jr. and Manning RB 1978. Studies on development of stomatopod Crustacea II. The later larval stages of Gonodactylus oerstedii Hansen reared in the laboratory. Bulletin of Marine Science, 28(2): 297-315.
  • R Core Team 2021. R: A language and environment for statistical computing R Foundation for Statistical Computing, Vienna, Austria. Available at: Available at: https://www.R-project.org/ Accessed on 6 July 2021.
    » https://www.R-project.org/
  • Rathbun MJ 1935. Preliminary descriptions of seven new species of oxystomatous and allied crabs. Proceedings of the Biological Society of Washington, 48: 1-4.
  • Rice AL and Ingle RW 1977. “Ship-Wrecked” Raninid and portunid larvae from the south-western Indian Ocean (Decapoda, Brachyura). Crustaceana, 32(1): 94-97.
  • Ricklefs RE and Travis J 1980. A morphological approach to the study of avian community organization. The Auk, 97(2): 321-338. DOI: 10.1093/auk/97.2.321
    » https://doi.org/10.1093/auk/97.2.321
  • Rötzer MAIN and Haug JT 2015. Larval development of the European lobster and how small heterochronic shifts lead to a more pronounced metamorphosis. International Journal of Zoology, art: 345172. DOI: 10.1155/2015/345172
    » https://doi.org/10.1155/2015/345172
  • Rudolf NR; Haug C and Haug JT 2016. Functional morphology of giant mole crab larvae: a possible case of defensive enrollment. Zoological Letters, 2: 17. DOI: 10.1186/s40851-016-0052-5
    » https://doi.org/10.1186/s40851-016-0052-5
  • Sakai K 1971. The larval stages of Ranina ranina (Linnaeus) (Crustacea, Decapoda, Raninidae) reared in the laboratory, with a review of uncertain zoeal larvae attributed to Ranina. Publications of the Seto Marine Biological Laboratory, 19(2-3): 123-156.
  • Seridji R 1988. Some planktonic larval stages of Albunea carabus (L., 1758) (Crustacea, Decapoda, Anomura). Journal of Natural History, 22(5): 1293-1300. DOI: 10.1080/00222938800770791
    » https://doi.org/10.1080/00222938800770791
  • Seridji R 1995. On a collection of decapod larvae from the Gulf of Aqaba off the Jordanian coast, I. Thalassinidea and Anomura. Crustaceana, 68(8): 281-320. DOI: 10.1163/156854095X00494
    » https://doi.org/10.1163/156854095X00494
  • Shanbhogue SL 1975. Descriptions of stomatopod larvae from the Arabian Sea with a list of stomatopod larvae and adults from the Indian Ocean and a key for their identification. Part I. Journal of Marine Biological Association of India, 17(2): 196-238.
  • Sharma BK; Noroh N and Sharma S 2017. Rotifers (Rotifera: Eurotatoria) from floodplain lakes of the Dibru Saikhowa Biosphere Reserve, upper Assam, northeast India: ecosystem diversity and biogeography. International Journal of Aquatic Biology, 5(2): 79-94. DOI: 10.22034/ijab.v5i2.281
    » https://doi.org/10.22034/ijab.v5i2.281
  • Siddiqui FA and Ghory FS 2006. Complete larval development of Emerita holthuisi Sankolli, 1965 (Crustacea: Decapoda: Hippidae) reared in the laboratory. Turkish Journal of Zoology, 30(2): 121-135.
  • Sorell JM; Varela JL; Goni N; Macías D; Arrizabalaga H and Medina A 2017. Diet and consumption rate of Atlantic bluefin tuna (Thunnus thynnus) in the Strait of Gibraltar. Fishery Research, 188: 112-120. DOI: 10.1016/j.fishres.2016.12.012
    » https://doi.org/10.1016/j.fishres.2016.12.012
  • Spitzner F; Giménez L; Meth R; Harzsch S and Torres G 2019. Unmasking intraspecific variation in offspring responses to multiple environmental drivers. Marine Biology, 166(8): 1-13. DOI: 10.1007/s00227-019-3560-y
    » https://doi.org/10.1007/s00227-019-3560-y
  • Stuck KC and Truesdale FM 1986. Larval and early postlarval development of Lepidopa benedicti Schmitt, 1935 (Anomura: Albuneidae) reared in the laboratory. Journal of Crustacean Biology, 6(1): 89-110. DOI: 10.1163/193724086X00758
    » https://doi.org/10.1163/193724086X00758
  • Tang RW; Yau C and Ng W 2010. Identification of stomatopod larvae (Crustacea: Stomatopoda) from Hong Kong waters using DNA barcodes. Molecular Ecology Resources, 10: 439-448. DOI: 10.1111/j.1755-0998.2009.02794.x
    » https://doi.org/10.1111/j.1755-0998.2009.02794.x
  • Thatje S; Bacardit R, Romero MC, Tapella F and Lovrich GA 2001. Description and key to the zoeal stages of the Campylonotidae (Decapoda, Caridea) from the Magellan Region. Journal of Crustacean Biology, 21(2): 492-505. DOI: 10.1163/20021975-99990151
    » https://doi.org/10.1163/20021975-99990151
  • Wickham H 2016. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag, New York.
  • Wickham H and Bryan J 2019. readxl: Read Excel Files. R package version 1.3.1. Available at : Available at : https://CRAN.R-project.org/package=readxl Accessed on 6 July 2021.
    » https://CRAN.R-project.org/package=readxl
  • WoRMS Editorial Board 2021. World register of marine species. Available at: Available at: http://www.marinespecies.org at VLIZ Accessed on 28 February 2021. DOI: 10.14284/170
    » https://doi.org/10.14284/170» http://www.marinespecies.org at VLIZ
  • Consent for publication

