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Genetics/ Original Article

Stopping criteria for genetic 
improvement software for 
beef-cattle mating selection
Abstract – The objective of this work was to propose a new stopping criterion 
to shorten the computing time of the PampaPlus genetic improvement 
software, while maximizing the genetic qualification index (GQI) of the 
progeny, controlling inbreeding, and avoiding unintended culling. Data from 
two beef-cattle herds integrating PampaPlus were used. Five mating scenarios 
were built using different numbers of sires (9 to 37) and dams (142 to 568). 
The analyzed algorithm inputs were: expected progeny differences, pedigree 
information, maximum inbreeding, maximum and minimum number of 
matches for each sire, and penalty weights for poor performance. The analyzed 
response variables were computing time and the GQI of the progenies. 
Three stopping criteria were used: original stopping criterion fixed at 1,000 
iterations; saturation stopping criterion (SSC), based on GQI variance; and 
Bhandari’s stopping criterion (BSC), which includes the generation interval 
parameter. SSC and BSC reduced processing time in 24.43–53.64% and in 
14.32–50.87%, respectively. BSC reaches solution in less time, without losses 
in GQI quality. BSC is generalizable and effective to reduce the processing 
time of mating recommendations.
Index terms: algorithm, animal breeding, decision support, mating systems.

Critérios de parada para programa de 
melhoramento genético para seleção de 
acasalamentos em gado de corte
Resumo – O objetivo deste trabalho foi propor um novo critério de parada 
para diminuir o tempo de processamento do programa de melhoramento 
genético PampaPlus, além de maximizar o índice de qualificação genética 
(GQI) da progênie, controlar a endogamia e evitar o descarte não intencional. 
Foram utilizados dados de dois rebanhos integrantes do PampaPlus. Cinco 
cenários de acasalamento foram elaborados com diferentes números de touros 
(9 a 37) e vacas (142 a 568). Os dados analisados foram: diferenças esperadas 
na progênie, informações de pedigree, máxima endogamia, número máximo 
e mínimo de acasalamentos por touro, e penalidades para desempenho 
inferior. As variáveis analisadas foram tempo de processamento e o GQI 
das progênies. Foram utilizados três critérios de parada: critério de parada 
original, fixado em 1.000 iterações; critério de parada por saturação (SSC), 
baseado na variância do GQI; e critério de parada de Bhandari (BSC), que 
inclui o parâmetro de intervalo de gerações. O SSC e o BSC reduziram o tempo 
de processamento em 24,43–53,64% e em 14,32–50,87%, respectivamente. 
O BSC atinge solução em menos tempo, sem perda da qualidade do GQI. 
O BSC é generalizável e efetivo em reduzir o tempo de processamento das 
recomendações de acasalamento.

Termos para indexação: algoritmo, melhoramento animal, suporte à decisão, 
sistemas de acasalamento.
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Introduction

Population growth worldwide has been increasing 
the demand for livestock products (Fukase & Martin, 
2020), which requires the development of new 
strategies to increase food production, while adding 
quality value and promoting sustainability (Herrero & 
Thornton, 2013). A strategy that stands out are genetic 
improvement software used for advances in livestock 
genetic traits (Malhado et al., 2010), which allows of 
increasing animal productivity and quality through 
mating selection (Miglior et al., 2017).

In Brazil, PampaPlus is the genetic improvement 
software used in the beef cattle breeding program 
of the country’s association of Hereford and Braford 
breeds, Associação Brasileira de Hereford e Braford. In 
a partnership with Embrapa Pecuária Sul, the software 
collects and analyzes the genetic performance of 
herds, with animal genetic traits expressed as expected 
progeny difference (EPD) and weighed through the 
genetic qualification index (GQI) used to guide the 
selection of semen available in the program or of 
embryo by allocating dams to specific sires (Costa et 
al., 2017; Fontoura et al., 2019). A single GQI value is 
assigned to each animal.

