Accessibility / Report Error

A report on new sponge-ophiuroid associations and reinforcement of scientific knowledge

Abstract

Sponge-ophiuroid ecological associations, which are important in the dynamics of marine populations and communities, have been recorded for a long time. In this study, we report new records of interactions between sponges and ophiuroids, which were obtained by analyzing biological collections, to increase knowledge about the associations between these animals. The study observed 14 interactions between sponges and ophiuroids, eight of which are new to science: Ophiocnida scabriuscula and Agelas sp., Ophiothrix sp. and Monanchora arbuscula, Ophiactis quinqueradia and M. arbuscula, O. quinqueradia and Callyspongia ( Cladochalina) aculeata, Ophiactis savignyi and Agelas dispar, O. savignyi and M. arbuscula, O. savignyi and Topsentia ophiraphidites, and O. savignyi and Dysidea etheria. The specimens found were collected in four areas of the northeastern Brazilian coast (tropical southwestern Atlantic), including a conservation area and a mesophotic coral ecosystem. Thus, the continuation of studies and the implementation of conservation strategies for these environments are essential. Finally, the importance of biological collections as a crucial data source for biodiversity studies is reinforced.

Keywords:
Ecological associations; Biological collections; Biodiversity; Ophiuroidea; Porifera

The ecological interactions existing in nature are essential for the maintenance of biodiversity. The good structuring of a community is due to an important network of interspecific relationships that occur between individuals, whether mutualistic or cooperative, in which there is a beneficial relationship between the species involved, or antagonistic, as in competition and parasitism ( Mougi and Kondoh, 2012Mougi, A. & Kondoh, M. 2012. Diversity of interaction types and ecological community stability. Science, 337(6092), 349-351.).

The association between sponges (Porifera) and other animals has been documented for a long time ( Pearse, 1934Pearse, A. S. 1934. Inhabitants of certain sponges at Dry Tortugas: Papers from Tortugas Laboratory 28. Carnegie Institution of Washington Publication, 435. Washington, DC: Carnegie Institution of Washington. , 1950Pearse, A. S. 1950. Notes on the inhabitants of certain sponges at Bimini. Ecology, 31, 149–151.; Rützler, 1976Rützler, K. 1976. Ecology of Tunisian commercial sponges. Tethys, 7(2-3), 249-264.; Peattie and Hoare, 1981Peattie, M. E. & Hoare, R. 1981. The sublittoral ecology of the Menai Strait: II. The sponge Halichondria panicea (Pallas) and its associated fauna. Estuarine, Coastal and Shelf Science, 13(6), 621-635.; Klitgaard, 1995Klitgaard, A. B. 1995. The fauna associated with outer shelf and upper slope sponges (Porifera, Demospongiae) at the Faroe Islands, northeastern Atlantic. Sarsia, 80(1), 1-22.; Ribeiro et al., 2003Ribeiro, S. M., Omena, E. P. & Muricy, G. 2003. Macrofauna associated to Mycale microsigmatosa (Porifera, Demospongiae) in Rio de Janeiro state, SE Brazil. Estuarine, Coastal and Shelf Science, 57(5-6), 951-959.). Due to the diversity of endobiont or epibiont animals associated with sponges, they are known as true hosts ( Pearse, 1950Pearse, A. S. 1950. Notes on the inhabitants of certain sponges at Bimini. Ecology, 31, 149–151.; Koukouras et al., 1985Koukouras, A., Voultsiadou-Koukoura, E., Chintiroglou, H. & Dounas, C. 1985. Benthic bionomy of the North Aegean Sea. III. A comparison of the macrobenthic animal assemblages associated with seven sponge species. Cahiers de Biologie Marine, 26(3), 301-319.).

Sponge-ophiuroid associations are often seen in the marine environment ( Pearse, 1934Pearse, A. S. 1934. Inhabitants of certain sponges at Dry Tortugas: Papers from Tortugas Laboratory 28. Carnegie Institution of Washington Publication, 435. Washington, DC: Carnegie Institution of Washington.; Fortunato and Lôbo-Hajdu, 2021Fortunato, H. F. & Lôbo-Hajdu, G. 2021. Quantification of the non-indigenous ophiuroid Ophiothela mirabilis Verrill, 1867 associated with marine sponges with different morphologies. Aquatic Invasions, 16(1), 77–93.). It has been scientifically proven that ophiuroids associate with sponges, where they find shelter, protection, and food availability due to their morphology (external indentations and their channel system) ( Bakus, 1966Bakus, G. J. 1966. Marine poeciloscleridan sponges of the San Juan Archipelago, Washington. Journal of Zoology. 149, 415-531.; Duarte and Nalesso, 1996Duarte, L. F. L. & Nalesso, R. C. 1996. The sponge Zygomycale parishii (Bowerbank) and its endobiotic fauna. Estuarine, Coastal and Shelf Science, 42, 139–151.; Pansini, 1970Pansini, M. 1970. Inquilinismoin Spongia officinalis, Ircinia fasciculata e Petrosia ficiformis della Riviera Ligure di Levante. Bolletino Musei dell’Istituto di Biologia dell’Universita` de Genova, 38, 5–17.; Henkel and Pawlik, 2005Henkel, T. P. & Pawlik, J. R. 2005. Habitat use by sponge-dwelling brittlestars. Marine Biology, 146, 301–313.). Ophiuroids are also attracted by chemical metabolites that have properties against predation and fouling by other living beings ( Clavico et al., 2006Clavico, E. E. G., Muricy, G., Da Gama, B. A. P., Batista, D., Ventura, C. R. R. & Pereira, R. C. 2006. Ecological roles of natural products from the marine sponge Geodia corticostylifera. Marine Biology, 148(3), 479-488.).

