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Dams are one of the main threats to Neotropical potamodromous fish, causing 
blockages of migratory routes and loss of breeding areas in an increasing number 
of drainage systems. In this scenario, current data argue that the maintenance of 
free-flowing tributaries along fragmented watersheds would be an important 
strategy to the migratory fish conservation, both in panmixia situations and in 
scenarios with different coexisting stocks, as already reported for Prochilodus 
lineatus. This study analyzed microsatellite loci and mitochondrial haplotypes in 
samples of P. lineatus obtained in different years along the Cinzas River basin, as 
well as in the Capivara Reservoir (largest Reservoir in the Paranapanema main 
channel, upper Paraná River) and in the Tibagi River, all connected by free 
stretches, aiming to investigate the contributions of the Cinzas River basin to 
the population dynamics of migratory fish in the Capivara reservoir region. Both 
markers detected high genetic diversity levels and indicated different genetic 
stocks of P. lineatus along the Cinzas River basin, suggesting some temporal 
genetic structuring, as well as the mixture of these stocks in the sample from the 
Capivara reservoir and from other points, corroborating the relationships among 
stocks in this reservoir and its tributaries.
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Stocks of Prochilodus lineatus in Cinzas River

Barragens são umas das principais ameaças para peixes potamódromos 
Neotropicais, causando bloqueios de rotas migratórias e perdas de áreas de 
reprodução em um número crescente de sistemas de drenagem. Neste cenário, 
dados atuais defendem que a manutenção de tributários de fluxo livre em bacias 
hidrográficas fragmentadas seria uma importante estratégia na conservação de 
peixes migradores, tanto em situações de panmixia quanto em cenários com 
diferentes estoques coexistindo, tal como já relatado para Prochilodus lineatus. 
Este estudo analisou locos microssatélites e haplótipos mitocondriais em amostras 
de P. lineatus obtidas em diferentes anos ao longo da bacia do rio das Cinzas, 
no reservatório de Capivara (maior reservatório na calha principal do rio 
Paranapanema, alto rio Paraná) e no rio Tibagi, todos conectados por trechos 
livres, visado investigar as contribuições da bacia do rio das Cinzas na dinâmica 
populacional de peixes migradores na região do reservatório de Capivara. Ambos 
os marcadores detectaram altos níveis de diversidade genética e indicaram 
diferentes estoques de P. lineatus ao longo da bacia do rio das Cinzas, sugerindo 
alguma estruturação genética temporal, bem como a mistura destes estoques na 
amostra do reservatório de Capivara e de outros pontos, corroborando as relações 
de estoques neste reservatório e seus tributários. 

Palavras-chave: Curimba, D-Loop, Genética de populações, Microssatélites, 
Peixe potamódromo.

INTRODUCTION

Breeding migrations of Neotropical potamodromous fishes are commonly reported as 
upstream migrations during the rainy season (period of higher hydrological connectivity), 
aiming to spawn in upper reaches and tributaries, which is followed by drift of eggs and 
larvae and development of young in wetlands and floodplains (Carolsfeld et al., 2003). 
However, different migratory dynamics, ecological requirements and life history traits 
have been reported among these species (Carolsfeld et al., 2003; Makrakis et al., 2012; 
Pachla et al., 2022), contributing to different patterns of population biology, such as 
panmictic populations over large geographic scales (Santos et al., 2007; Carvalho-Costa 
et al., 2008; Coimbra et al., 2020), coexistence of genetic stocks in a single drainage 
(Hatanaka et al., 2006; Sanches, Galetti Jr., 2007, 2012; Barroca et al., 2012a), genetic 
structuring due to homing behaviors (Batista, Alves-Gomes, 2006; Pereira et al., 2009), 
temporal population structuring (Rueda et al., 2013; Braga-Silva, Galetti, 2016; Rosa et 
al., 2022), as well as population differences due to anthropic interference (insertion of 
dams) (Garcez et al., 2011; Esguícero, Arcifa, 2010; Barroca et al., 2012b).

Population genetic data from migratory fish are essential for understanding 
evolutionary and biological aspects, as well as for determining the appropriate spatial 
scale and required adaptations for the management and conservation actions (Carvalho, 
1993; Mcintyre et al., 2016). In this context, there is a consensus that fluvial connectivity 
is a determining factor for the reproduction and recruitment of potamodromous species 
(Lucas et al., 2001; Carolsfeld et al., 2003; Pachla et al., 2022), as well as for the gene 
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flow levels and the distribution range of populations (Sivasundar et al., 2001; Santos 
et al., 2007; Allendorf et al., 2012). However, this connectivity has been increasingly 
compromised in hydrographic systems, mainly due to the insertion of hydroelectric 
dams, which block the migratory routes and eliminate lotic stretches required for the 
spawning, bringing great concerns with the decline of migratory fish populations 
(Agostinho et al., 2016; Mastrochirico Filho et al., 2018; Deinet et al., 2020). In the 
case of Neotropical migratory fish, attempts to mitigate the dam impacts have mainly 
been the use of transposition mechanisms and river restocking (Makrakis et al., 2007; 
Agostinho et al., 2010), although the efficiency and applicability of these strategies have 
not yet been a consensus among researchers (Agostinho et al., 2010; Kemp, O’Hanley, 
2010; Pelicice et al., 2015). On the other hand, recent studies, including population 
genetic studies (Ferreira et al., 2017, 2022), fish eggs and larvae analysis (da Silva et al., 
2019; Azevedo-Santos et al., 2021; Sulzbacher et al., 2023), mark and recapture studies 
(Antonio et al., 2007; Makrakis et al., 2012) and ecological analysis (Marques et al., 
2018), increasingly highlight the preservation of free-flowing tributary rivers as an 
important strategy for the maintenance of fish diversity in dammed systems, including 
migratory fish populations and their genetic diversity levels.