As other techniques that adopt genetic algorithms, 
PampaPlus has been using evolutionary computing 
for mating selection (Storn & Price, 1997; Carvalheiro 
et al., 2010; Kinghorn, 2011; Barreto Neto, 2014; 
Henryon et al., 2019). According to Fontoura et al. 
(2019), the software maximizes the offspring’s GQI 
value and minimizes inbreeding rates, with each 
iteration of the genetic algorithm presenting different 
mating combinations. The same authors highlighted 
that the inputs of the used algorithm are the EPDs of 
selected animals, the maximum desired inbreeding 
rate, and the number of mates per sire, whereas the 
output, when optimization is feasible, is a set of mating 
pairs that meets the given restrictions and presents 
the maximum mean GQI possible. The breeder can 
customize restrictions, but cannot change genetic 
algorithm internal parameters such as number of 
chromosomes, mutation rate, selection methods for 
genes, or penalty weights. The main limitation of the 
PampaPlus software is the convergence time of genetic 
algorithms, which is why it is important to use the 
stopping criterion parameter that directly affects the 
amount of time to compute a solution (Fontoura et al., 
2019).

The objective of this work was to propose a new 
stopping criterion to shorten the computing time of 
the PampaPlus genetic improvement software, while 
maximizing the GQI of the progeny, controlling 
inbreeding, and avoiding unintended culling.

Materials and Methods

The PampaPlus database described in Fontoura 
et al. (2019) was used in the present study. The data 
collected on the animals available for mating were: 
breeder identification number, animal identification 
number, and EPDs. The experiments were carried 
out in the five following scenarios (farms), using data 
from three different herds: farm 1, with 37 sires and 
568 dams; farm 2, with 17 sires and 148 dams; farm 
3, with 48 sires and 258 dams; farm 4, with a random 
selection of 25% of the animals from farm 1; and farm 
5, with a random selection of 50% of the animals from 
farm 1. As suggested by Bouthillier et al. (2021), these 
different scenarios allowed of verifying the robustness 
of the proposed approaches.

The following EPDs were used: total maternal gain 
(TM), post-weaning gain (PWG), yearling weight 
(YW), muscling score (MSC), height score (HSC), and 
scrotal circumference (SC). The respective weights of 
these EPDs in the GQI of the PampaPlus software were: 

GQI = 30% TM + 15% PWG + 15% YW + 12.5% 
MSC + 12.5% HSC + 15% SC

Some breeder-defined restrictions were adopted: 
sires breeding up to 30 dams, minimum amount of 
matings per sire set to 0, and maximum inbreeding 
set to a default value of 3.0%. The penalties were 
calculated based on the standard deviations from the 
herd average EPD towards the unfavorable direction, 
whereas the mating GQI was penalized proportionally 
to the deviations, which were set at 20%. The penalties 
were applied to a single trait or a set of critical traits, 
which may or may not be in the GQI. In addition, mates 
that exceeded the maximum allowed inbreeding were 
considered invalid and their GQI was not computed.

Two stopping criteria were investigated and 
compared with the original one of 1,000 iterations used 
in the PampaPlus software: the saturation stopping 
criterion (SSC) and Bhandari’s stopping criterion 
(BSC) proposed by Yeng et al. (2019) and Bhandari et 
al. (2012), respectively.
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According to Yeng et al. (2019), the SSC is based 
on the assumption that population fitness variance 
decreases as the genetic algorithm converges. The 
authors pointed out that this stopping criterion 
compares the fitness variance value of each generation, 
computed as a function of population size (PS), fitness 
of each chromosome (Fi), and average fitness of the 
population (F), with a predefined threshold in order 
to stop the execution of the genetic algorithm. The 
threshold is usually close to zero, but should be tested 
in order to define the best one depending on the specific 
problem to be solved and the used data. The SSC is 
determined through the following inequality equation:

SSC PS F F thresholdii

PS
� � �� � ���( / ) ( )1 2

1

SSC was used in farms 1 and 2, each subjected to 
seven tests (ST1 to ST7): ST1, a control test using the 
original stopping criterion of 1,000 iterations; and  
ST2 to ST7, six tests, each with a different threshold. 
The upper bound used for defining threshold values 
was 0.03, obtained through the equation proposed by 
Yeng et al. (2019) for this purpose.