Bejarano Chavarro et al. (2004)Bejarano Chavarro, S., Zea, S. & Diaz, J. M. 2004. Esponjas y otros microhábitats de ofiuros (Ophiuroidea: Echinodermata) en ambientes arrecifales del Archipiélago de San Bernardo (Caribe Colombiano). Boletín de Investigaciones Marinas y Costeras, 33(1), 29-47. observed that Ophiothrix suensonii Lütken, 1856 was associated with different sponge species, according to the advantages conferred by their growth forms. This ophiuroid species was found both in sponges whose morphology provided cryptic refuges for protection against predators (columnar sponges with large oscula) and in sponges without this possibility of protection, but which occupied a region in the substrate favorable to suspension-feeding activity, in addition to allowing the aggregation of several individuals as an alternative form of protection ( Bejarano Chavarro et al., 2004Bejarano Chavarro, S., Zea, S. & Diaz, J. M. 2004. Esponjas y otros microhábitats de ofiuros (Ophiuroidea: Echinodermata) en ambientes arrecifales del Archipiélago de San Bernardo (Caribe Colombiano). Boletín de Investigaciones Marinas y Costeras, 33(1), 29-47.). However, the benefits of this association for both sponges and ophiuroids are still unclear ( Mosher and Watling, 2009Mosher, C. V. & Watling, L. 2009. Partners for life: a brittle star and its octocoral host. Marine Ecology Progress Series, 397, 81-88.). In order to contribute to the knowledge of sponge-ophiuroid associations, this study reports new records of interactions.

Data were obtained by analyzing specimens from the Echinodermata collection of the Departamento de Biologia, Universidade Federal do Ceará, Brazil, and the Porifera collections of the Departamento de Biologia (Universidade Federal do Ceará) and the Museu Nacional do Rio de Janeiro (Brazil). Sponges and ophiuroids were identified with the help of specialized literature ( Hooper and Van Soest, 2002Hooper, J. N. A. & Van Soest, R. W. M. 2002. Systema Porifera. A Guide to the Classification of Sponges. In: Hooper, J. N. A., Van Soest, R. W. M. & Willenz, P. (eds.) Systema Porifera. Boston: Springer.; Gondim et al., 2013Gondim, A. I., Alonso, C., Dias, T. L., Manso, C. L. C. & Christoffersen, M. L. 2013. A taxonomic guide to the brittle-stars (Echinodermata, Ophiuroidea) from the State of Paraíba continental shelf, Northeastern Brazil. ZooKeys, 307, 45-96.; Hendler et al., 1995Hendler, G., Miller, J. E., Pawson, D. L. & Kier, P. M. 1995. Sea stars, sea urchins and allies: echinoderms of Florida and the Caribbean. Washington: Smithsonian Institution Press.; Santana et al., 2020Santana, A., Manso, C. L. C., Almeida, A. & Alves, O. F. 2020. Taxonomic review of Ophiothrix Müller & Troschel, 1840 (Echinodermata: Ophiuroidea) from Brazil, with the description of four new species. Zootaxa, 4808(1), 51-78.).

We found four species ( Figure 1) of ophiuroids associated with 11 species of sponges ( Figure 2), totaling 14 interactions, eight of which are new to science. The four ophiuroid species were: Ophiocnida scabriuscula (Lütken, 1859), Ophiothrix sp., Ophiactis savignyi (Müller & Troschel, 1842), and Ophiactis quinqueradia Ljungman, 1872. The ophiuroid species O. savignyi was the most abundant, with 209 specimens and the highest number of sponge-associated hosts. In turn, the sponge species were distributed in eight families, which include Callyspongiidae, Aplysinidae, Agelasidae, Irciniidae, Niphatidae, Crambeidae, Halichondriidae, and Dysideidae ( Table 1).

Figure 1.
In situ sponge colonies of some of the studied species. A) Amphimedon aff. compressa (grey arrow), Agelas dispar (black arrow), and Agelas sp. (white arrow); B) Callyspongia ( Cladochalina) aculeata; C) Ircinia felix; D. Monanchora arbuscula.

Figure 2.
Representatives of the ophiuroids analyzed in the study ( ex situ). A-B) Ophiactis savignyi, dorsal (A) and ventral (B); C-D) Ophiactis quinqueradia, dorsal (C) and ventral (D); E-F) Ophiothrix sp., dorsal (E) and ventral (F); G-H) Ophiocnida scabriuscula, dorsal (G) and ventral (H). Scale bars: A-B, E-H: 5 mm; C-D: 3 mm.

Table 1.
Records of the association between ophiuroids and sponges and their collection sites in the state of Ceará, northeastern Brazilian coast, tropical southwestern Atlantic.

The new interactions between ophiuroids and sponges described here were: Ophiocnida scabriuscula and Agelas sp., Ophiothrix sp. and Monanchora arbuscula (Duchassaing & Michelotti, 1864), Ophiactis quinqueradia and M. arbuscula, Ophiactis quinqueradia and Callyspongia ( Cladochalina) aculeata (Linnaeus, 1759), Ophiactis savignyi and Agelas dispar Duchassaing & Michelotti, 1864, O. savignyi and M. arbuscula, O. savignyi and Topsentia ophiraphidites (de Laubenfels, 1934), and O. savignyi and Dysidea etheria de Laubenfels, 1936 ( Table 1).