In Paraguay-Paraná-Plata system, at least 20 species are migratory fish (Agostinho et 
al., 1995; Carolsfeld et al., 2003), including the curimba Prochilodus lineatus (Valenciennes, 
1837), a detritivorous fish (medium to large body) that can drive extensive migrations 
(over 1,500 km) (Carolsfeld et al., 2003). However, most of its distribution area, 
including the upper Paraná River basin (UPRB), is already highly fragmented by dams 
in the main channel and large tributaries (Makrakis et al., 2019). Despite this scenario, 
some UPRB’s sub-basins such as the Paranapanema River (eleven HPPs in its main 
channel) still include tributaries (e.g., Tibagi and Cinzas rivers) showing long free-
flowing stretches that could contribute to the regional preservation of fish diversity, 
including populations of migratory fish. The Cinzas River basin, in particular, has been 
considered a Priority Area for Biodiversity Conservation by the Brazilian Ministry of 
the Environment (MMA, 2016) and it is already suggested, based on genetic data (Lopes 
et al., 2007; Ferreira et al., 2022), egg and larval analyses (Vianna, Nogueira, 2008; 
Frantine-Silva et al., 2015; Lima et al., 2020) and ichthyofauna surveys (Galindo et al., 
2020), as an important drainage in maintaining the biodiversity of fish in the Capivara 
Reservoir region (lower Paranapanema River). 

The present study analyzed the population genetics of P. lineatus along the Cinzas 
River basin, including samples from large schools obtained in different breeding seasons 
(2011 and 2012) by Galindo et al. (2020), aiming to investigate the contribution of 
this tributary to the population dynamics of migratory fish in the Capivara Reservoir 
region. In this context, the study sought to test the hypotheses: i- schools in Cinzas River 
basin would include individuals migrating from the Capivara Reservoir; ii- distinct 
genetic stocks would be coexisting in the Cinzas River basin over time; iii- mixing of 
distinct genetic stocks could occur in the “transit area”, as well as due to influences from 
restocking programs and/or the fact that Cinzas River basin is acting as an alternative 
route for stocks that had their original route blocked in the Paranapanema River.

https://www.ni.bio.br/
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MATERIAL AND METHODS

Study area. The Cinzas River basin drains 9,658.8 km2 within Paraná State, Brazil 
(Britto et al., 2003; Vianna, Nogueira, 2008), constituting one of the main tributaries of 
the left bank of the Paranapanema River, upper Paraná River basin (Britto et al., 2003) 
(Fig. 1). The source of Cinzas River is in Serra de Furnas (24°27’34”S 49°55’49”W) and 
its main channel extends for approximately 370 km (in a south-north direction) until 
its confluence with the Paranapanema River (23°01’03.51”S 50°24’22.68”W), in the 
Capivara Reservoir (about 576 km2). Its main tributary, the Laranjinha River, extends 
about 350 km and has only a small dam along the main channel, originating from a 
Small Hydropower Plant (SHP) which never went into operation (since its construction 
in the 1950s) and has a fish pass system since 2006 (Makrakis et al., 2019; Galindo et 
al., 2020). The Cinzas River also has only a small dam in its main channel, however, 
it is near headwaters and upstream Salto Cavalcante, a 20 m high fall in Tomazina 
municipality (Vianna, Nogueira, 2008).

FIGURE 1 | Sampling locations for Prochilodus lineatus along the Capivara Reservoir region (Paranapanema River basin), including the 

Laranjinha River (L1–L4), Cinzas River main channel (CIU - upstream and CID - downstream from Salto Cavalcante falls), Capivara Reservoir 

(CA) and Tibagi River (TI), as well as the site (ST) of a restocking event in the Laranjinha River. Source: modified from Google Earth, 2018 

(https://www.google.com.br/maps).