BSC is based on the variation of the best fitness 
values obtained over generations, interrupting the 
execution of the genetic algorithm if the increase 
in the fitness of the best chromosome after n 
generations is below the determined threshold 
(Bhandari et al., 2012). This stopping criterion was 
calculated using the generation interval (n), the best 
fitness of each generation (BFi), and the best fitness 
average for the last n generations (BF), as follows: 

BSC n BF BF thresholdii

n
� � �� � ���( ) ( )1 2

1

BSC was used in farms 1, 2, 3, 4, and 5, each 
subjected to ten tests (BT1 to BT10): BT1, a control test 
using the original stopping criterion of 1,000 iterations; 
and BT2 to BT10, nine tests combining three different 
thresholds and three different generation intervals. 
The setup described by Bhandari et al. (2012) of 10-5 
and 10-4 as thresholds and n = 200 as the generation 
interval was used as the starting point in the present 
study. The thresholds of 10-3, 10-2, and 10-1 were 
tested here, and the values of 300, 200, and 100 were 
evaluated for the generation interval parameter.

The tests for each scenario were performed in a 
computer with a 2.5GHz Intel Core i5-7200U processor, 

8GB RAM, and 1TB hard disk, with a Linux-based 
operating system, with an Ubuntu distribution, version 
16.04, with 64 bits.

The two following metrics were collected from all 
tests: elapsed processing time of the genetic algorithm 
and best chromosome fitness. Since the genetic 
algorithm has a stochastic component, i.e., the sire is 
randomly selected for each dam, each test was run ten 
times. The one-way analysis of variance (ANOVA) was 
performed to verify differences in processing time and 
chromosome fitness between each stopping criterion. 
ANOVA assumptions were checked through Shapiro’s 
test for normality, Levene’s test for homogeneity of 
variances, and Durbin-Watson’s test for independence 
of errors. Mean differences were evaluated by Tukey’s 
test, which was carried out using the Agricolae 
package, version 1.3-3 (De Mendiburu, 2020).

PampaPlus mating algorithm was implemented using 
the R software, version 3.6.2 (R Core Team, 2021). Its 
database was accessed through the RMySQL package, 
version 0.10.18 (Ooms et al., 2019), and managed with 
MySQL, version 5.7.28 (MySQL, 2019). The RStudio 
Integrated Development Environment, version 1.2.1335, 
was used as the user interface (RStudio Team, 2020). 
The RCPP package, version 1.0.7, was used to boost 
the performance of processor-intensive functions 
(Eddelbuettel & Balamuta, 2018), whereas the Plotly 
package, version 4.9.1, was used for data visualization 
(Sievert, 2020).

Results and Discussion

Regarding SCC, in tests ST2 to ST7 in farms 1 and 
2, the processing time decreased as expected when 
the threshold value was increased from 0.01 to 0.03 
(Table 1). The algorithm became less restrictive as the 
threshold was increased, with a noticeable exponential 
growth in processing time due to dataset size. The 
elapsed processing time was a few minutes for farm 1 
and less than 1 min for farm 2.

In farm 1, the fitness averages of ST2 to ST5 did 
not differ significantly from that of ST1, the control. 
Under a threshold of 0.025, ST5 was the only one that  
reduced processing time in 11.5% compared with ST1 
(Table 1). Since the genetic algorithm usually converges 
before 1,000 iterations (Fontoura et al., 2019), this limit 
was overestimated to avoid a premature stopping. 
After ten runs, ST1 always stopped at 1,000 iterations, 
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whether the algorithm had converged or not, whereas 
ST5 stopped at 756 iterations, on average, that is, took 
less iterations than STI to reach the same fitness value 
(Figure 1).