All the specimens analyzed were collected in four areas along the coast of the state of Ceará (Northeastern Brazil, tropical southwestern Atlantic): Canal das Arabaianas (3°32’45.24’‘S, 38°16’10.74’‘W; 32-35 m depth) in July 2009; Pedra da Risca do Meio Marine State Park (3°33’80’‘-3°36’00’‘S, 38°21’60’‘-38°26’00’’W; 18-30 m depth) in July 2014; Flecheiras Beach (3°22’S, 39°25’W; intertidal zone) in November 2015; and Pecém Beach (3°33’S, 38°50’W; intertidal zone—material found in beach sand, but characteristic of infralittoral species) in October 2021 Tables 1 and 2

Table 2.
Collection voucher numbers of the analyzed ophiuroid and sponge specimens and documented distribution of the species found in the Western Atlantic. Legends: ECH: Echinodermata collection of the Departamento de Biologia, Universidade Federal do Ceará; POR: Porifera collections of the Departamento de Biologia, Universidade Federal do Ceará, and Museu Nacional do Rio de Janeiro (MNRJ).

Despite at least one hundred years of knowledge of the relationships between ophiuroids and sponges ( Pearse, 1934Pearse, A. S. 1934. Inhabitants of certain sponges at Dry Tortugas: Papers from Tortugas Laboratory 28. Carnegie Institution of Washington Publication, 435. Washington, DC: Carnegie Institution of Washington.), it is remarkable how much remains to be discovered about these interactions. Although some sponge-ophiuroid associations found here have already been reported in previous studies [ Ophiothrix sp. and Callyspongia ( Cladochalina) aculeata ( Hendler, 1984Hendler, G. 1984. The association of Ophiothrix lineata and Callyspongia vaginalis: a brittlestar‐sponge cleaning symbiosis?. Marine Ecology, 5(1), 9-27.); and Ophiactis savignyi with Ircinia felix (Duchassaing & Michelotti, 1864), Agelas sp., Agelas clathrodes (Schmidt, 1870), Amphimedon aff. compressa (Duchassaing & Michelotti, 1864), and Aplysina sp. ( Villamizar and Laughlin, 1991Villamizar, E. & Laughlin, R. A. 1991. Fauna associated with the sponges Aplysina archeri and Aplysina lacunosa in a coral reef of the Archipielago de Los Roques, National Park, Venezuela. In: REITNER, J. & KEUPP, H. (eds.) Fossil and recent sponges. Berlin: Springer.; De La Cruz-Francisco et al., 2018De La Cruz-Francisco, V., Morales-Quijano, I. & González-González, M. 2018. Equinodermos del polígono arrecifal Tuxpan, Área de Protección de Flora y Fauna, México. Revista de Investigaciones Marinas, 37(2), 46-60.)], almost 60% are new to science.

Of the eight new interactions, seven were observed in important areas for biodiversity conservation: the Pedra da Risca do Meio Marine State Park (a conservation area) and the Canal das Arabaianas [a mesophotic coral ecosystem (MCE)]. Although it was created in 1997, the biodiversity of the Pedra da Risca do Meio Marine State Park has only recently been better known ( Soares et al., 2011Soares, M. O., Paiva, C. C., Freitas, J. E. P. & Lotufo, T. M. C. 2011. Gestão de unidades de conservação marinhas: o caso do Parque Estadual Marinho da Pedra da Risca do Meio, NE–Brasil. Revista de Gestão Costeira Integrada, 11(2), 257-268.; Mota et al., 2017Mota, E. M. T., Garcia, T. M., Freitas, J. E. P. & Soares, M. O. 2017. Composition and cross-shelf distribution of ichthyoplankton in the Tropical Southwestern Atlantic. Regional Studies in Marine Science, 14, 27-33.; Freitas et al., 2019Freitas, J. E. P., Araújo, M. E. & Lotufo, T. M. C. 2019. Composition and structure of the ichthyofauna in a marine protected area in the western equatorial Atlantic: A baseline to support conservation management. Regional Studies in Marine Science, 25, 100488.), including the description of a new sponge species ( Salani et al., 2006Salani, S., Lotufo, T. M. C. & Hajdu, E. 2006. Sigmaxinella cearense sp. nov. from sandstone reefs off Fortaleza (Ceará State, Brazil) (Desmacellidae, Mycalina, Poecilosclerida, Demospongiae). Zootaxa, 1369, 43-53.). Its management plan was recently elaborated ( Soares et al., 2019Soares, M. O., Teixeira, C. E. P., Silva, M. V. C., Campos, C. C., Pantalena, A. F., Normando, T. C. L. T., Cavalcante, R. M., Garcia, T. M., Feitosa, C. V., Montalverne, T., Gastao, F. G. C., Gurgel, A. L. A. R., Gomes, B. R. C., Barreto, C. P., Araujo, D. M. C., Ramos, F. C. L., Nojosa, E. C., Costa, G. B., Costa, L. M. M., Ferreira, S. M. C., Camara, I. F. & Sousa, M. A. 2019. Plano de manejo do Parque Marinho Pedra da Risca do Meio. Fortaleza: Governo do Estado do Ceará.), providing better support for the effectiveness of its conservation. In turn, the biodiversity of the Canal das Arabaianas still needs to be better investigated ( Freitas and Lotufo, 2015Freitas, J., & Lotufo, T. 2015. Reef fish assemblage and zoogeographic affinities of a scarcely known region of the western equatorial Atlantic. Journal of the Marine Biological Association of the United Kingdom, 95(3), 623-633.; Barroso et al., 2021Barroso, C. X., Freitas, J. E. P., Spotorno, P., Tamega, F. T. S., Franklin-Junior, W. & Matthews-Cascon, H. 2021. Molluscs from the upper mesophotic zone in a scarcely known reef of the Western Equatorial Atlantic. Arquivos de Ciências do Mar, 54, 44-58.). Due to their potential use as refuge areas for natural and anthropogenic impacts and unique ecosystems with characteristic biotas ( Bongaerts et al., 2010Bongaerts, P., Ridgway, T., Sampayo, E. M. & Hoegh-Guldberg, O. 2010. Assessing the “deep reef refugia” hypothesis: Focus on Caribbean reefs. Coral Reefs, 29(2), 1-19.; Rocha et al., 2018Rocha, L. A., Pinheiro, H. T., Shepherd, B., Papastamatiou, Y. P., Luiz O. J., Pyle, R. L. & Bongaerts, P. 2018. Mesophotic coral ecosystems are threatened and ecologically distinct from shallow water reefs. Science, 361(6399), 281-284.), MCEs have received attention in the last few years. This study reinforces that there is still much to be studied in these areas, as here we described eight new records of ecological interactions. The effectiveness of conserving marine protected areas and MCEs is directly reflected in discoveries and more specific studies on the ecology, taxonomy, and protection of local biodiversity.