https://www.ni.bio.br/
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Fish sampling. Almost all samples analyzed in the present study were collected 
in breeding seasons of different years, including only adult individuals (body lengths 
above 25 cm). Most were obtained by Galindo et al. (2020) along Laranjinha River main 
channel, including a sample (L4 = 12) obtained near the confluence with the Cinzas 
River (23°01’53.90”S 50°26’51.90”W), collected on December 28, 2011 (Dec_11), a 
sample (L3 = 24) of individuals using the fish pass system to cross the small dam in 
the main channel (23°17’49.95”S 50°28’43.27”W), collected on March 1st and 2nd, 
2011(Mar_11), and two samples from large schools (reproductively mature) recorded 
in two points (L2 = 24 and L1= 34) along the upper main channel section at the end of 
breeding season. L2 was sampled in Ibaiti Municipality (23°43’31.88”S 50°26’34.42”W) 
on March 4, 2012 (Mar_12a), and L1 was sampled about 40 km upstream of L2, in 
Figueira Municipality (23°51’34.73”S 50°22’43.04”W) on March 11, 2012 (Mar_12b). 
In addition, the study also analyzed a sample of fingerlings (ST = 30, origin not informed 
because their data require confidential treatment) released into the Laranjinha River 
(23°25’28.65”S 50°26’43.82”W ) on September 2009 (Sep_09), seeking to investigate 
the care taken with restocking along this basin in periods preceding the study of Galindo 
et al. (2020), as well as 15 individuals from Cinzas River main channel, 13 downstream 
(CID, 23°38’57.27”S 50° 02’28.48”W) and two upstream (CIU, 23°51’13.39”S 
49°56’47.52”W) from Salto Cavalcante (obtained on October 10 and November 3, 
2019, Oct-Nov_19), aiming to understand the migration limits for P. lineatus in the 
Cinzas River main channel. To investigate the origin of the stocks, all samples from 
the Cinzas River basin (Cinzas+Laranjinha) were compared with a sample from the 
Capivara Reservoir (CA = 30), collected on March 27 and April 4, 2010 (Mar-Apr_10), 
and a sample from the Tibagi River (TI =13), obtained in February 2012 (Feb_12). 

Samples were obtained from 48 h samplings using gill nets, cast nets and fishing rods. 
Tissue samples were placed in 70% alcohol and stored at -20°C. Voucher specimens 
were deposited in the Museu de Zoologia of the Universidade Estadual de Londrina, 
Londrina (accession number: MZUEL 9437).

Microsatellite loci and mitochondrial haplotypes (D-loop). Total genomic 
DNA was isolated from rayed fins or muscle tissue using a phenol-chloroform protocol 
and subsequently quantified and diluted following the steps in Ferreira et al. (2017). 
A total of seven microsatellite loci, including PL03, PL34, PL119, PL139 (Rueda et 
al., 2011) and Pli34, Pli43 and Pli60 (Yazbeck, Kalapothakis, 2007), were analyzed on 
182 P. lineatus individuals. Polymerase Chain Reactions (PCR) were conducted using 
concentrations and conditions employed by Ferreira et al. (2017), including specific 
primer annealing temperatures from Yazbeck, Kalapothakis (2007) and Rueda et al. 
(2011), as well as the method from Schuelke (2000) for labeling PCR products with 
fluorescence (FAM, HEX, NED and PET). Genotyping was performed in an ABI 
PRISM 3500-XL automated sequencer (Applied Biosystems) using GeneScan 600 Liz 
(Applied Biosystems) as a molecular weight marker and the fragment length analysis was 
conducted using GeneMarker 1.85 software (Soft Genetics, State College, PA, USA). 

In the Mitochondrial DNA (mtDNA) analysis, part of the D-Loop region was amplified 
for all samples using the primers L 5’-AGAGCGTCGGTCTTGTAAACC-3’ (Cronin 
et al., 1993) and H 5’-CCTGAAGTAGGAACCAGATG-3’ (Meyer et al., 1990), as well 
as the PCR conditions, reagent concentration and purification step from Ferreira et al. 

https://www.ni.bio.br/
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(2017). Both strands (H and L) were sequenced using the Big Dye Terminator v. 3.1 kit 
(Applied Biosystems), according to the manufacturer’s instructions. The readings were 
carried out on an ABI-PRISM3500 XL automated sequencer and the sequences were 
edited and aligned using MEGA 5.0 (Tamura et al., 2011). The different haplotypes 
found were deposited in GenBank (OR188144 – OR188190). The species identities 
of amplified fragments were confirmed by BLAST searches - Basic Local Alignment 
Search Tool (Altschul et al., 1990).

Molecular data analysis. Microsatellite data were first analyzed using the Micro-
Checker v. 2.2.1 program (Van Oosterhout et al., 2004) to analyze missing data and to 
evaluate the presence of null alleles and scoring errors due to allelic dropout and stutter 
peaks. Deviations from the Hardy-Weinberg Equilibrium (HWE) and the occurrence 
of linkage disequilibrium (LD) were tested in the Genepop v. 1.2 program (Raymond, 
Rousset, 1995), with 1,000 iterations and 1,000 dememorization, and the sequential 
Bonferroni correction (Rice, 1989) was used to adjust the alpha values. Popgen v. 1.31 
program (Yeh et al., 1999) was used to estimate the number of alleles (A), expected 
heterozygosity (HE), observed heterozygosity (HO), mean alleles per locus (NA), number 
of effective alleles (NE) and number of private alleles (NP). Significant inbreeding (FIS) 
values (P < 0.05) and the allelic richness (RA), using a rarefaction approach (corrected for 
a minimum sample size of ten diploid individuals), were estimated using Fstat v. 2.9.3 
program (Goudet, 2001). 

