Rhamdia quelen (silver catfish) and Leporinus obtusidens (piava) were exposed to a commercial formulation Roundup(r), a glyphosate-based herbicide at concentrations of 0.2 or 0.4 mg/L for 96 h. The effects of the herbicide were analyzed on the alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities and glucose in plasma, glucose and protein in the mucus layer, nucleotide hydrolysis in the brain, and protein carbonyl in the liver. The parameters were chosen, owing to a lack of information concerning integrated analysis, considering oxidative damage parameters, liver damage, and effects on the mucus layer composition and triphosphate diphosphohydrolase (NTPDase) activities. Plasmatic glucose levels were reduced in both species, whereas the transaminase activities (ALT and AST) increased after exposure to the herbicide. Herbicide exposure increased protein and glucose levels in the mucus layer in both species. There was a reduction in both NTPDase and ecto-5'-nucleotidase activity in the brain of piava, and increased enzyme activity in silver catfish at both concentrations tested. The species showed an increase in protein carbonyl in the liver after exposure to both concentrations of the glyphosate. Our results demonstrated that exposure to Roundup(r) caused liver damage, as evidenced by increased plasma transaminases and liver protein carbonyl in both of the fish species studied. The mucus composition changed and hypoglycemia was detected after Roundup(r) exposure in both species. Brain nucleotide hydrolysis showed a different response for each fish species studied. These parameters indicated some important and potential indicators of glyphosate contamination in aquatic ecosystems.
Fish; Mucus; Nucleotidases; Plasma; Protein carbonyl