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Abstract
The tolerance to low water availability is a decisive factor for growth and survival of orchids in their natural environment. The ob-
jective of this study was to characterize the photochemical traits of two epiphytic orchids (Cattleya warneri and Miltonia spectabi-
lis) under water deficit (WD). Chlorophyll a fluorescence signals were recorded from young and fully expanded leaves of 5 plants/
species after dark-adaption for 60 minutes, between 6-9 a.m. after 0, 30, 60, and 90 days of WD, using a Handy-PEA fluorometer 
(Hansatech, UK). Increases of O-J and J-I phases and L and K-bands and decreases of I-P phase were observed after 30 days of WD, 
especially in C. warneri. Decreases in the capacity to photochemically reduce quinone A (QA) and the kinetic properties required 
for redox reactions of the plastoquinone pool, the loss of energetic connectivity between units of PSII, inactivation of the oxygen 
evolution complex, and decrease of the overall rate of reducing the electron acceptor pool of photosystem I were observed in M. 
spectabilis, a more tolerant species. The greater ability of this species to maintain higher relative water content (RWC) in photosyn-
thetic tissues allows greater photochemical activity.
Keywords: Cattleya warneri, Miltonia spectabilis, chlorophyll a fluorescence, K-band, photosystem II.

Resumo
Análise dos transientes OJIP em folhas de duas orquídeas epífitas submetidas ao estresse hídrico

A tolerância à baixa disponibilidade hídrica é fator decisivo para o crescimento e sobrevivência das orquídeas em seu ambiente 
natural. O objetivo deste estudo foi caracterizar os atributos fotoquímicos de duas orquídeas epífitas (Cattleya warneri e Miltonia 
spectabilis) sob déficit hídrico (WD). A fluorescência da clorofila a foi registrada em folhas jovens e totalmente expandidas de 5 
plantas/espécie adaptadas ao escuro por 60 minutos, entre 6 e 9 h da manhã, a 0, 30, 60 e 90 dias de WD, usando um fluorômetro 
Handy-PEA (Hansatech, Reino Unido). Aumentos nas fases O-J e J-I, bandas L e K e diminuição da fase I-P foram observados após 
30 dias de DW, principalmente em C. warneri. A diminuição da capacidade de redução da quinona A (QA) e das propriedades ciné-
ticas requeridas para reações redox do pool de plastoquinona, a perda de conectividade energética entre unidades de fotossistema II 
(FSII), a inativação do complexo de evolução do oxigênio e a manutenção da taxa global de redução do pool aceptores de elétrons 
do fotossistema I foram observadas em M. spectabilis, espécie evidentemente mais tolerante. A maior habilidade dessa espécie em 
manter o conteúdo relativo de água nos tecidos fotossintéticos permite maior atividade fotoquímica.
Palavras-chave: Cattleya warneri, Miltonia spectabilis, fluorescência da clorofila a, Banda K, fotossistema II.
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Introduction

Among abiotic factors, low precipitation is among the 
environmental factors with the greatest negative effect on 
the survival of epiphytic plants. Rainfall can be highly 
variable in space and time, thus affecting plant-water 
relationships (Grzesiak et al., 2019; Guevara-Perez et al., 
2019). Overall, the low growth of plants in environments 
with low precipitation is probably due to physiological 

stress factors, such as low photosynthetic rate of chlorotic 
leaves.

Previous studies have often found diminished fitness 
of plants growing under low precipitation in relation 
to well-watered plants. Among the main physiological 
disturbances caused by water deficit are lower cell 
turgidity, variations of stomatal opening and chloroplast 
structure, and decreased transpiration and CO2 assimilation 
rate (Lang et al., 2018). Reduced CO2 assimilation can 
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result in damage to photosystem II (PSII) reaction centers 
(RC), and consequently upset the equilibrium between 
photochemical activity of PSII and electron requirement 
for photosynthesis, generating over-excitation of the 
photosynthetic apparatus and photoinhibitory damage 
to PSII RC, in turn reducing the functional state of the 
photosynthetic apparatus (Pollastrini et al., 2017). Several 
research groups have reported the negative influence of 
water deficit on the physiological and photosynthetic 
properties of orchid plants (Guevara-Pérez et al., 2019; Li 
and Zhang, 2019; Tay et al., 2019).