On mtDNA data, the number of haplotypes (Nh), haplotype diversity (h) and 
nucleotide diversity (π) were obtained using the DnaSP v. 5 program (Librado, 
Rozas, 2009), while Network 4.6.1.1 (Fluxus Technology Ltd - http://www.fluxus-
engineering.com) was used to construct the haplotype network based on the median-
joining algorithm (Bandelt et al., 1999). Aiming to investigate the care taken with 
restocking programs along Capivara Reservoir region, including possible negligence 
in the release of fingerlings produced from matrices originating from watersheds with 
genetic stocks different from those naturally present in the study area, a total of 304 
D-Loop sequences of P. lineatus obtained in previous studies and available in Genbank 
were analyzed (Tab. S1). From this, only those sequences identical to haplotypes from 
the present study were included in the haplotype network.

To investigate the demographic history, Tajima’s D (Tajima, 1989) and Fu’s Fs (Fu, 
1997) statistics were estimated on mtDNA data using Arlequin v. 3.5.1.3 (Excoffier, 
Lischer, 2010) and the pairwise mismatch distributions were obtained with DnaSP v. 
5 (Librado, Rozas, 2009). At the same time, Bottleneck v. 1.2.02 program (Piry et al., 
1999) was run on microsatellite data to investigate signs of recent population bottlenecks 
(indicated by deviations from the mutation-drift equilibrium) using the Wilcoxon 
signed rank test (Luikart, Cornuet, 1998) of heterozygosity excess under Infinite Alleles 
Model (IAM), Two-Phase Model (TPM - with 90% SMM and 10% IAM) and Stepwise 
Mutation Model (SMM), as well as the “Mode-shift test” that indicates bottlenecks 
resulting from alterations in allele frequency distributions (Luikart et al., 1998).

For population differentiation analyses, the pairwise DEST values (Jost’s genetic 
differentiation estimator) (Jost, 2008) were obtained from microsatellite data in the R 
statistical environment (R Development Core Team, 2021) with the DEMEtics package 
(Jueterbock et al., 2012). From these data were also obtained the FST and RST values 

https://www.ni.bio.br/
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in the Arlequin v. 3.5.1.3 (Excoffier, Lischer, 2010), using significant estimates based 
on 10,000 permutations. On mtDNA data, pairwise ΦST values (analogous to Wright’s 
F-statistics) were calculated in Arlequin v. 3.5.1.3 (Excoffier, Lischer, 2010) using the 
Tamura model (Tamura, 1992), which was indicated as the best-fit nucleotide sequence 
evolution model for the data according to ModelTest v. 3.7 (Posada, Crandall, 1998).

A Bayesian cluster analysis was also performed on the microsatellite data in Structure 
v. 2.3.3 program (Pritchard et al., 2000), running twenty replicates for each K value 
(number of clusters), from K = 1–11, including a burn-in of 10,000 Markov Chain 
Monte Carlo (MCMC) iterations, followed by 100,000 MCMC of data collection. 
Structure Harvester (Earl, VonHoldt, 2012) was used to estimate the optimal K, while 
Clumpp 1.1.2 (Jakobsson, Rosenberg, 2007) summarized the best K runs and Distruct 
1.1 (Rosenberg, 2004) plotted the results on a graph. 

RESULTS

Population structure. Micro-Checker program showed no presence of scoring error 
or allele dropout for microsatellite loci. Possible null alleles and homozygote excess were 
indicated only for PL139 (all samples), PL03 (L2, CI and TI), PL34 (L3, L4 and CA) and 
Pli60 (L2, L3, L4, ST and CA). However, independent runs, including and excluding 
these loci, showed similar results, thus all loci were considered for analysis. Among the 
genetic differentiation estimators applied on microsatellite data, almost all pairwise DEST 

and FST values were significant, ranging from 0.029 (L3 x L4) to 0.599 (L3 x TI) and 
from 0.018 (L1 x L3) to 0.599 (L3 x TI), respectively. On the other hand, just half of 
the pairwise RST values were significant, ranging from 0.062 (L1 x L2) to 0.154 (ST x 
CI). Meanwhile, only eight pairwise ΦST values (estimated from mtDNA data) were 
significant, ranging from 0.054 (L1 x CA) to 0.189 (L3 x TI) (Tab. 1).

L1 L2 L3 L4 ST CI CA TI

L1 0.018*/0.019 0.121*/0.089* 0.068*/0.068 0.098*/0.069* 0.024*/0.011 0.084*/0.054* 0.080*/0.129*

L2 0.083*/0.018 0.110*/0.083* 0.064*/0.039 0.084*/0.013 0.023*/0.018 0.081*/0.011 0.083*/0.021

L3 0.420*/0.062* 0.372*/0.068* 0.020 /0.012 0.149*/0.069 0.060*/0.031 0.021*/0.037* 0.175*/0.189*

L4 0.258*/0.018 0.231*/0.026 0.029*/0.007 0.129*/0.019 0.014 /0.006 0.025*/0.033 0.128*/0.113

ST 0.400*/0.086* 0.339*/0.108* 0.428*/0.115 0.403*/0.091 0.066*/0.023 0.114*/0.006 0.051*/0.010

CI 0.165*/0.031 0.140*/0.063* 0.202*/0.006 0.034  /0.015 0.259*/0.154* 0.024*/0.029 0.045*/0.124*

CA 0.349*/0.063* 0.340*/0.071* 0.038 /0.005 0.025  /0.001 0.394*/0.146* 0.058*/0.001 0.123*/0.041

TI 0.402*/0.044* 0.419*/0.066* 0.599*/0.066* 0.485*/0.031 0.165*/0.120* 0.268*/0.014 0.513*/0.068*

TABLE 1 | Pairwise genetic differentiation among samples of Prochilodus lineatus obtained along the Capivara Reservoir region (Paranapanema 

