## **NOTAS CIENTÍFICAS**

# EFICIÊNCIA DO USO DE POTÁSSIO PELOS GENÓTIPOS DE ARROZ DE TERRAS ALTAS<sup>1</sup>

#### NAND KUMAR FAGERIA<sup>2</sup>

RESUMO - O emprego de cultivares eficientes na utilização de nutrientes é uma estratégia importante para reduzir o custo da produção agrícola pela redução do uso de fertilizantes. Foi conduzido um experimento em casa de vegetação na Embrapa-Centro Nacional de Pesquisa de Arroz e Feijão, Fazenda Capivara, Santo Antônio de Goiás. O objetivo foi estudar a resposta de 15 genótipos de arroz (*Oryza sativa* L.), em terras altas, ao tratamento sem K (nível baixo de K), e 200 mg kg¹ de K (nível alto) no solo. Os genótipos de arroz mostraram diferenças significativas na produção de grãos e no uso de K. Com base na produção de grãos no baixo nível de K e na eficiência agronômica de K, os genótipos foram classificados como eficientes. Rio Paranaíba, L141 e Guarani foram classificados como eficientes e responsivos. O segundo grupo, mais importante, é de genótipos eficientes e não-responsivos. Três genótipos – CNA6187, CNA7911 e CNA7680 – foram classificados neste grupo.

### POTASSIUM USE EFFICIENCY OF UPLAND RICE GENOTYPES

ABSTRACT - Use of nutrient efficient cultivar in crop production is an important strategy in reducing cost of crop production. A greenhouse experiment was conducted at the Embrapa-Centro Nacional de Pesquisa de Arroz e Feijão, Experimental Station of Capivara, Santo Antonio de Goiás, Brazil, to study the efficiency of 15 genotypes of upland rice (*Oryza sativa* L.) at low (without K application) and high (application of 200 mg kg<sup>-1</sup> of K) levels of K applied in the soil. Genotypes differed significantly in relation to grain yield and K use efficiency. Based on grain yield at low K level and agronomic efficiency of K use, genotypes were classified as efficient and unefficient. Genotypes Rio Paranaíba, L141 and Guarani were classified as efficient and responsives. Second most important group of the genotypes was efficient and non-responsive. Genotypes CNA6187, CNA7911 and CNA7680 fall in this category.

O uso adequado de nutrientes é fundamental para aumentar ou sustentar a produção agrícola. O K, como um dos nutrientes essenciais para o crescimento da planta, necessita de ser utilizado em maior quantidade, em comparação com outros nutrientes essenciais para a cultura de arroz (Fageria et al., 1997). A resposta das culturas anuais à aplicação de K no solo de cerrado não é tão acentuada quanto à de P, mas alguns trabalhos de pesquisa mostram aumento

<sup>&</sup>lt;sup>1</sup> Aceito para publicação em 7 de janeiro de 2000.

<sup>&</sup>lt;sup>2</sup> Eng. Agrôn., Ph.D., Embrapa-Centro Nacional de Pesquisa de Arroz e Feijão (CNPAF), Caixa Postal 179, CEP 75375-000 Santo Antônio de Goiás, GO. E-mail: fageria@cnpaf.embrapa.br

2116 N.K. FAGERIA

significativo na produção de arroz de terras altas com a aplicação de K no solo (Fageria et al., 1989; Fageria, 1994).

O objetivo deste estudo foi avaliar genótipos de arroz de sequeiro na utilização de K em solo de cerrado.

O experimento foi conduzido em casa de vegetação na Embrapa-Centro Nacional de Pesquisa de Arroz e Feijão, em Santo Antônio de Goiás, GO. O solo utilizado foi o Latossolo Vermelho-Escuro, cuja análise química revelou: pH 4,9; M.O., 22 g kg<sup>-1</sup>; P, 0,8 mg kg<sup>-1</sup>; K, 36 mg kg<sup>-1</sup>; Ca, 1 cmol<sub>c</sub> kg<sup>-1</sup>; Mg, 0,1 cmol<sub>c</sub> kg<sup>-1</sup>; Al, 0,8 cmol<sub>c</sub> kg<sup>-1</sup>; Cu, 1,5 mg kg<sup>-1</sup>; Zn, 0,9 mg kg<sup>-1</sup>; Fe, 107 mg kg<sup>-1</sup> e Mn, 22 mg kg<sup>-1</sup>. A análise química do solo foi realizada de acordo com Embrapa (1997).