Most of the interactions observed in this study involved the ophiuroid species Ophiactis savignyi, which is known to be a circumtropical species, a generalist in host choice, with reports of association with different species of algae, coral, bryozoans, ascidians, and sponges ( De La Cruz-Francisco et al., 2018De La Cruz-Francisco, V., Morales-Quijano, I. & González-González, M. 2018. Equinodermos del polígono arrecifal Tuxpan, Área de Protección de Flora y Fauna, México. Revista de Investigaciones Marinas, 37(2), 46-60.; Bueno et al., 2018Bueno, M. L., Alitto, R. A. S., Guilherme, P. D. B., Di Domenico, M. & Borges, M. 2018. Guia ilustrado dos Echinodermata da porção sul do Embaiamento Sul Brasileiro. Pesquisa e Ensino em Ciências Exatas e da Natureza, 2(2), 169-237.; Carrera-Parra and Vargas-Hernández, 1996Carrera-Parra, L. F. & Vargas-Hernández, J. M. 1996. Comunidad críptica de esponjas del arrecife de Isla de En medio, Veracruz, México. Revista de Biología Tropical, 44(3), 311-321.; Gondim et al., 2013Gondim, A. I., Alonso, C., Dias, T. L., Manso, C. L. C. & Christoffersen, M. L. 2013. A taxonomic guide to the brittle-stars (Echinodermata, Ophiuroidea) from the State of Paraíba continental shelf, Northeastern Brazil. ZooKeys, 307, 45-96.). Ophiactis savignyi represents a species complex exotic to the Atlantic Oceanic region ( Roy and Sponer, 2002Roy, M. S. & Sponer, R. 2002. Evidence of a human–mediated invasion of the tropical western Atlantic by the ‘world’s most common brittlestar’. Proceedings of the Royal Society of London. Series B: Biological Sciences, 269(1495), 1017-1023.) and highly adapted to the Brazilian coast ( Soares et al., 2022Soares, M. O., Lima-Xavier, F. R., Dias, N. M., Silva, M. Q. M., Lima, J. P., Barroso, C. X., Vieira, L. M., Paiva, S. V., Matthews-Cascon, H., Bezerra, L. E. A., Oliveira-Filho, R. R., Salani, S. & Bandeira, E. V. P. 2022. Alien hotspot: Benthic marine species introduced in the Brazilian semiarid coast. Marine Pollution Bulletin, 174, 113250.). The fissiparous strategy of this species could explain the high density of individuals found in a single sponge here ( Topsentia ophiraphidites, 127 individuals; and Dysidea etheria, 42 individuals) and in other studies previously performed ( Neves et al., 2007Neves, B. M., Lima, E. J. B. & Pérez, C. D. 2007. Brittle stars (Echinodermata: Ophiuroidea) associated with the octocoral Carijoa riisei (Cnidaria: Anthozoa) from the littoral of Pernambuco, Brazil. Journal of the Marine Biological Association of the United Kingdom, 87(5), 1263-1267.; Gondim et al., 2013Gondim, A. I., Alonso, C., Dias, T. L., Manso, C. L. C. & Christoffersen, M. L. 2013. A taxonomic guide to the brittle-stars (Echinodermata, Ophiuroidea) from the State of Paraíba continental shelf, Northeastern Brazil. ZooKeys, 307, 45-96.; Clavico et al., 2006Clavico, E. E. G., Muricy, G., Da Gama, B. A. P., Batista, D., Ventura, C. R. R. & Pereira, R. C. 2006. Ecological roles of natural products from the marine sponge Geodia corticostylifera. Marine Biology, 148(3), 479-488.; Mcgovern, 2002Mcgovern, T. M. 2002. Patterns of sexual and asexual reproduction in the brittle star Ophiactis savignyi in the Florida Keys. Marine Ecology Progress Series, 230, 119-126.).