In farm 2, ST2 and ST3 presented the same fitness 
averages as ST1. However, ST3, under a threshold of 
0.02, was the only one that decreased processing time in 
35.13% compared with ST1 (Table 1). In this scenario, 
the genetic algorithm converged faster than in farm 
1. ST3 performed 429 generations, on average, while 
ST4 to ST7 showed an even lower average numbers of 
generations, but with losses in fitness value.

Yeng et al. (2019) used SSC to solve a specific 
problem in a single-test scenario. However, in the 
present study, it was not possible to define a unique 
threshold value for the different evaluation scenarios 
(Table 1). Therefore, SSC cannot be used as a usual 
stopping criterion in different datasets. Since SSC is 
scale dependent, it works differently depending on 
the signal and magnitude of the GQI. If the average 
performance of a farmer’s herd is worse than that 
of the population, the GQI value will be negative; 
alternatively, if the herd’s performance is better than 
the average, GQI will be positive and high.

Table 2. Averages of runtime and fitness test performed in five scenarios (farms) using Bhandari’s stopping criterion for 
genetic algorithms of the PampaPlus software(1).

Test Threshold GI Farm 1(2) Farm 2(2) Farm 3(2) Farm 4(2) Farm 5(2)

Fitness Time 
(min)

Fitness Time 
(min)

Fitness Time 
(min)

Fitness Time 
(min)

Fitness Time  
(min)

BT1 - - 241.58a 18.6a 57.27a 0.9a -18.86ab 3.2bcd -34.82a 0.8a 48.54a 3.3a
BT2 0.001 300 241.66a 18.3a 57.21a 0.8b  -18.74a 3.6a -34.86a 0.6b 48.44a 2.9b
BT3 0.010 300 241.57a 18.1a 57.16ab 0.7c -18.78a 3.4ab -34.85a 0.5c 48.52a 2.7c
BT4 0.100 300 241.55a 16.9b 57.23a 0.7d -18.76a 3.1cde -34.89a 0.5cd 48.48a 2.5cde
BT5 0.001 200 241.53a 17.9a 57.18a 0.7c -18.72a 3.6a -34.87a 0.5c 48.54a 2.6cd
BT6 0.010 200 241.52a 16.9b 57.16ab 0.7d -18.78a 3.3bc -34.87a 0.5de 48.40a 2.4def
BT7 0.100 200 241.53a 16.1cd 57.19a 0.6e -19.04ab 2.8ef -34.86a 0.5ef 48.51a 2.3fg
BT8 0.001 100 241.54a 16.7bc 57.12ab 0.6d -19.05ab 2.9def -34.95a 0.5de 48.55a 2.3efg
BT9 0.010 100 241.49a 15.9d 57.10ab 0.6e -19.44b 2.7fg -34.91a 0.4fg 48.40a 2.2g
BT10 0.100 100 241.00b 14.7e 56.89b 0.5f -20.40c 2.4g -34.96a 0.4g 47.85b 1.9h

(1)Means followed by equal letters do not differ by Tukey’s test, at 5% probability. (2)Datasets: 37 sires and 568 dams in farm 1; 17 sires and 148 dams in 
farm 2; 48 sires and 258 dams in farm 3; and random selection of 25 and 50% of the animals from farm 1 in farms 4 and 5, respectively. Initial best fitness: 
75.54 in farm 1, 9.86 in farm 2, -132.47 in farm 3, -63.40 in farm 4, and -31.83 in farm 5. GI, generation interval.