Os tratamentos foram dois níveis de K: baixo (0 mg kg<sup>-1</sup> de solo) e alto (200 mg kg<sup>-1</sup> de solo) e 15 genótipos (Rio Paranaíba, CNA6975-2, CNA7690, L141, CNA7460, CNA6843-1, Guarani, CNA7127, CNA6187, CNA7911, CNA7645, CNA7875, CNA7680, CNA6724-1 e CNA7890). O K foi aplicado utilizando cloreto de potássio. O experimento foi um fatorial com 2 x 15 tratamentos, dispostos em um delineamento inteiramente casualizado, com três repetições. A unidade experimental consistiu de um vaso de plástico contendo 5 kg de solo e quatro plantas. Cada vaso recebeu 400 mg de N como sulfato de amônio e 787 mg de P como superfosfato triplo, na época de plantio. Foi aplicado 400 mg de N por vaso, 57 dias após o plantio, e 5 g de calcário em cada vaso, quatro semanas antes do plantio. O calcário utilizado continha 213 g kg<sup>-1</sup> de CaO, 176 g kg<sup>-1</sup> de MgO e um PRNT de 61%.

A produção e seus componentes foram medidos na época da colheita. O material da parte aérea da planta e os grãos foram secados em estufa, a 70-80°C, moídos, e digeridos com uma mistura de 2:1 de ácidos nítrico e perclórico. O K no material digerido foi determinado por absorção atômica. Os dados foram submetidos à análise da variância, e as médias dos tratamentos, comparados pelo teste de Duncan a 5% de probabilidade.

As eficiências de uso de K foram calculadas utilizando as seguintes fórmulas (Fageria et al., 1997):

Eficiência agronômica (EA) =  $(PG_{cf} - PG_{sf})/(QN_a)$ , dada em mg mg<sup>-1</sup>,

onde:  $PG_{cf}$  = produção de grãos com fertilizante,  $PG_{sf}$  = produção de grãos sem fertilizante e  $QN_a$  = quantidade de nutriente aplicado.

Eficiência fisiológica (EF) =  $(PTB_{cf} - PTB_{sf})/(AN_{cf} - AN_{sf})$ , dada em mg mg<sup>-1</sup>,

onde:  $PTB_{cf} = produção$  total biológica (parte aérea e grãos) com fertilizante;  $PTB_{sf} = produção$  total biológica sem fertilizante;  $AN_{cf} = acumulação$  de nutriente com fertilizante e  $AN_{sf} = acumulação$  de nutriente sem fertilizante.

Eficiência agrofisiológica (EAF) = (PG<sub>cf</sub> - PG<sub>sf</sub>)/(AN<sub>cf</sub> - AN<sub>sf</sub>), dada em mg mg<sup>-1</sup>,

onde:  $PG_{cf}$  = produção de grãos com fertilizante,  $PG_{sf}$  = produção de grãos sem fertilizante,  $AN_{cf}$  = acumulação de nutriente com fertilizante e  $AN_{sf}$  = acumulação de nutriente sem fertilizante.

Eficiência de recuperação (ER) =  $(AN_{cf} - ANsf)/100(QN_a)$ , dada em porcentagem,

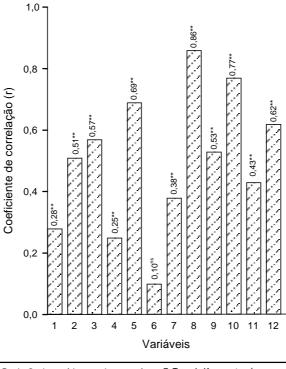
onde:  $AN_{cf}$  = acumulação de nutriente com fertilizante,  $AN_{sf}$  = acumulação de nutriente sem fertilizante e  $QN_a$  = quantidade de nutriente aplicado.

Eficiência de utilização (EU) = eficiência fisiológica (EF) x eficiência de recuperação (ER).

A produção de grãos e seus componentes foram influenciados de forma altamente significativa pelos níveis de K e pelos genótipos. A interação entre níveis de K x genótipos foi significativa somente na produção de grãos, altura da planta e números de panícula por vaso. Portanto, os dados referentes a estas características foram apresentados em médias de cada nível de K (Tabela 1). A interação significativa entre níveis de K x genótipos em relação à produção de grãos sugere que a resposta de genótipos de arroz varia com os níveis de K e que a avaliação de genótipos quanto ao uso de K deve ser feita com mais de um nível de K.