Topsentia ophiraphidites and D. etheria occur in the tropical western Atlantic ( Hajdu et al., 2011Hajdu, E., Peixinho, S. & Fernandez, J. 2011. Esponjas marinhas da Bahia: guia de campo e laboratório. Rio de Janeiro: Museu Nacional.), with T. ophiraphidites being associated especially with tunicates and other sponges ( Hajdu et al., 2011Hajdu, E., Peixinho, S. & Fernandez, J. 2011. Esponjas marinhas da Bahia: guia de campo e laboratório. Rio de Janeiro: Museu Nacional.), while D. etheria is commonly associated with microorganisms ( Batista et al., 2018Batista, D., Costa, R., Carvalho, A. P., Batista, W. R., Rua, C. P., Oliveira, L., Leomil, L., Fróes, A. M., Thompson, F. L., Coutinho, R. & Dobretsov, S. 2018. Environmental conditions affect activity and associated microorganisms of marine sponges. Marine Environmental Research, 142, 59-68.) and other animals, such as crustaceans ( Paixão et al., 2021Paixão, P. H., Soledade, G. O., Cavalcanti, T., Pinheiro, U. & Almeida, A. O. 2021. Observations of life history traits of Typton carneus Holthuis, 1951 (Caridea, Palaemonidae): a poorly known sponge-dwelling shrimp. Nauplius, 29, 1-12.), bryozoans ( Almeida et al., 2015Almeida, A., Souza, F. B., Gordon, D. P. & Vieira, L. M. 2015. The non-indigenous bryozoan Triphyllozoon (Cheilostomata: Phidoloporidae) in the Atlantic: morphology and dispersion on the Brazilian coast. Zoologia, 32, 476-484.), and echinoderms, including associations with the exotic species Ophiothela mirabilis (Verrill, 1867) ( Mantelatto et al., 2016Mantelatto, M. C., Vidon, L. F., Silveira, R. B., Menegola, C., Da Rocha, R. M. & Creed, J. C. 2016. Host species of the non-indigenous brittle star Ophiothela mirabilis (Echinodermata: Ophiuroidea): an invasive generalist in Brazil?. Marine Biodiversity Records, 9(1), 1-7.). Despite the generalist behavior of this ophiuroid, these associations can be facilitated by the erect (despite the variety of forms that T. ophiraphidites may present) and massive structures of these sponges, which make the environment favorable for the life of ophiuroids; by the extracts released that can favor feeding; and by the environment in which they are inserted ( Frith, 1976Frith, D. W. 1976. Animals associated with sponges at North Hayling, Hampshire. Zoological Journal of the Linnean Society, 58(4), 353-362.). According to Clavico et al. (2006)Clavico, E. E. G., Muricy, G., Da Gama, B. A. P., Batista, D., Ventura, C. R. R. & Pereira, R. C. 2006. Ecological roles of natural products from the marine sponge Geodia corticostylifera. Marine Biology, 148(3), 479-488., O. savignyi would preferentially associate with the sponge Geodia tylastra (Boury-Esnault, 1973) on the Brazilian coast due to the high densities of ophiuroids found in the sponge and the attraction to the G. tylastra extract observed experimentally. However, this chemical attraction has not yet been observed in other organisms with which O. savignyi is also commonly associated, including other sponges.

The sponges Agelas dispar, Ircinia felix, and Callyspongia ( Cladochalina) aculeata are true ophiuroid hosts, given their well-known associations (also documented here). Agelas dispar and I. felix present a diversity of associations, possibly due to their lobed shape, which allows them to host a higher density of species ( Neves and Omena, 2003Neves, G. & Omena, E. 2003. Influence of sponge morphology on the composition of the polychaete associated fauna from Rocas Atoll, northeast Brazil. Coral Reefs, 22(2), 123-129.). Callyspongia ( Cladochalina) aculeata was associated with two out of four ophiuroid species in this study ( Ophiothrix sp. and Ophiactis quinqueradia, a new relationship). A previous study already showed the relationship between this sponge and other Ophiothrix species — Ophiothrix lineata (Lyman, 1860), which seems to be both commensal, in which ophiuroid takes advantage of the tubular shape of the sponge and lives inside it or on its surface, and parasitic, in which the ophiuroid feeds on C. aculeata larvae ( Henkel and Pawlik, 2014Henkel, T. P. & Pawlik, J. R. 2014. Cleaning mutualist or parasite? Classifying the association between the brittlestar Ophiothrix lineata and the Caribbean reef sponge Callyspongia vaginalis. Journal of Experimental Marine Biology and Ecology, 454, 42-48.).

There are few records in the literature on the associations between Monanchora arbuscula and ophiuroids, but Fortunato and Lôbo-Hajdu (2021)Fortunato, H. F. & Lôbo-Hajdu, G. 2021. Quantification of the non-indigenous ophiuroid Ophiothela mirabilis Verrill, 1867 associated with marine sponges with different morphologies. Aquatic Invasions, 16(1), 77–93. recorded several Ophiothela mirabilis associated with M. arbuscula. In this study, we added three new records of ophiuroids ( Ophiothrix sp., Ophiactis savignyi, and Ophiactis quinqueradia) associated with M. arbuscula. The conditions that facilitated these associations are not yet known. However, the erect or branched morphology of M. arbuscula ( Hajdu et al., 2011Hajdu, E., Peixinho, S. & Fernandez, J. 2011. Esponjas marinhas da Bahia: guia de campo e laboratório. Rio de Janeiro: Museu Nacional.) may be one of the characteristics that make this sponge a good host. That is, the structure of the sponge may favor the association by offering refuge against predators.

Although the interactions in this study were observed in the equatorial portion of the southwestern Atlantic, some of the new interactions recorded here may probably be observed in other locations due to overlapping geographic distribution of species along the Western Atlantic (e.g., O. quinqueradia and M. arbuscula, O. quinqueradia and C. aculeata, O. savignyi and A. dispar, O. savignyi and M. arbuscula, O. savignyi and T. ophiraphidites, and O. savignyi and D. etheria) ( Table 2).

