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Ageneiosus is the most widely distributed genus of the family Auchenipteridae among South American river basins. Although
chromosome studies in the family are scarce, this genus has the largest number of analyzed species, with 2n = 54 to 56
chromosomes, differing from the rest of the family (2n = 58). This study aimed to analyze Ageneiosus inermis from the
Araguaia River basin. The diploid number found was of 56 chromosomes. Heterochromatin was allocated in terminal region of
most chromosomes, plus a pericentromeric heterochromatic block in pair 1, a pair distinguished by size in relation to other
chromosomes pairs. AgNORs were detected in only one submetacentric chromosome pair, which was confirmed by FISH. 5S
rDNA was present in only one metacentric chromosome pair. Hybridization with [TTAGGG]n sequence marked the telomeres
of all chromosomes, in addition to an ITS in the proximal region of the short arm of pair 1. The repetitive [GATA]n sequence was
dispersed, with preferential location in terminal region of the chromosomes. Ageneiosus has a genomic organization somewhat
different when compared to other Auchenipteridae species. Evidences indicate that a chromosomal fusion originated the first
metacentric chromosome pair in A. inermis, rearrangement which may be a basal event for the genus.

Ageneiosus é o gênero da família Auchenipteridae mais amplamente distribuído em bacias da América do Sul. Apesar dos estudos
cromossômicos nesta família serem escassos, este gênero tem o maior número de espécies analisadas, com número diploide
variando de 54 a 56 cromossomos, o que difere do restante da família (2n = 58). Este estudo objetivou analisar Ageneiosus inermis
da bacia do rio Araguaia. O número diploide encontrado foi de 56 cromossomos. A heterocromatina se mostrou localizada na região
terminal da maioria dos cromossomos, além de um bloco heterocromático pericentromérico no par 1, um par facilmente distinguível
no cariótipo pelo seu maior tamanho quando comparado aos outros pares do complemento. AgRONs foram detectadas em somente
um par de cromossomos submetacêntricos, que foi confirmado pela FISH. 5S rDNA se mostrou presente em somente um par de
cromossomos metacêntricos. A hibridização com a sequência [TTAGGG]n marcou os telômeros de todos os cromossomos, além de
um ITS (sequência telomérica intersticial) na região proximal do braço curto do par 1. A sequência repetitiva [GATA]n se mostrou
dispersa, com localização preferencial na região terminal dos cromossomos. Ageneiosus apresenta uma organização genômica um
pouco diferente quando comparada a outras espécies de Auchenipteridae. As evidências indicam que uma fusão cromossômica
originou o primeiro par de cromossomos metacêntricos de A. inermis, rearranjo que parece ser um evento basal para o gênero.
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Introduction

Among Siluriformes, Auchenipteridae includes a group
of fish endemic to the Neotropical region, specifically rivers
of Central and South America hydrographic basins. According
to Ferraris (2007), this family includes approximately 90 species
distributed in 20 genera, 74 of which have been cataloged for

the Brazilian territory (Akama & Sarmento-Soares, 2007).
Furthermore, an increasing number of descriptions of new
species for this family have been occurring recently, like the
recent description of Ageneiosus uranophthalmus from the
rivers of Central Amazonia (Ribeiro & Py-Daniel, 2010) and
other six species that formally described for this genus
(Ribeiro, 2011).
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Cytogenetic studies in Auchenipteridae are still scarce,
comprising species just from the Ageneiosus, Auchenipterus,
Glanidium, and Parauchenipterus genera. Ageneiosus
inermis from Catalão Lake presents a diploid number of 54
chromosomes (Celeste M. Nakayama, pers. commun.),
whereas another population of this species and Ageneiosus
atronasus (cited as A. brevifilis), both from Solimões River
(Fenocchio & Bertollo, 1992), and Ageneiosus brevis and
Ageneiosus ucayalensis, both from Catalão Lake (Santos &
Nakayama, 2011), have the diploid number of 56
chromosomes. However, species from other genera that were
cytogenetically studied, as Glanidium ribeiroi,
Parauchenipterus galeatus and Auchenipterus osteomystax
(cited as A. nuchalis) have 58 chromosomes (Fenocchio &
Bertollo, 1992; Ravedutti & Júlio Jr., 2001; Fenocchio et al.,
2008; Lui et al., 2009; Lui et al., 2010).