    All authors declare that they have reviewed the content of the manuscript and gave their consent to submit the document.
  • Funding and grant disclosures

    Research visits to MNHN Paris and ZMUC Copenhagen of CH and JTH have been made possible by grants from the European Commission’s (FP 6) Integrated Infrastructure Initiative program SYNTHESYS (FR-TAF-5175, FR-TAF-5181, DK-TAF-2591). Research visits to MfN Berlin and CeNaK Hamburg were supported by the faculty of Biology, LMU and by Lehre@LMU. This study was funded by the German Research Foundation under DFG Ha 6300/3-3 and by the Volkswagen Foundation in the frame of a Lichtenberg professorship.
  • Data availability

    All study data are included in the article and/or supplementary material.
  • Study association

    This study is a follow-up on Braig et al. (2021Braig F; Zuluaga VP; Haug C and Haug JT 2021. Diversity of hippoidean crabs - considering ontogeny, quantifiable morphology and phenotypic plasticity. Nauplius, 29: e2021027. DOI: 10.1590/2358-2936e2021027
    https://doi.org/10.1590/2358-2936e202102...
    ).
  • Study permits

    Not applicable.

Appendix

Appendix 1.
Material used in this study. Where major group affiliation of a specimen was left as “unidentified”, the criterium was not used in the analysis.

Appendix 2.

R-code used in this study.

# R-Code of Braig, F., Haug, C. & Haug, J. T.

# Geometric morphometrics uncover phenotypic variability in the shields of wild-

# vs. lab-reared eumalacostracan larvae

# START WORKFLOW ---------------------------------------------------------------

library(ggplot2)

library(MASS)

library(car)

library(vegan)

library(tidyverse)

library(RColorBrewer)

library(dispRity)

set.seed(1234)

# DATA SETS ------------------------------------------------------------------

# gal_dor <- Dorsal data set of Galatheidae

# gal_lat <- Lateral data set of Galatheidae

# gal_dorlat <- Dorsal and Lateral data set of Galatheidae combined

# hip_dor <- Dorsal data set of Hippoidea

# hip_lat <- Lateral data set of Hippoidea

# hip_dorlat <- Dorsal and Lateral data set of Hippoidea combined

# ran_lat <- Lateral data set of Raninidae

# sto_dor <- Dorsal data set of Stomatopoda

# sto_lat <- Lateral data set of Stomatopoda

# sto_dorlat <- Dorsal and Lateral data set of Stomatopoda combined

# PLOTS ------------------------------------------------------------------------

#Plot 2 PC's as basic as possible

ggplot(gal_dor, aes(x=PC1, y=PC2, color=origin)) +

geom_point()

#Plot 2 PC's accoridng to origin with labels and ellipses

ggplot(gal_lat, aes(x = PC1, y = PC2, color = origin, label = no)) +

geom_point() +

scale_color_manual(values=c("purple", "orange")) +

geom_text(aes(label=no), hjust = 0, vjust = 1, show.legend = FALSE) +

stat_ellipse(geom = 'polygon', alpha = .1, aes(fill = origin)) +

scale_fill_manual(values = c("purple", "orange")) +

coord_fixed (ratio = 1, xlim = NULL, ylim = NULL, expand = TRUE) +

theme_gray()

# MORPHOLOGICAL DIVERSITY ANALYSIS----------------------------------------------

data <- data.frame(gal_dor[, 6:18]) #Only numerical data

rownames(data) <- 1:nrow(data)

galdor_subsets <- custom.subsets(data, group = list("lab" = c(1:35),

"wild" = c(36:61)))

galdor_bootstrapped <- boot.matrix(data = galdor_subsets, bootstraps = 10000)

disparity.metric <- function(matrix) mean(dispRity::displacements(matrix))

galdor_disparity <- dispRity(data = galdor_bootstrapped,

metric = disparity.metric)

summary(galdor_disparity)

plot(galdor_disparity)

plot(galdor_disparity, type = "preview")

test.dispRity(galdor_disparity, test = adonis.dispRity) #Passing on to

# ANOVA function from package package vegan

test.dispRity(galdor_disparity, test = t.test, correction = "bonferroni")

Appendix 3.

Principal components of Galatheidae from principal component analysis on the shield outline and percentage of total variation in the data set explained by each principal component. A: Dorsal data set. B: Lateral data set.

Appendix 4.

Principal components of Hippoidea from principal component analysis on the shield outline and percentage of total variation in the data set explained by each principal component. A: Dorsal data set. B: Lateral data set.

Appendix 5.:

Principal components of Raninidae from principal component analysis on the lateral shield outline and percentage of total variation in the data set explained by each principal component.

Appendix 6.

Principal components of Stomatopoda from principal component analysis on the shield outline and percentage of total variation in the data set explained by each principal component. A: Dorsal data set. B: Lateral data set.

Edited by

Associate Editor:

Luis Miguel Pardo

Data availability

Data citations

WoRMS Editorial Board 2021. World register of marine species. Available at: Available at: http://www.marinespecies.org at VLIZ Accessed on 28 February 2021. DOI: 10.14284/170

Publication Dates

  • Publication in this collection
    23 Jan 2023
  • Date of issue
    2023

History

  • Received
    13 Jan 2022
  • Accepted
    19 July 2022
Sociedade Brasileira de Carcinologia Instituto de Biociências, UNESP, Campus Botucatu, Rua Professor Doutor Antônio Celso Wagner Zanin, 250 , Botucatu, SP, 18618-689 - Botucatu - SP - Brazil
E-mail: editor.nauplius@gmail.com