River basin), including the Laranjinha River (L1–L4), Cinzas River main channel (CI), Capivara Reservoir (CA), Tibagi River (TI) and a restocking 

sample (ST). Below diagonal – pairwise D
EST

/pairwise R
ST 

from microsatellite data. Above diagonal – pairwise F
ST 

from microsatellite data/ 

pairwise Φ
ST

 from mtDNA data. *Significant values – P value < 0.05.
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In the Bayesian clustering analysis performed on microsatellite data, both the ln 
Pr(X/K) (Pritchard et al., 2000) and ΔK ad hoc statistics (Evanno et al., 2005) indicated 
K = 3 as the most probable K value (cluster number) (Figs. 2A–B). The graphic 
representation of this analysis shows almost all samples including a mixture of individuals 
from different clusters, although L1 showed a distribution closer to that observed in L2 
and L3 was closer to the distribution in L4, CI and CA (Fig. 2C).

Still on microsatellite data, all samples showed significant and positive inbreeding 
coefficient values (FIS) and, after sequential Bonferroni correction for multiple 
comparisons, five significant (α = 0.05, k = 21) linkage disequilibrium (LD) values were 
detected at L1 (pairs: PL34 x Pli43, PL119 x Pli43, PL119 x Pli60 and Pli43 and Pli34), 
while TI showed two values (pairs: PL119 x Pli60 and PL139 x Pli43) and L3 (Pli43 x 
Pli60), L4 (Pli43 x Pli60) and CA (PL119 x PL119) showed only one significant value. 
The number of microsatellite loci showing significant deviations (sequential Bonferroni 
correction - α = 0.05, k = 7) from Hardy-Weinberg proportions ranged from two (L2 
– PL03 and PL139, ST – Pli34 and Pli60) to six (CA – Pli34, Pli60, PL03, PL34, PL119 
and PL139) per sample (Tab. 2).

Genetic diversity. In general, a total of 180 different microsatellite alleles were 
obtained, ranging from 60 (L4) to 109 (CA) per sample. The HO and HE estimates 
ranged from 0.490 (L4) to 0.777 (L1) and from 0.667 (L3) to 0.816, respectively. The 
highest values of private alleles (16), mean of alleles per locus (NA = 15.571) and effective 
alleles (NE = 8.607) were found at CA, while the lowest values occurred at L3 (NP = one 
NE = 5.341) and L4 (NA = 8.571). The allelic richness (RA), corrected for a minimum 
sample size of ten diploid individuals, ranged from 6.918 (ST) to 9.845 (CI) (Tab. 2).

FIGURE 2 | Results of Bayesian clustering analysis (STRUCTURE) for Prochilodus lineatus samples obtained 

along in Laranjinha River (L1–L4), Cinzas River main channel (CI), Capivara Reservoir (CA), Tibagi River 

(TI) and a restocking event (ST). Estimates of the number of K groups based on mean likelihood Ln(K) 

(A) and ΔK statistic (B). Graphical representation based on K = 3 (C). Each column represents a different 

individual and the colors represent the probability membership coefficient of that individual for each 

genetic cluster.
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A total of 57 polymorphic sites and 47 different haplotypes were obtained in the 
analysis of 516-bp (base pairs) from D-loop region of mitochondrial DNA. The number 
of haplotypes per sample ranged from five (L4 and TI) to 19 (CA). The highest values of 
number of haplotypes (Nh = 19), haplotype diversity (h = 0.961) and nucleotide diversity 
(π = 0.019) were found in the CA sample, while L3 (h = 0.688) and TI (Nh = 5, π = 
0.012) (Tab. 2). 

The haplotype network showed several mutational steps among the haplotypes found. 
H3 was the most frequent and 17 haplotypes (H23-H25, H27, H30-H33, H37-H39 
and H42-H47) were singletons (Fig. 3). Among the 304 D-Loop sequences available 
in Genbank, 15 were identical to haplotypes from the present study (Fig. 3; Tab. S1), 
encompassing haplotypes previously obtained in Mogi-Guaçu River (H1, H2, H4, H5, 
H7, H10, H13 and H15) (Sivasundar et al., 2001; Rosa et al., 2022), Verde River (H6), 
Peixe River (H7), Iguaçu River (H14), Aguapeí River (H13), Pardo River (H1, H3, H4 
and H5) and Paraná River main channel (H2, H8, H9, H10, H11 and H12) (Ferreira et 
al., 2017).

Demographic analyses. In the neutrality tests (mtDNA data), all Tajima test (D) 
values and Fu test (Fs) values were not significant (Tab. 2). The mismatch distribution 
graphic showed a multimodal distribution for haplotypes in all samples (Fig. 3). In 
microsatellite data, the Wilcoxon sign-rank test detected heterozygosity excess (recent 
bottleneck signal) in only two samples (L1 and TI), but just under the IAM model, and 
all samples showed a typical L-shaped distribution (non-bottleneck) in the mode-shift 
test (Tab. S2).