Existe diferença significativa entre genótipos em relação a produção de grãos, altura da planta e número de panículas, tanto no baixo como no alto nível de K (Tabela 1). Essas características também aumentaram com a aplicação de K no solo, na maioria dos genótipos. A produção de grãos variou de 6,4 a 24,6 g por vaso em baixo nível de K, e de 6,2 a 39,5 g por vaso em alto nível de K. Entre genótipos, a altura da planta variou de 87 a 117 cm em baixo nível de K e de 107 a 145 cm no alto nível. O número de panículas variou de 4,3 a 16,3 por vaso no baixo nível de K e de 6,7 a 23,7 por vaso no alto nível. O aumento médio de produção de grãos de 15 genótipos com aplicação de

TABELA 1. Produção de grãos, altura da planta, e número de panículas de 15 genótipos de arroz de terras altas¹.


| Genótipo      | Produção de grãos<br>(g/vaso) |                  | Altura da planta (cm) |                  | Panículas/vaso (nº) |                  |
|---------------|-------------------------------|------------------|-----------------------|------------------|---------------------|------------------|
|               | K <sub>0</sub>                | K <sub>200</sub> | K <sub>0</sub>        | K <sub>200</sub> | K <sub>0</sub>      | K <sub>200</sub> |
| Rio Paranaíba | 19,8abcd                      | 39,5a            | 106abcd               | 143a             | 10,3abcde           | 14,0bc           |
| CNA6975-2     | 6,4e                          | 9,4de            | 91ef                  | 107d             | 4,3e                | 6,7de            |
| CNA7690       | 13,7de                        | 29,2abc          | 93def                 | 130ab            | 13,0abcd            | 13,7bc           |
| L141          | 18,9abcd                      | 38,7a            | 95cdef                | 118bcd           | 10,7abcd            | 12,3bcd          |
| CNA7460       | 13,7de                        | 26,1abcd         | 87f                   | 112cd            | 10,0bcde            | 16,3b            |
| CNA6843-1     | 14,9bcde                      | 36,7ab           | 100bcde               | 117bcd           | 9,3cde              | 14,3bc           |
| Guarani       | 23,9ab                        | 25,1abcd         | 95bcdef               | 115bcd           | 16,3a               | 15,0bc           |
| CNA7127       | 16,6abcd                      | 31,9abc          | 90ef                  | 120bcd           | 9,7bcde             | 11,3bcd          |
| CNA6187       | 23,1abc                       | 32,0abc          | 107abc                | 128abc           | 12,7abcd            | 14,3bc           |
| CNA7911       | 24,6a                         | 20,3bcde         | 108ab                 | 120bcd           | 15,7ab              | 9,0cde           |
| CNA7645       | 14,1cde                       | 38,9a            | 108ab                 | 145a             | 9,3cde              | 15,7bc           |
| CNA7875       | 13,3de                        | 6,2e             | 117a                  | 117bcd           | 7,7de               | 4,7e             |
| CNA7680       | 17,5abcd                      | 19,2bcde         | 102bcde               | 131ab            | 11,3abcd            | 15,7bc           |
| CNA6724-1     | 16,5abcd                      | 19,2bcde         | 106abcd               | 130ab            | 10,3abcde           | 9,0cde           |
| CNA7890       | 13,3de                        | 17,3cde          | 104abcd               | 120bcd           | 14,3abc             | 23,7a            |
| Média         | 16,7                          | 26,0             | 100,6                 | 123,5            | 10,9                | 13,0             |
| CV (%)        | 35                            |                  | 7                     |                  | 27                  |                  |

Médias seguidas da mesma letra, na mesma coluna, não diferem significativamente entre si pelo teste de Duncan a 5% da probabilidade; K<sub>0</sub>: Sem aplicação de potássio; K<sub>220</sub>: Aplicação de 200 mg kg<sup>-1</sup> de potássio.