Short rainless periods are common in Brazil, such as 
in northern Espírito Santo State, which typically has 3-4 
months of drought every year. In this period, epiphytes are 
subject to changes in ecological conditions, such as increased 
temperatures and reduced air humidity. Nevertheless, an 
evolutionary advantage of epiphyte plants is the capacity 
to utilize alternative sources of water such as fog and dew. 
According to Wu et al. (2018), fog contributes 20% or more 
of the total water input in cloud forests, including the water 
used by orchids. However, these water sources are usually 
not enough to maintain positive water balance in plants 
during low precipitation seasons.

In vivo chlorophyll a fluorescence (ChlaF) measurements 
have been widely used to evaluate the functional state of 
the photosynthetic apparatus, especially PSII, providing 
useful physiological indicators to study plants’ sensitivity 
to abiotic stress (Borawska-Jarmulowicz et al., 2020). It 
is possible to differentiate between drought-resistant and 
drought-sensitive species using ChlaF measurements 
as well as to identify the action site of stress on the 
photosynthetic electron transport chain (Oukarroum et al., 
2016; Falqueto et al., 2017; Kalaji et al., 2018). 

Considering that water availability is the abiotic factor 
that most affects the physiological traits of epiphytes, in this 
study we assumed that relative water content and in vivo 
ChlaF would be important traits to differentiate adaptive 
strategies of the photosynthetic apparatus in orchid plants 
growing under water stress conditions. Finally, we expected 
the regulation of specific steps of photosynthetic electron 
transport to indicate different levels of drought resistance 
among species. Our objective was to characterize the 
photochemical traits of two epiphytic orchids (Cattleya 
warneri T. Moore. and Miltonia spectabilis Lindl.), both 
evolved to cope with water deficit. We were interested in 
obtaining new information to better understand the adaptive 
strategies of epiphytic orchids to water deficit.

Material and Methods

Plants, growth conditions, and drought treatment
The experiment was performed using plants of two 

orchid species [Cattleya warneri T. Moore. and Miltonia 
spectabilis Lindl., CAM and C3 species, respectively, 
according to Adelberg et al. (1998) and Pires et al. (2012)], 
which are very common epiphytic orchids in Brazil. The 
plants were obtained from a commercial nursery and were 

planted in 2-liter plastic pots (one plant per pot) containing 
pine bark + carbonized rice husk, mixed at the ratio of 
1:1 and maintained in greenhouse conditions (18°43’0’’S; 
39°51’34’’W) for acclimation. The photoperiod (light/
dark) and relative air humidity in the greenhouse were 
14/10 h and 75%, respectively. The plants were subjected 
to two different irrigation treatments: 50% of the plants 
were maintained under water deficit (non-irrigated plants) 
and 50% were maintained in well-watered conditions 
(control, manually irrigated daily by adding 300 mL 
of water). All plants were protected against bacterial 
pathogens and weed competition. Water deficit was 
imposed by completely removing irrigation. The plants 
remained under persistent drought for 90 days. All 
measurements were performed in the morning (between 
6-9 a.m.) every 30 days up to 90 days of water deficit (0, 
30, 60, and 90 d of WD).

Leaf relative water content (RWC)
Leaf RWC was measured as previously described by 

Barrs and Weatherley (1962). Five leaf discs per plant 
(diameter 0.6 cm) were sampled and immediately weighed 
(fresh mass-FM). Then they were immersed in distilled 
water in Petri dishes for 24 h at 25 ºC under a photon flux 
density of 40 µmol m−2 s−1 on filter paper and the turgid 
mass (TM) was determined. Next, the discs were dried in 
an oven at 70 ºC for 48-h, until reaching constant weight, 
showing no water in the tissue, to obtain the dry mass 
(DM). RWC was calculated using the following equation: 
RWC = (FM − DM)/(TM − DM) × 100. The results were 
expressed in percentage (%).