The main chromosomal rearrangement that can lead to
decreased chromosome number is fusion. The occurrence of
a centric fusion event between two chromosomes, telocentric
or acrocentric, creating a metacentric chromosome is called a
Robertsonian fusion (Robertson, 1916). These rearrangements
occur altering an extremely important structure of the
chromosome, the telomere. This specialized structure, located
in the terminal portion of the chromosome, is considered
important for chromosomal stability and integrity (Zakian,
1997), and for this kind of rearrangement to occur, it is
fundamental either the elimination or inactivation of the
telomeres (Slijepcevic, 1998). According to the
aforementioned author, the explanation of such
rearrangements has three possible hypotheses as
consequence: 1) inactivation of the telomerase enzyme, 2)
chromosomal breakage in the satellite sequence adjacent to
the telomere, or 3) inactivation of the telomere. It is notable
that only if the latter explanation occurs it would be possible
to maintain the structure of the telomeric sequence in an
interstitial region (ITS). These rearrangements are among the
most important events in karyotype evolution of mammals
(Holmquist & Dancis, 1979), and some interesting examples
are found in the evolution of fish groups (Giuliano-Caetano,
1998; Margarido & Moreira-Filho, 2008). In Auchenipteridae,
only Ageneiosus has species with diploid number different
from 58 (i.e., 54 or 56), thus it is possible that Robertsonian
rearrangements may be involved with the chromosomal
evolution of the group.

Ageneiosus is the genus that presents the highest amount
of chromosomal data in Auchenipteridae. Ageneiosus inermis is
the species with the largest distribution in South America, being
in almost every portion east of the Andes (Ribeiro, 2011), and it
is the species that presents more chromosomal studies (e.g.,
Fenocchio & Bertollo, 1992; Santos & Nakayama, 2011), with 2n
= 54 or 56 chromosomes, which is not found for any other genus
of Auchenipteridae. Thus, Ageneiosus is an interesting model to
study chromosomal evolution in Auchenipteridae. This study
aimed to analyze A. inermis from the Araguaia river basin and
test the hypothesis that chromosomal fusions can be related to
the origin and diversification of Ageneiosus.

Material and Methods

Chromosomal analysis was performed on 19 specimens (6
males and 13 females) of Ageneiosus inermis from the Araguaia
River basin, city of Aragarças - GO, Brazil (15°54’00.1”S
52º15’11.4”W). The specimens were deposited in the fish
collection of the Museu de Zoologia, Universidade de São
Paulo (MZUSP 109796).

Metaphasic chromosomes were obtained from the anterior
kidney (Bertollo et al., 1978; Foresti et al., 1993) and classified
as metacentric (m), submetacentric (sm), subtelocentric (st) and
acrocentric (a), according to the ratio of arms (Levan et al.,
1964). The fundamental number (FN) was calculated
considering metacentric chromosomes (m), submetacentric (sm)
and subtelocentric (st) as having two arms, and acrocentric
chromosomes (a) as having only one chromosomic arm. The
heterochromatic distribution pattern was obtained according
to Sumner (1972), with modifications (Lui et al., 2012). The
nucleolar organizing regions (AgNORs) were obtained using
the method described by Howell & Black (1980). Both methods
were applied sequentially, after conventional chromosomal
staining with Giemsa (sequential analysis).