Our results also reinforce the importance of biological collections as valuable sources of information that aid biodiversity knowledge, enabling taxonomic and ecological studies. Significant amounts of data on invertebrates are present in museum collections and are used to develop conservation plans ( Ponder et al., 2001Ponder, W. F., Carter, G. A., Flemons, P. & Chapman, R. R. 2001. Evaluation of Museum Collection Data for Use in Biodiversity Assessment. Conservation Biology, 15(3), 648-657.). In addition, the study of biological materials deposited in collections helps to find solutions to current environmental problems, such as habitat degradation. Therefore, the importance of always keeping collections well-structured and preserved is emphasized ( Meineke et al., 2018Meineke, E. K., Davies, T. J., Daru, B. H. & Davis, C. C. 2018. Biological collections for understanding biodiversity in the Anthropocene. Philosophical Transactions of the Royal Society B, 374, 20170386.).

ACKNOWLEDGMENTS

The authors would like to thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and the Universidade Federal do Ceará (UFC) for funding the scientific initiation scholarship. We also thank Eduardo Hajdu and André Bispo for helping us identify some sponge species; Eurico Machado-Neto, Felipe Monteiro, and Walter Cerqueira for identifying part of the ophiuroid specimens; and the editor, Felipe Ribeiro, and the anonymous reviewers for their valuable suggestions that improved the quality of the manuscript.