Chl a fluorescence transient (ChlaF)
ChlaF measurements were conducted on young and 

fully expanded leaves (second leaf from the apex) at room 
temperature using a plant efficiency analyzer (Handy-PEA, 
Hansatech, King’s Lynn, Norfolk, England) as described 
by Kalaji et al. (2018). Before the measurements, the leaf 
samples were dark-adapted using leaf clips (Hansatech, 
UK) for 60 minutes to promote total oxidation of the 
photosynthetic system. The fast ChlaF kinetics (Fo to 
Fm) was induced by 1 s pulses of red light [650 nm, 3000 
µmol(photons) m−2 s−1], which was sufficient to generate 
maximal fluorescence for all the treatments. “O” refers to 
the initial minimal fluorescence level (F0); P (≈300 ms) is 
the peak; and J (≈2 to 3 ms) and I (≈30 ms) are inflection 
points between the O and P levels. All normalizations of 
the ChlaF transients were carried out according to Yusuf 
et al. (2010). The variable relative fluorescence between 
O (50 μs) and P (300 ms) steps was normalized as Vt = 
(Ft – F0) / (FP – F0) and ΔVt = [Vt (treatment) – Vt (control)]. The I–P 
phase was analyzed utilizing two different normalization 
procedures: VOI ≥ 1 [normalization between O- and I-steps, 
only the part with VOI ≥ 1] and VIP [normalization between 
I- and P-steps]. The kinetic difference ΔVIP was calculated 
as ΔVIP = VIP(treatment) – VIP(control) and is shown on a linear 
scale between 30 and 180 ms.
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Experimental design and data analyses
The experimental design was completely randomized 

using two orchid species submitted to WD during 90 
days. The experiment was performed with five replicates 
per treatment. The Biolyser 4HP software (Biolyser© R. 
M. Rodriguez, Bioenergetics Laboratory, University of 
Geneva, Geneva, Switzerland, version 3.06) was used to 
obtain the OJIP transients, and Excel 2013 was used to 
plot the transient graphs. RWC data were submitted to 
analysis of variance to compare the days of DW for each 
species. For significant values, means were compared 
by the Tukey test at P < 0.05 and expressed followed 

by the standard error (±SE) using the Sisvar® program 
(Ferreira, 2011).

Results

The RWC values decreased in both orchid species, from 
92.7% and 93.3% to 45.8% and 54.4% after 90 days of water 
suppression in C. warneri and M. spectabilis, respectively, 
representing reductions of about 50.5% and 41.6% compared 
to WD-0 (Figure 1). Reductions of RWC occurred from WD-
30 in C. warneri and only from WD-60 in M. spectabilis, 
which maintained higher values from WD-30 to WD-90.

Figure 1. Relative water content (RWC) in Cattleya warneri and Miltonia spectabilis leaves subjected to water 
deficit (WD). Vertical bars indicate the standard error (±SE). The letters indicate difference between the days of WD and 

the asterisks indicate difference between treatment and control by the Tukey test at 5% probability (n = 5).

Increases of the J-step were observed at 30 days 
of water deficit (WD-30) in both species and persisted 
until WD-90 (Figures 2A and 2B). However, the 
J-step values were higher in C. warneri. Also, a slight 
increase of the I-step occurred in C. warneri (Figure 
2A). Furthermore, the analyses of ΔVt evidenced the 
appearance of positive bands between the O-J and J-I 
phases (Figures 2C and 2D). This occurred from 30 days 

of water deficit (WD-30) onward in both orchid species. 
However, the amplitude of the curves was more positive 
in C. warneri (approximately 20% at WD-90) compared 
to M. spectabilis (≈10%) (Figures 2C and 2D). In M. 
spectabilis, the WD effects observed on ChlaF at WD-90 
(maximum values obtained for this species) were similar 
to those observed at WD-30 in C. warneri (Figures 2C 
and 2D).
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Figure 2. Kinetics of chlorophyll a fluorescence normalized between steps O-P in Cattleya warneri and Miltonia 
spectabilis submitted to water deficit (WD) for 90 days. Before the measurements, leaves were dark-adapted for 1 h. 