The fluorescence in situ hybridization (FISH) was
performed according to Pinkel et al. (1986), using 18S rDNA
(Hatanaka & Galetti Jr., 2004), 5S rDNA (Martins et al., 2000),
[TTAGGG]n and [GATA]n probes which were amplified without
DNA template for the reaction as described by Ijdo et al. (1991).
The 18S rDNA probe was labeled with biotin-16-dUTP, by nick
translation according to the manufacturer’s instruction (Biotin
Nick Translation mix - Roche). The 5S rDNA probe was labeled
with digoxigenin 11-dUTP by Nick translation according to the
manufacturer’s instruction (Dig 11 Nick Translation mix - Roche).
The [TTAGGG]n and [GATA]n sequences were labeled by
Polymerase Chain Reaction (PCR), using biotin-16-dUTP
(Roche Applied Science). All the hybridizations were performed
with 77% stringency (200 ng from each probe, 50% deionized
formamide, 10% dextran sulphate, 2xSSC; pH 7.0 - 7.2). The
chromosomes were analyzed using an Olympus BX51
epifluorescence microscope. The software DP2-BSW
(Olympus) was used for image capture.

Results

The diploid number found for A. inermis was 56
chromosomes (32m + 16sm + 4st + 4a, NF = 108) (Fig. 1a).
Heterochromatin was observed in most of the terminal regions
of chromosomes, with heterochromatic blocks showing
themselves strongly labeled in some chromosomes (Fig. 1b).
In addition, a heterochromatic block was detected in the
pericentromeric region in pair 1 (Figs. 1b-3b). This pair stands
out among the other chromosome pairs of the complement
due to its significantly larger size.

The silver nitrate staining demonstrated simple NORs
allocated in the terminal region of the short arm of
submetacentric pair 20, coincident with a heterochromatic
block (Fig. 1, in box). FISH with 18S rDNA probe confirmed
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Fig. 1. Karyotypes of Ageneiosus inermis stained with Giemsa (a) and sequentially C-banded (b). The AgNORs bearing
chromosomes pair is presented in the box.

the results revealed by silver nitrate staining (Fig. 2a) and the
hybridizations with 5S rDNA probe showed only a pair with
this marker, present in the short arm of metacentric pair 4, also
coincident with the heterochromatic block (Fig. 2a). FISH with
telomeric probe revealed all the telomeric regions marked, in
addition to an Interstitial Telomeric Site (ITS) in the proximal

region of the short arm of pair 1 (Fig. 2b). The hybridization
with the repetitive sequence [GATA]n showed that this marker
is dispersed throughout the genome of the species, with a
preferential location in the terminal region of the chromosomes;
however, a lesser amount was also present in the interstitial
regions (Fig. 2d).
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Discussion

According to Ribeiro (2011), Ageneiosus is the more
diverse and widely distributed genus of Auchenipteridae,
and A. inermis is the species of this genus that has the
largest distribution in the river basins of South America.
The diploid number (2n = 56) found for the population of A.
inermis analyzed in this work is equal to the one found for a
population of the Solimões River (Fenocchio & Bertollo,
1992) (Amazon basin); however, in the population of Catalão
Lake (Amazon basin), a lower diploid number (2n = 54) was
found (Santos & Nakayama, 2011). Despite the conservation
of the diploid number between the population of the
Solimões River and the population of the present study,
there are some small differences related to the karyotypic
constitution that may be due to translocations and/or
pericentric inversions, a situation commonly observed in
other fish species, for example Rhamdia quelen
(Heptapteridae) (Garcia et al., 2010; Martinez et al., 2011),
Parauchenipterus galeatus (Auchenipteridae) (Lui et al.,
2010), Hoplias malabaricus (Erythrinidae) (Blanco et al.,
2010), Pimelodus maculatus (Pimelodidae) (Mazzuchelli et
al., 2007; Treco et al., 2008), Hypostomus ancistroides
(Loricariidae) (Bueno et al., 2012, 2013), among others.