Sample/date

Microsatellite loci mtDNA

N A NP RA NA NE HO HE FIS EHW Nh h π D FS

L1 (Mar_12b) 34 84 4 7.877 12.000 6.236 0.777 0.810 0.055* 4i34, i43, 119, 139 7 0.745 0.017 1.287 6.140

L2 (Mar_12a) 24 90 3 8.996 12.857 7.393 0.692 0.816 0.172* 203, 139 9 0.851 0.018 0.579 2.681

L3 (Mar_11) 24 71 1 6.978 10.143 5.341 0.497 0.667 0.274* 4i34, i60, 34, 139 7 0.688 0.014 0.296 3.303

L4 (Dec_11) 12 60 2 7.944 8.571 5.431 0.490 0.697 0.336* 4i34, i60, 34, 139 5 0.803 0.018 0.373 -0.631

ST (Sep_09) 30 71 4 6.918 10.143 5.428 0.603 0.740 0.201* 2i34, i60 12 0.862 0.014 0.357 1.076

CI (Oct-Nov_19) 15 85 5 9.845 12.143 7.602 0.624 0.803 0.256* 3i34, 03, 139 7 0.781 0.016 -0.196 4.301

CA (Mar-Apr_10) 30 109 16 9.010 15.571 8.607 0.600 0.753 0.220*
6i34, i60, 03, 34, 

119, 139 19 0.961 0.019 -0.978 -3.853

TI (Feb_12) 13 64 5 8.150 9.143 6.449 0.608 0.773 0.251* 5i34, i60, 03, 119, 139 5 0.756 0.012 0.797 7.878

General 182 180 25.714 9.964 0.628 0.835 0.250* 7all loci 47 0.861 0.016 0.314 2.612

TABLE 2 | Genetic diversity of Prochilodus lineatus along Cinzas River basin, Capivara Reservoir and Tibagi River from microsatellite loci 

and mtDNA (D-loop) haplotypes. N = number of individuals analyzed, A = total number of alleles found per sample, NP = number of private 

alleles, RA = allelic richness, NA = mean number of alleles, NE = mean number of effective alleles, HO = observed heterozygosity, HE = expected 

heterozygosity, F
IS

 = rate of inbreeding, HWE = loci deviated from Hardy-Weinberg proportions, Nh = number of haplotypes found, h = 

haplotype diversity, π = nucleotide diversity, D = Tajima’s neutrality test (Tajima, 1989), Fs = Fu neutrality test (Fu, 1997). *Significant values – P 

value < 0.05.
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DISCUSSION

Cinzas River basin’s contributions in the Capivara Reservoir region. In general, 
the low or non-significant genetic structure (DEST, RST, FST and ΦST estimators) that CA 
showed in relation to L3, L4 and CI corroborate the scenario where the Cinzas River 
basin would be providing habitats for spawning and recruitment of migratory fish in 
the Capivara Reservoir region, as already suggested by some fish egg and larval studies 
(Vianna, Nogueira, 2008; Frantine-Silva et al., 2015; Lima et al., 2020), ichthyofauna 
surveys (Hoffmann et al., 2005; Galindo et al., 2020), as well as a previous population 
genetic study of another migratory species (Pimelodus maculatus Lacepède, 1803) in 
the Laranjinha and Cinzas rivers (Ferreira et al., 2022). Additionally, although L1 and 
L2 showed significant genetic structuring values in relation to L3, L4, CI and CA, all 
different genetic stocks detected among the samples from Cinzas River basin (discussed 
in the next topic), as well as that predominant in TI, seem to be represented within CA, 
as clearly evidenced by Bayesian cluster analysis and haplotype network, which also 
corroborates the contributions from the tributaries in the Capivara Reservoir region.

FIGURE 3 | Results from mtDNA (D-Loop) of Prochilodus lineatus in Cinzas River basin, Capivara Reservoir 

and Tibagi River. A. Mismatch distributions of mitochondrial haplotypes for all samples. B. Haplotype 

network, including GenBank data revealing previous records of some haplotypes in Paraná River main 

channel (PR) and in the Pardo (PA), Mogi-Guaçu (MG), Verde (VE), Peixe (PE), Aguapeí (AG), and Iguaçu 