Relative variable fluorescence Vt = (Ft – F0)/(FP – F0) (A and B), and kinetic difference of  
Vt[ ΔVt = [Vt(treatment) – Vt(control)] (C and D). The values are means, n = 5. 

In both species, the energetic connectivity (L-band) and 
stability of the oxygen evolution complex-OEC (K-band) 
decreased after WD-30 and reached a minimum on the day 
of maximum stress (approximately 12% and 18% in C. 
warneri and ≈ 8% and ≈9% in M. spectabilis for the L- and 
K-bands, respectively) (Figure 3). However, in C. warneri, 

the increment observed in both L- and K-bands occurred 
gradually from WD-30 to WD-90 (Figures 3A and 3C). For 
M. spectabilis, the effects of water deficit on the energetic 
connectivity were grouped at two levels: 1- from WD-30 
to WD-60 (characterized by similar L-band values) and 2- 
WD-90 (where the maximum L-band value was recorded).
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Figure 3. Kinetic differences of VOK and VOJ obtained after double normalization between the steps O–K  
[ΔVOK = VOK(treatment) – VOK(control)] (A and B), showing the L-band, and between the steps O–J [ΔVOJ = VOJ(treatment) – 

VOJ(control)] (C and D), showing the K-band, respectively, in Cattleya warneri and Miltonia spectabilis submitted to water 
deficit (WD) for 90 days. Before the measurements, leaves were dark-adapted for 1 h. The values are means, n=5.

For C. warneri, the normalized curves of VOI ≥ 1 
decreased with WD, reaching minimum values at WD-
60 and WD-90 (Figure 4A). Conversely, no change 
in VOI ≥ 1 was recorded in M. spectabilis during the 

study (Figure 4B). The data normalized as VIP and ΔVIP 
declined in both species in relation to WD-0. At WD-
90, the VIP and ΔVIP values were similar between species 
(Figures 4C-F). 
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Figure 4. Kinetics of chlorophyll a fluorescence normalized between steps O-I and I-P of Cattleya warneri and 
Miltonia spectabilis plants submitted to water deficit (WD) for 90 days. Before the measurements, leaves were dark-
adapted for 1 h. Relative variable fluorescence between the steps O-I [VOI = (FT − F0)/(FI − F0)] in the interval between 
30 and 300 ms (A and B), relative variable fluorescence between the steps I-P [VIP = (Ft – FI)/(FP – FI)] (C and D). The 

dashed lines indicate the half-life, the inverse of the time to reach VIP = 0.5, as described by the Michaelis-Menten 
equation), and kinetic differences of VIP: [ΔVIP = VIP (treatment) – VIP(control)] (E and F). The values are means, n=5.
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Discussion

In this study, we compared the photochemical responses 
of leaves of two orchid species to WD in order to identify 
the action site of WD in the electron transport chain on the 
acceptor side of PSII. It is known that water stress results 
in damage to the photosynthetic apparatus and reductions 
of stomatal aperture, light absorption and biochemical 
reaction of CO2 fixation, as reported previously by Falqueto 
et al. (2017) and Martins et al. (2017). In this study, the 
ChlaF technique proved to be an efficient tool to identify 
the differences between species.

During the experiment, the plants submitted to WD 
showed common characteristics of this type of stress, such 
as wilting of leaves, which occurred around 60 days after 
water deprivation, reaching a maximum at around the 90 
days in both orchid species. Also, leaf abscission occurred 
in M. spectabilis after 60 days of drought. Leaf abscission 
is considered an effective mechanism to prevent drought 
damage during periods of low water availability (Naidoo 
and Naidoo, 2018). Before abscission, senescence occurs. 
Senescence is initially deleterious, but is an important 
evolutionary process in plants’ life cycle that contributes 
to their fitness, ensuring survival in certain niches. 
Furthermore, senescence and abscission can be considered 
important processes to maintain the relative water content, 
contributing to mobilization of water, as well as promoting 
exportation of reserve compounds from wilted and old 
leaves to young leaves after catabolic conversion of the 
cell materials accumulated during the leaf growth phase, as 
described by Yang et al. (2016). These compounds serve as 
nutrients to maintain young leaves.