The few chromosomal studies in Auchenipteridae
suggest that the diploid number of 58 chromosomes is a
characteristic of the group (Ravedutti & Júlio Jr., 2001). Except
for species of Ageneiosus, which have a diploid number
different from 58, the other genera that were analyzed until
this moment (Auchenipterus ,  Glanidium  and
Parauchenipterus) confirm the greater occurrence of this
diploid number in the group. According to Pinna (1998), the
Doradidae family is considered sister group of
Auchenipteridae. Although the diploid number in Doradidae
vary from 56 to 66 chromosomes (Eler et al., 2007), the modal
diploid number is 58 chromosomes, found in 14 out of the 16
previously analyzed species (Eler et al., 2007; Milhomem et
al., 2008). According to Milhomem et al. (2008), the diploid
number of 58 should be considered basal to Doradidae. Thus,
it is likely that the same diploid number (58) should be also
considered basal for Auchenipteridae.

The Auchenipteridae species of the Auchenipterus,
Glanidium and Parauchenipterus genera analyzed by C-
banding showed a pattern of heterochromatin distribution
preferentially in the terminal regions, which seems to be a
feature of the family. However, the Ageneiosus genus differs
from this pattern, being that two aspects can be highlighted:
1) the heterochromatic regions of the Ageneiosus species

Fig. 2. Karyotype of Ageneiosus inermis hybridized with (a) 5S rDNA (digoxigenin, red) and 18S rDNA (FITC, green). Metaphases
of Ageneiosus inermis hybridized with (b) [TTAGGG]n telomeric sequence and with (d) [GATA]n repeats. The arrows indicate
the metacentric chromosomal pair 1, which was originated by fusion.
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showed themselves strongly labeled, unlike other species
of Auchenipteridae, where they are normally shown pallid,
and 2) the first metacentric pair shows a strongly marked
pericentromeric block (Fig. 1). Although these
heterochromatic blocks are more conspicuous, the
localization preferentially in the terminal regions of most
chromosomes of the karyotype (which is a characteristic of
Auchenipteridae) was maintained.

The available data in the literature for hybridization with
18S rDNA probe for Auchenipteridae are restricted to
Parauchenipterus galetaus (Lui et al., 2009; Lui et al., 2010)
and Glanidium ribeiroi (Fenocchio et al., 2008), which
always confirmed the results presented by silver
impregnation of only one marked pair. According to Ravedutti
& Júlio Jr. (2001), simple NORs seem to be a feature of
Auchenipteridae. Physical mapping of 5S rDNA data are
restricted to P. galetaus, which has sites located in the
interstitial position of two submetacentric pairs, being in
the short arm of one pair and in the long arm of the other
(Lui et al., 2010). The location in the interstitial region of the
short arm of the metacentric pair 4 on A. inermis suggests
that this pair may correspond to the chromosomal pair of P.
galetaus that present the 5S rDNA site in the same position,
that is, on the short arm. Furthermore, the region where the
5S rDNA site was detected was coincident with a
heterochromatic block.

FISH with [GATA]n and [TTAGGG]n repetitive sequences
provided interesting information about the genome of A.
inermis. Regarding the first element, it was initially
discovered by Epplen et al. (1982), and several subsequent
studies showed that this sequence is conserved in different
species, including humans (Srivastava et al., 2008), and
seems to be associated to sex determination and evolution
of sex chromosomes in snake groups (Jones & Singh, 1985).
Although no sex chromosome system has been described
in Auchenipteridae, this highly dispersed sequence found
in A. inermis is a new factor to the group, which must be
further exploited in other species. The hybridization with
the [GATA]n sequence showed correspondence with the
heterochromatin in the terminal region of almost all
chromosomes, also being present in lower amount in
interstitial regions, and coincident with the unique C-band
in the pericentromeric region (pair 1). This situation in which
repetitive elements have been found widely dispersed in
the genomes is relatively common and has been observed
in other fish species recently (e.g., Mazzuchelli & Martins,
2009; Teixeira et al., 2009; Ferreira et al., 2011).