Figure 1. Evolution of the genetic algorithm in test ST5 in 
farm 1 using the saturation stopping criterion for genetic 
algorithms of the PampaPlus software.
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Table 1. Averages of processing time and fitness for each 
of the seven tests (ST1 to ST7) performed in two scenarios 
(farms) using the saturation stopping criterion for genetic 
algorithms of the PampaPlus software(1).
Test Threshold Farm 1(2) Farm 2(2)

Fitness Time (min) Fitness Time (min)
ST1 - 241.58a 18.6a 57.27a 1.0a
ST2 0.0100 241.59a 18.7a 57.18a 0.9a
ST3 0.0200 241.55a 18.4a 56.83ab 0.6b
ST4 0.0225 241.40a 18.0a 55.96bc 0.5c
ST5 0.0250 241.20a 16.4b 55.88bc 0.5c
ST6 0.0275 239.94b 14.5c 55.61c 0.5c
ST7 0.0300 239.34b 14.0c 55.34c 0.4c

(1)Means followed by equal letters do not differ by Tukey’s test, at 5% 
probability. (2)Datasets: 37 sires and 568 dams in farm 1, and 17 sires and 
148 dams in farm 2. Initial best fitness value: 75.54 in farm 1 and 9.86 in 
farm 2.
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Regarding BSC, BT2 to BT10 showed the same 
pattern in every scenario (Table 2). Furthermore, only 
the threshold of ≥ 10-3 stopped the algorithm before 
1,000 generations. When generation intervals were 
decreased from 300 to 100, a decrease in elapsed 
processing time also occurred. For different generation 
intervals, processing time decreased as the threshold 
values increased in the range of 10-3 to 10-1.

BT10 showed an average fitness value lower than 
those of ST1 in farms 1, 2, 3, and 5 (Table 2). In farms 
3 and 4, negative fitness values were observed because 
the selected animals had a GQI lower than the average 
of the PampaPlus software.

In farm 1, BT4, BT6, BT7, BT8, and BT9 presented 
similar average fitness values and a shorter processing 
time than BT1, especially BT7 and BT9. In farm 2, 
BT2 to BT9 had similar fitness values, whereas BT7 
and BT9 showed the shortest processing time. In farm 
3, BT1 to BT8 did not differ for fitness, BT9 presented 
a fitness value similar to that of BT1, and BT7 and 
BT8 showed the shortest processing time. In farm 4, 
all tests presented similar fitness values and a reduced 
processing time, which was shorter for BT9 and BT10. 
In farm 5, BT2 to BT9 presented similar fitness values, 
whereas BT7, BT8, and BT9 showed the shortest 
processing time.

As an overall result for BSC, only BT7 and 
BT9 presented similar fitness values and a shorter 
processing time in all scenarios when compared with 

BT1. Moreover, under a 10-2 threshold value and a 
100-generation span, BT9 showed the best processing 
time. In farms 1, 2, 3, 4, and 5, respectively, processing 
time showed reductions of 14.32, 36.50, 15.87, 50.87, 
and 32.72% in comparison with the control.

Comparing the SSC and BSC stopping criteria, the 
number of iterations in farms 1 and 2 was very similar. 
Considering only BT9, the test with the best results, the 
average number of iterations was 713 for farm 1, 429 
for farm 2, 767 for farm 3, 256 for farm 4 (Figure 2), 
and 487 for farm 5.

Although SSC and BSC showed a similar number 
of iterations, the performance of SSC was affected 
since it was not possible to define a set of parameters 
for this stopping criterion that could be successfully 
used in different datasets. Therefore, BSC is more 
advantageous than SSC because it can be used to reduce 
processing time without losses in fitness values and 
the breeder will not need to adjust stopping criterion 
parameters to obtain mating recommendations for each 
evaluation scenario. In summary, depending on the 
amount of sires and dams, a suitable adaptive stopping 
criterion allows of a significant gain in performance 
when compared with the criterion of a fixed number 
of iterations.

Conclusions

1. Bhandari’s stopping criterion presents the best 
processing time, which is 14.32 to 50.87% shorter 
than that of the original criterion of 1,000 iterations, 
without losses in the genetic qualification index of the 
PampaPlus software.

2. Although the saturation stopping criterion shows 
a processing time 24.43 to 53.64% shorter than that 
of the original criterion, a different threshold must be 
determined for each dataset.
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Figure 2. Evolution of the genetic algorithm of the BT9 test 
in farm 4 using Bhandari’s stopping criterion for genetic 
algorithms of the PampaPlus software.
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