The increases observed at the J-step in C. warneri and 
M. spectabilis and the I-step in C. warneri, with consequent 
appearance of a positive band in the O-J and J-I phases, 
are an indication of limited electron flux resulting from 
the accumulation of PSII acceptors (QA, QB) and PQ pool 
in reduced forms (Zushi and Matsuzoe, 2017) (Figure 
1). Increases in the J-step were also the main typical 
characteristics of the ChlaF transient OJIP in Augea 
capensis Thunb. and Zygophyllum prismatocarpum E. 
Meyer ex Sond, growing in the arid Namib Desert (Heerden 
et al., 2007). This increase of the J-step is attributed to the 
peak concentration of QA

-QB and QA
-QB

- originated from 
the electron transport chain, where electrons are transferred 
from QA to QB (Goltsev et al., 2016). This appears to be 
a common response of several species to environmental 
stress. As proposed by Redillas et al. (2011), this occurs 
because PSI is less tolerant to drought than PSII, so the 
efficiency of electron transport to PSI is lower and causes 
the accumulation of reduced forms (QA

-QB
-). In the present 

study, we observed that starting at 30 days of WD there was 
accumulation of reduced forms of the intermediaries of the 
electron transport chain, limiting the photochemical flow 
between PSII and PSI in both species (Xin et al., 2013). 
However, this limitation was more clearly observed in C. 
warneri, despite the characteristic leaf of this orchid species. 
This result is surprising, since higher tolerance is expected 
of CAM plants compared to C3 plants when exposed 

to water stress (Niechayev et al., 2019). Those authors 
reported that plants with both C3 and CAM metabolism are 
susceptible to the effects of water deficit, but the influence 
of water deficit on the photochemical activity was revealed 
previously to be stronger in C3 than CAM plants. Moreover, 
the similar values of ΔVt observed between WD-90 for M. 
spectabilis and WD-30 for C. warneri revealed that M. 
spectabilis is better able to photochemically reduce QA 
and maintain the kinetic properties required for reduction/
oxidation of plastoquinone under WD. This fact may be 
related to the better ability to preserve the relative water 
content of the leaves for a longer period in M. spectabilis.

Also, the analyses of the ChlaF transient allowed 
us to identify the appearance of L- and K-bands. 
According to Oukarroum et al. (2016), under drought 
stress, the appearance of both L- and K-bands should be 
a good indicator of physiological disturbances before the 
manifestation of visual damage. The L-band (150 µs) is an 
indicator of energetic connectivity or grouping between 
the subunits of PSII and is related to maintenance of the 
structure/stacking of thylakoids in chloroplasts (Rosa et al., 
2018). The L-band can assume positive or negative values, 
being more positive with lower energetic connectivity and 
less grouping of subunits (Yusuf et al., 2010). The results 
presented in Figures 3A and 3B show decreases in the 
energetic connectivity (positive L-bands) due to the effect 
of WD starting at 30 days (WD-30) in both C. warneri and 
M. spectabilis plants. This disturbance occurred gradually 
and was more pronounced in C. warneri, reaching values 
approximately 12% higher after 90 days of water deficit. 
On the other hand, in M. spectabilis, there was higher 
stability of energetic connectivity with water deficit, since 
the L-band values at 30 and 60 days were similar and only 
5% higher compared to the control conditions (WD-0). 
Only at WD-90 did the L-band rise (≈8%) in relation to 
the control. These results show that the effect of WD on 
the stability and energetic connectivity in the C3 species is 
more effective only after 60 days.