Indications of chromosomal rearrangements like fusions
are common in vertebrates, as already detected in a lot of
different groups, and in most of cases it is possible to detect
telomerics interstitials sites (Meyne et al., 1990), although
not in others (e.g. in Imparfinis hollandi, Margarido &
Moreira-Filho, 2008). The hybridizations with telomeric
sequences marked terminal regions of all chromosomes,
additionally detecting an interstitial site on the short arm of
the metacentric pair 1 near the centromere (Fig. 2b; Fig. 3).

The ITS found in the studied population is a strong evidence
that a chromosomal fusion event is related to the
diversification of Auchenipteridae, more specifically in the
Ageneiosus genus. The metacentric pair that suffered fusion
in A. inermis can be easily distinguished in the karyotype of
this species because its size is almost double compared to
the other chromosomes of the complement. Analyzing the
karyotypes available in the literature for other species of
the genus, A. atronasus, A. inermis (Fenocchio & Bertollo,
1992) and A. dentatus, A. inermis, A. ucayalensis (Santos &
Nakayama, 2011), for example, it is also possible to identify
a chromosome pair significantly larger than the others from
the karyotype, which seems to be shared among the
previously studied species of the Ageneiosus and the species
of this paper.

According to Ribeiro (2011), the species belonging to this
genus are divided into two clades containing, respectively,
six and thirteen species. Among the species analyzed by
cytogenetic methods, A. atronasus is present in the first
branch (clade with six species), while A. dentatus, A. inermis
and A. ucayalensis are present in the second branch (clade
with thirteen species). This information from the phylogeny
(showing that the species with chromosomal studies are
present in the two major clades of the genus), in addition to
the information that all species of Ageneiosus with
chromosomal data have diploid numbers lower than 58
chromosomes, and contain the easily distinguishable large
chromosome in the karyotype, provides subsidies to propose
that this evident fusion event in A. inermis between two
acrocentric pairs (Fig. 3) may represent a basal rearrangement
for the genus.

There is a species of Ageneiosus present in drainages
west of the Andes, A. pardalis, which is endemic to trans-
Andine rivers. The existence of this species in this region
suggests that the origin of the Ageneiosus genus must have
occurred before the elevation of the northern portion of the
Andes. According to Lundberg et  al .  (1998), the
geomorphological events that would have originated these
trans-Andine basins date from 8 and 11.8 million years ago,
thus the cytogenetical analysis of specimens from this
species could be very interesting to confirm this hypothesis.

According to Slijepcevic (1998), there are three possible
molecular events that would enable the occurrence of a
chromosomal fusion, as mentioned in the introduction,
however, only one includes the structural maintenance of
the telomeric sequence (as observed in this work by ITS
detection) which is the loss of telomere function. In this
context, and according to the aforementioned author, there
are at least three possible explanations for the loss of
telomere function: 1) loss of function of telomere associated
proteins, 2) loss of function as a result of changes in
chromatin structure (e.g. decondensation of this region) and
3) temporary inactivation of the telomerase gene(s) in germ
line cells. The investigation about the cause of this
rearrangement would be extremely complex, however it is
likely that the loss of telomere function, not mattering its
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specific origin, is the cause of the rearrangements found in
A. inermis, since the ITS was observed.

Thus, the genome of the Ageneiosus species appears to
have a little different organization when compared to other
species of Auchenipteridae, due to the heterochromatin
pattern, 5S rDNA and the lower diploid number. These factors
added to the evidence of fusion in pair 1 and the derived
condition of the genus in phylogenies based on
morphological data suggest that the chromosomal
evolutionary processes in Ageneiosus differs from the rest
of the family, with a less conserved chromosomal evolution
than the other studied genera. Furthermore, it is likely that
the chromosomal fusion that originated pair 1 in A. inermis
could be a basal event for the genus.
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