REFERENCES

  • Alcolado, P. M. 2002. Catálogo de las esponjas de Cuba. Avicennia, 15(53), 72.
  • Almeida, A., Souza, F. B., Gordon, D. P. & Vieira, L. M. 2015. The non-indigenous bryozoan Triphyllozoon (Cheilostomata: Phidoloporidae) in the Atlantic: morphology and dispersion on the Brazilian coast. Zoologia, 32, 476-484.
  • Barroso, C. X., Freitas, J. E. P., Spotorno, P., Tamega, F. T. S., Franklin-Junior, W. & Matthews-Cascon, H. 2021. Molluscs from the upper mesophotic zone in a scarcely known reef of the Western Equatorial Atlantic. Arquivos de Ciências do Mar, 54, 44-58.
  • Bakus, G. J. 1966. Marine poeciloscleridan sponges of the San Juan Archipelago, Washington. Journal of Zoology. 149, 415-531.
  • Batista, D., Costa, R., Carvalho, A. P., Batista, W. R., Rua, C. P., Oliveira, L., Leomil, L., Fróes, A. M., Thompson, F. L., Coutinho, R. & Dobretsov, S. 2018. Environmental conditions affect activity and associated microorganisms of marine sponges. Marine Environmental Research, 142, 59-68.
  • Bejarano Chavarro, S., Zea, S. & Diaz, J. M. 2004. Esponjas y otros microhábitats de ofiuros (Ophiuroidea: Echinodermata) en ambientes arrecifales del Archipiélago de San Bernardo (Caribe Colombiano). Boletín de Investigaciones Marinas y Costeras, 33(1), 29-47.
  • Bongaerts, P., Ridgway, T., Sampayo, E. M. & Hoegh-Guldberg, O. 2010. Assessing the “deep reef refugia” hypothesis: Focus on Caribbean reefs. Coral Reefs, 29(2), 1-19.
  • Bueno, M. L., Alitto, R. A. S., Guilherme, P. D. B., Di Domenico, M. & Borges, M. 2018. Guia ilustrado dos Echinodermata da porção sul do Embaiamento Sul Brasileiro. Pesquisa e Ensino em Ciências Exatas e da Natureza, 2(2), 169-237.
  • Carrera-Parra, L. F. & Vargas-Hernández, J. M. 1996. Comunidad críptica de esponjas del arrecife de Isla de En medio, Veracruz, México. Revista de Biología Tropical, 44(3), 311-321.
  • Clavico, E. E. G., Muricy, G., Da Gama, B. A. P., Batista, D., Ventura, C. R. R. & Pereira, R. C. 2006. Ecological roles of natural products from the marine sponge Geodia corticostylifera. Marine Biology, 148(3), 479-488.
  • De La Cruz-Francisco, V., Morales-Quijano, I. & González-González, M. 2018. Equinodermos del polígono arrecifal Tuxpan, Área de Protección de Flora y Fauna, México. Revista de Investigaciones Marinas, 37(2), 46-60.
  • Duarte, L. F. L. & Nalesso, R. C. 1996. The sponge Zygomycale parishii (Bowerbank) and its endobiotic fauna. Estuarine, Coastal and Shelf Science, 42, 139–151.
  • Esteves, E. L., Paula, T. S., Lerner, C., Lôbo-Hajdu, G. & Hajdu, E. 2018. Morphological and molecular systematics of the ‘Monanchora arbuscula complex’ (Poecilosclerida: Crambeidae), with the description of five new species and a biogeographic discussion of the genus in the Tropical Western Atlantic. Invertebrate Systematics, 32(2), 457-503.
  • Freitas, J. E. P., Araújo, M. E. & Lotufo, T. M. C. 2019. Composition and structure of the ichthyofauna in a marine protected area in the western equatorial Atlantic: A baseline to support conservation management. Regional Studies in Marine Science, 25, 100488.
  • Freitas, J., & Lotufo, T. 2015. Reef fish assemblage and zoogeographic affinities of a scarcely known region of the western equatorial Atlantic. Journal of the Marine Biological Association of the United Kingdom, 95(3), 623-633.
  • Frith, D. W. 1976. Animals associated with sponges at North Hayling, Hampshire. Zoological Journal of the Linnean Society, 58(4), 353-362.
  • Fortunato, H. F. & Lôbo-Hajdu, G. 2021. Quantification of the non-indigenous ophiuroid Ophiothela mirabilis Verrill, 1867 associated with marine sponges with different morphologies. Aquatic Invasions, 16(1), 77–93.
  • Gondim, A. I., Alonso, C., Dias, T. L., Manso, C. L. C. & Christoffersen, M. L. 2013. A taxonomic guide to the brittle-stars (Echinodermata, Ophiuroidea) from the State of Paraíba continental shelf, Northeastern Brazil. ZooKeys, 307, 45-96.
  • Hajdu, E., Peixinho, S. & Fernandez, J. 2011. Esponjas marinhas da Bahia: guia de campo e laboratório. Rio de Janeiro: Museu Nacional.
  • Hendler, G. 1984. The association of Ophiothrix lineata and Callyspongia vaginalis: a brittlestar‐sponge cleaning symbiosis?. Marine Ecology, 5(1), 9-27.
  • Hendler, G., Miller, J. E., Pawson, D. L. & Kier, P. M. 1995. Sea stars, sea urchins and allies: echinoderms of Florida and the Caribbean. Washington: Smithsonian Institution Press.
  • Henkel, T. P. & Pawlik, J. R. 2005. Habitat use by sponge-dwelling brittlestars. Marine Biology, 146, 301–313.
  • Henkel, T. P. & Pawlik, J. R. 2014. Cleaning mutualist or parasite? Classifying the association between the brittlestar Ophiothrix lineata and the Caribbean reef sponge Callyspongia vaginalis. Journal of Experimental Marine Biology and Ecology, 454, 42-48.
  • Hooper, J. N. A. & Van Soest, R. W. M. 2002. Systema Porifera. A Guide to the Classification of Sponges. In: Hooper, J. N. A., Van Soest, R. W. M. & Willenz, P. (eds.) Systema Porifera. Boston: Springer.
  • Klitgaard, A. B. 1995. The fauna associated with outer shelf and upper slope sponges (Porifera, Demospongiae) at the Faroe Islands, northeastern Atlantic. Sarsia, 80(1), 1-22.
  • Koukouras, A., Voultsiadou-Koukoura, E., Chintiroglou, H. & Dounas, C. 1985. Benthic bionomy of the North Aegean Sea. III. A comparison of the macrobenthic animal assemblages associated with seven sponge species. Cahiers de Biologie Marine, 26(3), 301-319.
  • Mantelatto, M. C., Vidon, L. F., Silveira, R. B., Menegola, C., Da Rocha, R. M. & Creed, J. C. 2016. Host species of the non-indigenous brittle star Ophiothela mirabilis (Echinodermata: Ophiuroidea): an invasive generalist in Brazil?. Marine Biodiversity Records, 9(1), 1-7.
  • Matthews-Cascon, H. & Lotufo, T. M. C. 2006. Biota Marinha da Costa Oeste do Ceará. Brasília, DF: Ministério do Meio Ambiente.
  • Mcgovern, T. M. 2002. Patterns of sexual and asexual reproduction in the brittle star Ophiactis savignyi in the Florida Keys. Marine Ecology Progress Series, 230, 119-126.