The presence of the K-band, which occurred around 
300 μs, indicates the inactivation of OEC and/or increased 
antenna size of PSII (Yusuf et al., 2010). The pronounced 
K-band can be explained by energetic imbalance between 
the electron donor and acceptor sides in PSII, where the 
electron flow from OEC to P680 on the donor side of PSII 
is slower than the electron flow from PSII to QA on the 
acceptor side (Yusuf et al., 2010; Santos et al., 2020). In 
this study, the increases observed in the K-band in both 
species can be attributed to the inactivation of the OEC, 
considering that the water stress caused the appearance 
of positive bands starting from WD-30. Regarding the 
K-band values, the effects of WD were more pronounced 
in C. warneri, in which a gradual increase of the K-band 
values was recorded during the WD period, reaching values 
≈ 18% higher than those observed at WD-0 (Figure 3C).

Holland et al. (2015) reported that WD also reduced 
the energetic connectivity and caused inactivation of the 
OEC in plants of Agave salmiana and Quercus pubescens, 
respectively. In this study, the higher stability and energetic 
connectivity between subunits of PSII and the better OEC 
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performance as well as the invariability of photochemical 
flow of electrons between PSII and PSI in M. spectabilis 
can be explained by the high RWC values found in this 
species. Another possible explanation is the occurrence 
of photorespiration in M. spectabilis (C3 species). 
Photorespiration is characterized by increased oxygenation 
rates of Rubisco and decreased carboxylation rates, 
resulting in decreased photosynthesis. The photorespiratory 
pathway stimulates the utilization of photons when the CO2 
supply is limited by WD, consuming ATP and reducing 
energy use, protecting the photosynthetic apparatus against 
oxidative damages (Zhang et al., 2016).

The normalization between the I- and P-steps permits 
deducing the behavior of the electron transfer from the 
intersystem to the end electron acceptors of PSI. As 
described by the Michaelis-Menten equation, VIP = 0.5 
(highlighted with dashed lines in Figures 4C and 4D) 
is the half-life, the inverse of the time to reach VIP = 
0.5, defined as an estimate of the global rate of reduction 
of the end electron acceptors of PSI (Yusuf et al., 
2010). In this study, we observed decreased capacity of 
adjustment of the reduction process of the end electron 
acceptor of PSI, which can be directly responsible for 
the accumulation of reduced QA

− in both species (C. 
warneri and M. spectabilis), as previously observed 
through analysis of the J-step.

Furthermore, these differences in adjustment of the 
reduction process associated with the end electron acceptor 
of PSI between days of WD can be observed more accurately 
by analyzing the kinetic differences ΔVIP (Yusuf et al., 2010). 
Figures 4E and 4F show similar behavior between species, 
with progressive decrease of the regulation rate of the end 
electron acceptor reduction until WD-90 in C. warneri and 
M. spectabilis. Reductions in ΔVIP were described by Jiang 
et al. (2008) in Citrus grandis plants under aluminum (Al) 
stress and by Yusuf et al. (2010) in transgenic Brassica 
juncea plants submitted to salt, heavy metal and osmotic 
stress. As previously noted by Yusuf et al. (2010) and 
Redillas et al. (2011), the regulation of the global reduction 
rate of the electron acceptors (VIP and ΔVIP) (Figures 4C 
and 4F) occurred independently of the regulation of the end 
electron pool size on the PSI acceptor side (VOI) (Figures 4A 
and 4B). While in C. warneri there was decreased regulation 
of end electron acceptor reduction of PSI and the regulation 
of end electron pool size (Figures 4A, 4C and 4E) under WD, 
M. spectabilis had decreases only of the regulation of end 
electron acceptor reduction of PSI (Figures 4B, 4D and 4F).

Conclusions

In conclusion, the photosynthetic apparatus of M. 
spectabilis was more tolerant to WD than that of C. 
warneri, as shown mainly through of activities related to 
PSII and the intersystem (ΔVT curves, K and L-bands). 
Although the regulation of end electron pool size differed 
between the species, the similarity of regulation of end 

electron acceptor reduction of PSI showed that the distinct 
behavior between the species was restricted specifically to 
the behavior of PSII. The result found in this study can be 
attributed to the photoprotective role of photorespiration 
in the photosynthetic apparatus, but especially was due to 
the better ability of C3 species to maintain higher relative 
water content (RWC) during the experiment. More water 
in photosynthetic tissues allows greater photochemical 
activity. 
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