(IG) rivers. Circle sizes are proportional to haplotype frequency.
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Capivara Reservoir is the largest reservoir in the Paranapanema River basin, covering 
an area of about 576 km2 (Vianna, Nogueira, 2008). Considering that Prochilodus genus 
includes reports of different genetic stocks coexisting in single drainage (Hatanaka et 
al., 2006; Barroca et al., 2012a), as well as evidences of seasonal (Rueda et al., 2013) and 
temporal (Rosa et al., 2022) population structuring of P. lineatus in Paraguay-Paraná-
Plata system, it seems plausible that different genetic stocks of this species would be 
occurring along the Capivara Reservoir and its tributaries. In fact, CA showed several 
results suggesting that it would have encompassed individuals from different genetic 
stocks, such as high numbers of microsatellite alleles and mitochondrial haplotypes, high 
h values (> 0.5) combined with high π values (> 0.5%) and multimodal distribution 
in the mismatch distribution test (which reinforces the indication of the encounter of 
different lineages, according to Grant, Bowen, 1998 and Rogers, Harpending, 1992, 
respectively), the heterogeneous distribution in Bayesian cluster analysis, a significant 
FIS value and the large number of microsatellites (six) deviating from the HWE. 
These last two results, in particular, are some of the expected consequences from the 
inclusion of elements from multiple genetic units in a single sample, which creates an 
imbalance between the expected and observed heterozygosities (Freeland, 2005). This 
scenario seems plausible for CA, mainly because its sampling took place on different 
dates in 2010 (March 27 and April 4), as well as due to the fact that different genetic 
stocks, including those that reproduced in Paranapanema River main channel in a pre-
damming period and those that use the Tibagi and Cinzas river basins, could have 
representatives coexisting throughout the large area of the Capivara Reservoir at some 
moment in the life cycle.

Different genetic stocks in the Cinzas River basin. Data from both genetic 
markers indicated different genetic stocks migrating along the Cinzas River basin, 
reinforcing the importance of this drainage for maintaining migratory fish populations. 
Interestingly, the predominant genetic stock in L3 was different from those predominant 
in L1 and L2, suggesting some temporal variation in the migration of schools composed 
of different genetic stocks. According to Bayesian cluster analysis (Fig. 2C), L1 and 
L2 would encompass two genetic stocks (green stock and dark blue stock) that would 
have reached reproductive areas in the upper reaches of the Laranjinha River in March 
2012. Meanwhile, L3 encompassed another genetic stock (light blue stock), which was 
possibly migrating from downstream stretches and did not get past the small dam in the 
middle stretch of the Laranjinha River, so it used the fish ladder (where it was sampled in 
March 2011) on the side of the dam to overcome the obstacle and look for reproductive 
areas upstream. As already discussed above, this genetic stock could also be coming 
from the Capivara Reservoir, since CA (sampled in 2010) shows a group of “light blue” 
individuals in Structure graphical representation (which is corroborated by the haplotype 
sharing shown in the haplotype network). Additionally, although L1 and L2 (March, 
2012) were sampled one year after the sampling of L3 (March, 2011), it seems plausible 
that both different genetic stocks (green, light blue and dark blue) would be migrating 
along the Laranjinha River in both 2011 and 2012 breeding seasons, especially when 
considering the possible occurrence of temporal genetic structuring and the success of 
different spawning waves among stocks. 
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Previous studies have reported temporal population structuring for P. lineatus (Rueda 
et al., 2013; Perini et al., 2021; Rosa et al., 2022), as well as for other potamodromous in 
the Paraguay-Paraná-Plata system (Sanches, Galetti Jr., 2007; Ribolli et al., 2017) and 
in other Neotropical drainage systems (Berdugo, Barandica, 2014; Braga-Silva, Galetti 
Jr., 2016; Lopes et al., 2019). These studies point out, among other aspects, the possible 
influence of genetically-distinct spawning waves (constituted by different stocks) that 
breed in the same place at different time periods with some overlap (Jørgensen et al., 
2005). Variations in the hydrological cycles of a hydrographic system throughout the 
breeding season, for example, seem to be among the factors that contribute to some 
spawning waves occurring earlier and others later (Berdugo, Barandica, 2014; Braga-
Silva, Galetti Jr., 2016; Ribolli et al., 2017). Although the present study did not compare 
samples from different breeding seasons obtained at the same site, different spawning 
waves seem acceptable for the scenario already discussed above for L1, L2 and L3 in the 
Laranjinha River. 

Mixing of distinct genetic stocks. All samples in the present study, including TI and 
ST, seem to be influenced by some level (greater or lesser) of mixing of distinct genetic 
stocks. However, relationships with stock dynamics were more coherent from L1, L2 
and L3, which were sampled on a single date and showed sample size > N = 20. In case 
of L1 and L2, since these samples were obtained over a short time scale (one week) and 
a short spatial distance (about 40 km), the low or non-significant difference between 
them suggests that the same genetic stocks were sampled in different locations during 
its upstream movement. At the same time, the detection of different genetic stocks 
in these samples, as well as in L3 (on a smaller level), raise several questions about the 
factors influencing population dynamics. Since L1, L2 and L3 encompassed only adult 
individuals (body lengths above 25 cm), some gene flow among different stocks during 
reproduction seems plausible, especially in a possible situation of overlap of distinct 
spawning waves (Jørgensen et al., 2005). Additionally, it is also important to consider 
that adults return to downstream stretches (areas of greater resource availability) after 
spawning (Carolsfeld et al., 2003) and this could also favor the sampling of individuals 
from different genetic stocks in a single site.

In the case of CA, although this sample was obtained on different dates, its data 
suggests sampling in a “transit area” of different genetic stocks in Paranapanema River 
main channel, as already suggested for P. lineatus in a stretch of the Uruguay River 
(Rueda et al., 2013). At the same time, this discussion is more difficult for L4, since its 
sample size was low (N = 12), as well as for CI, which had a low sample size (N = 15) 
and was obtained eight years after the other sites. Despite this, CI data contributed 
indicating that individuals obtained from upstream Salto Cavalcante falls belong to 
those stocks sampled downstream, suggesting that individuals of P. lineatus, eventually, 
can overcome this obstacle, possibly in periods of high floods.