  • Meineke, E. K., Davies, T. J., Daru, B. H. & Davis, C. C. 2018. Biological collections for understanding biodiversity in the Anthropocene. Philosophical Transactions of the Royal Society B, 374, 20170386.
  • Moraes, F. C. 2011. Esponjas das ilhas oceânicas brasileiras. Rio de Janeiro: Petrobras.
  • Mota, E. M. T., Garcia, T. M., Freitas, J. E. P. & Soares, M. O. 2017. Composition and cross-shelf distribution of ichthyoplankton in the Tropical Southwestern Atlantic. Regional Studies in Marine Science, 14, 27-33.
  • Mougi, A. & Kondoh, M. 2012. Diversity of interaction types and ecological community stability. Science, 337(6092), 349-351.
  • Mosher, C. V. & Watling, L. 2009. Partners for life: a brittle star and its octocoral host. Marine Ecology Progress Series, 397, 81-88.
  • Muricy, G., Lopes, D., Hajdu, E., Carvalho, M. D. S., Moraes, F. C., Klautau, M. & Pinheiro, U. 2011. Catalogue of Brazilian Porifera. Rio de Janeiro: Petrobras.
  • Neves, B. M., Lima, E. J. B. & Pérez, C. D. 2007. Brittle stars (Echinodermata: Ophiuroidea) associated with the octocoral Carijoa riisei (Cnidaria: Anthozoa) from the littoral of Pernambuco, Brazil. Journal of the Marine Biological Association of the United Kingdom, 87(5), 1263-1267.
  • Neves, G. & Omena, E. 2003. Influence of sponge morphology on the composition of the polychaete associated fauna from Rocas Atoll, northeast Brazil. Coral Reefs, 22(2), 123-129.
  • Paixão, P. H., Soledade, G. O., Cavalcanti, T., Pinheiro, U. & Almeida, A. O. 2021. Observations of life history traits of Typton carneus Holthuis, 1951 (Caridea, Palaemonidae): a poorly known sponge-dwelling shrimp. Nauplius, 29, 1-12.
  • Pansini, M. 1970. Inquilinismoin Spongia officinalis, Ircinia fasciculata e Petrosia ficiformis della Riviera Ligure di Levante. Bolletino Musei dell’Istituto di Biologia dell’Universita` de Genova, 38, 5–17.
  • Pearse, A. S. 1934. Inhabitants of certain sponges at Dry Tortugas: Papers from Tortugas Laboratory 28. Carnegie Institution of Washington Publication, 435. Washington, DC: Carnegie Institution of Washington.
  • Pearse, A. S. 1950. Notes on the inhabitants of certain sponges at Bimini. Ecology, 31, 149–151.
  • Peattie, M. E. & Hoare, R. 1981. The sublittoral ecology of the Menai Strait: II. The sponge Halichondria panicea (Pallas) and its associated fauna. Estuarine, Coastal and Shelf Science, 13(6), 621-635.
  • Ponder, W. F., Carter, G. A., Flemons, P. & Chapman, R. R. 2001. Evaluation of Museum Collection Data for Use in Biodiversity Assessment. Conservation Biology, 15(3), 648-657.
  • Ribeiro, S. M., Omena, E. P. & Muricy, G. 2003. Macrofauna associated to Mycale microsigmatosa (Porifera, Demospongiae) in Rio de Janeiro state, SE Brazil. Estuarine, Coastal and Shelf Science, 57(5-6), 951-959.
  • Rocha, L. A., Pinheiro, H. T., Shepherd, B., Papastamatiou, Y. P., Luiz O. J., Pyle, R. L. & Bongaerts, P. 2018. Mesophotic coral ecosystems are threatened and ecologically distinct from shallow water reefs. Science, 361(6399), 281-284.
  • Roy, M. S. & Sponer, R. 2002. Evidence of a human–mediated invasion of the tropical western Atlantic by the ‘world’s most common brittlestar’. Proceedings of the Royal Society of London. Series B: Biological Sciences, 269(1495), 1017-1023.
  • Rützler, K. 1976. Ecology of Tunisian commercial sponges. Tethys, 7(2-3), 249-264.
  • Rützler, K., Diaz, M. C., Van Soest, R. W. M., Zea, S., Smith, K. P., Alvarez, B. & Wulff, J. 2000. Diversity of sponge fauna in mangrove ponds, Pelican Cays, Belize. Atoll Research Bulletin, 476, 232-248.
  • Salani, S., Lotufo, T. M. C. & Hajdu, E. 2006. Sigmaxinella cearense sp. nov. from sandstone reefs off Fortaleza (Ceará State, Brazil) (Desmacellidae, Mycalina, Poecilosclerida, Demospongiae). Zootaxa, 1369, 43-53.
  • Santana, A., Manso, C. L. C., Almeida, A. & Alves, O. F. 2020. Taxonomic review of Ophiothrix Müller & Troschel, 1840 (Echinodermata: Ophiuroidea) from Brazil, with the description of four new species. Zootaxa, 4808(1), 51-78.
  • Soares, M. O., Paiva, C. C., Freitas, J. E. P. & Lotufo, T. M. C. 2011. Gestão de unidades de conservação marinhas: o caso do Parque Estadual Marinho da Pedra da Risca do Meio, NE–Brasil. Revista de Gestão Costeira Integrada, 11(2), 257-268.
  • Soares, M. O., Teixeira, C. E. P., Silva, M. V. C., Campos, C. C., Pantalena, A. F., Normando, T. C. L. T., Cavalcante, R. M., Garcia, T. M., Feitosa, C. V., Montalverne, T., Gastao, F. G. C., Gurgel, A. L. A. R., Gomes, B. R. C., Barreto, C. P., Araujo, D. M. C., Ramos, F. C. L., Nojosa, E. C., Costa, G. B., Costa, L. M. M., Ferreira, S. M. C., Camara, I. F. & Sousa, M. A. 2019. Plano de manejo do Parque Marinho Pedra da Risca do Meio. Fortaleza: Governo do Estado do Ceará.
  • Soares, M. O., Lima-Xavier, F. R., Dias, N. M., Silva, M. Q. M., Lima, J. P., Barroso, C. X., Vieira, L. M., Paiva, S. V., Matthews-Cascon, H., Bezerra, L. E. A., Oliveira-Filho, R. R., Salani, S. & Bandeira, E. V. P. 2022. Alien hotspot: Benthic marine species introduced in the Brazilian semiarid coast. Marine Pollution Bulletin, 174, 113250.
  • Ugalde, D., Fernandez, J. C., Gomez, P., Lobo-Hajdu, G. & Simoes, N. 2021. An update on the diversity of marine sponges in the southern Gulf of Mexico coral reefs. Zootaxa, 5031(1), 1-112.
  • Van Soest, R. W. M. 2017. Sponges of the Guyana shelf. Zootaxa, 4217(1), 1-225.
  • Villamizar, E. & Laughlin, R. A. 1991. Fauna associated with the sponges Aplysina archeri and Aplysina lacunosa in a coral reef of the Archipielago de Los Roques, National Park, Venezuela. In: REITNER, J. & KEUPP, H. (eds.) Fossil and recent sponges. Berlin: Springer.

Edited by

Associate Editor: Abilio Soares Gomes

Publication Dates

  • Publication in this collection
    18 Mar 2024
  • Date of issue
    2024

History

  • Received
    18 Nov 2022
  • Accepted
    29 Sept 2023
Instituto Oceanográfico da Universidade de São Paulo Praça do Oceanográfico 191, CEP: 05508-120, São Paulo, SP - Brasil, Tel.: (11) 3091-6501 - São Paulo - SP - Brazil
E-mail: diretoria.io@usp.br