Influences from restocking. In general, the sample from a restocking (ST) showed 
high genetic diversity levels, including 12 different mtDNA haplotypes (second largest 
in the analysis), indicating that captive breeders included a large number of females. At 
the same time, although Bayesian cluster analysis and some haplotypes, such as H36 
(found only in TI and ST), indicated a greater relationship between TI and ST, the 
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broodstocks that resulted in ST also seems to include individuals from Cinzas River 
basin, suggesting that the release of fingerlings from a same farmed fish stock in Tibagi 
and Cinzas River basins could also have contributed to some mixing of stocks. It is 
noteworthy that the H36 has an insertion of 68 base pairs, however the research in 
BLAST and the analysis of cytochrome oxidase subunit I gene (GenBank: OR269255 – 
OR26925, results not shown) indicated that H36 belongs to P. lineatus. 

The elaboration of restocking strategies admittedly requires data on the structure and 
genetic diversity of wild stocks (recipient populations), as well as captive broodstocks 
(Padhi, 2013; Casimiro et al., 2022), aiming to minimize various damages, including 
the compromises of the local adaptation patterns, inbreeding depression events, genetic 
variability losses and changes in the genetic integrity of the wild stocks (Lorenzen et al., 
2012; Valiquette et al., 2014; Oliveira‑Farias et al., 2022). Although restocking actions 
using P. lineatus have been reported along the Paranapanema River basin (Lopera-
Barrero et al., 2008; Casimiro et al., 2022), the origin of ST was not informed because 
their data require confidential treatment. In any case, mtDNA data from this sample also 
draw attention to the care that possibly was taken in obtaining broodstocks, seeking to 
include only individuals from the Capivara Reservoir region. In fact, all ST haplotypes 
were the same or very close to those obtained in the other samples of the present study. 
Furthermore, even those haplotypes that coincided with haplotypes from the database 
(H12 – Paraná River main channel, H3 and H5 – Pardo River, H5, H13 and H15 – 
Mogi-Guaçu River, H6 – Verde River) also occurred in samples from the Capivara 
Reservoir and its tributaries, suggesting that these haplotypes would be in ST due to 
their wide distribution in the upper Paraná River basin and not due to the search for 
matrices outside the Paranapanema River basin. 

Influences from the use of alternative routes. Considering a pre-fragmentation 
moment in the study area, stocks migrating along upstream stretches in the Paranapanema 
River main channel could be different from those using the Tibagi and Cinzas river 
basins. Thus, after the fragmentation of the Paranapanema River (including a dam a 
few meters upstream of Cinzas River mouth), stocks that previously migrated along the 
main channel (now blocked by dams) could look for an alternative for their migration 
and recruitment in unimpeded stretches of tributaries, such as in the Cinzas and Tibagi 
river basins, also contributing to some mixing of stocks, as detected in the present study.

The use of alternative migration routes in post-fragmentation scenarios has already 
been discussed for Neotropical potamodromous (Makrakis et al., 2012; Baggio et al., 
2018; Casarim et al., 2018; Ferreira et al., 2022), including P. lineatus (Antonio et al., 
2007; Ferreira et al., 2017), in different dam-fragmented watersheds. In the case of 
potamodromous species showing some level of homing behavior, Baggio et al. (2018) 
argue that the post-fragmentation use of alternative migration routes could lead to 
genetic homogenization of subpopulations in the short-term, since this scenario could 
favor interbreeding among different genetic stocks that used different routes. However, 
the influences herein suggested for the use of alternative routes seem more related to the 
heterogeneity of samples and not to genetic homogenization scenarios, mainly because 
several significant values indicating both temporal and spatial genetic structuring were 
obtained among samples, within and between drainages. Homing behaviors, that is, the 
return to natal nursery regions for reproduction, have already been suggested within 
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the Prochilodus genus (Godinho, Kynard, 2006) and are recognized for leading to a 
spatial population structure between drainages of a watershed, as reported for large 
Neotropical migratory catfish (Batista, Alves-Gomes, 2006; Pereira et al., 2009). 
However, the heterogeneity detected in the Cinzas River basin, including individuals 
from different genetic stocks (some well related to TI), as well as the analysis of only 
one sample from Tibagi River, make it difficult to discuss the influences of homing 
behaviors on genetic differences among TI and those samples in Cinzas River basin.

In conclusion, present study identified different genetic stocks of P. lineatus migrating 
along the Cinzas River basin, possibly including some temporal genetic structuring, 
mix of different stocks in some areas, as well as the occurrence of these same stocks 
in the Paranapanema River, which corroborates the contributions of the Cinzas River 
basin for maintaining migratory fish populations in the Capivara Reservoir region. In 
addition, the present study provides additional evidence that the population dynamics 
of Neotropical potamodromous fish can vary between species and within species, 
in different scenarios, distancing itself in many cases from panmixia patterns, which 
reinforces the need for action of management and conservation that also include 
investigations of temporal genetic structure patterns, occurrence of homing behaviors, 
as well as possible factors that alter natural migration patterns.
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