2118 N.K. FAGERIA

> 200 mg kg-1 de K no solo foi de 54%, em comparação com o tratamento-testemunha. Da mesma maneira, a altura da planta aumentou 23% no alto nível de K. O aumento no número de panículas foi de 19% com alto nível de K em comparação à testemunha. Os resultados obtidos por Fageria et al. (1995), em um ensaio de campo, mostraram resposta à aplicação de K em solo de cerrado, e essa resposta variou de acordo com o genótipo de arroz de sequeiro considerado.

> Entre os componentes da produção, o número de panículas, o comprimento da panícula e o índice de colheita relacionaram-se significativamente com a produção de grãos (Fig. 1). Os maiores coeficientes de correlação foram obtidos com o índice de colheita e o número de panículas, o que significa que estes dois componentes de produção são os mais importantes no aumento da produção de grãos. Portanto, é possível manipular estes componentes de produção na cultura de arroz de terras altas através da aplicação de K, e, consequentemente, aumentar a produção. Fageria et al. (1997) também mos-



- 1: Produção de matéria seca da parte aérea
- 2: Altura da planta
- 3: Número de panícula 4: Comprimento da panícula
- Índice de colheita
- 6: Teor de K nos grãos
- 7: Teor de K na parte aérea
- 8: Eficiência agronômica de K
- Eficiência fisiológica de K
- 10: Eficiência agrofisiológica de K
- 11: Eficiência de recuperação de K12: Eficiência de utilização de K

FIG. 1. Coeficientes de correlação entre produção de grãos e seus componentes e entre produção de grãos e teor uso de K pelos genótipos de arroz em terras altas.

traram que entre os componentes de produção, o número de panículas e o índice de colheita são os que mais contribuem para o aumento da produção.

A eficiência de uso de nutrientes é definida de várias maneiras (Fageria et al., 1997), e por isso foram calculados todos os tipos de eficiência definidos quanto ao uso do nutriente K (Tabela 2 ). As cinco eficiências, que variam entre genótipos e pela correlação com a produção de grãos, ocorreram na ordem: eficiência agronômica > eficiência agrofisiológica > eficiência de utilização > eficiência fisiológica > eficiência de recuperação. A média dos 15 genótipos estudados mostrou que a eficiência de recuperação foi de 66%. Isto mostra que a resposta da cultura do arroz de terras altas em condições de campo, em solo de cerrado, não é acentuada como a de P e N, que apresentam eficiência de recuperação de, aproximadamente, 45% e 15%, respectivamente (Fageria et al., 1997).

A eficiência agronômica de uso de K mostrou maior correlação com a produção de grãos e, assim os genótipos foram classificados como eficientes e ineficientes, com base nesta eficiência. A produção de grãos de 14 genótipos em baixo nível de K e a média de eficiência agronômica destes genótipos foram usados como índice de separação dos genótipos em quatro grupos, de acordo com a metodologia proposta por Fageria & Baligar (1993). O genótipo CNA 7875 mostrou valor negativo de utilização de K, e portanto não foi incluído na classificação. Os quatro grupos foram: 1) Genótipos que produziram acima da média de 14 genótipos e cuja eficiência de uso é maior do que a média, foram classificados neste grupo, e chamados eficientes e responsivos (ER). Os genótipos Rio Paranaíba, L141 e Guarani foram classificados neste grupo; 2) O grupo de genótipos eficientes e não-responsivos (ENR) são aqueles que produziram acima da média de 14 genótipos mas ficaram abaixo da

TABELA 2. Eficiência de uso de K pelos 15 genótipos de arroz de terras altas¹.

| Genótipo      | Eficiência<br>agronômica<br>(mg mg <sup>-1</sup> ) | Eficiência<br>fisiológica<br>(mg mg <sup>-1</sup> ) | Eficiência<br>agrofisiológic<br>(mg mg <sup>-1</sup> ) | Eficiência de<br>a recuperação<br>(%) | Eficiência de<br>utilização<br>(mg mg <sup>-1</sup> ) |
|---------------|----------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------|---------------------------------------|-------------------------------------------------------|
| Rio Paranaíba | 19,6abc                                            | 52,8b                                               | 19,2bcde                                               | 87,7a                                 | 46,31a                                                |
| CNA6975-2     | 6,2bc                                              | 34,2b                                               | 6,3de                                                  | 76,3ab                                | 26,09abc                                              |
| CNA7690       | 15,6abc                                            | 46,9b                                               | 20,7bcde                                               | 63,6abc                               | 29,83abc                                              |
| L141          | 19,8abc                                            | 63,2a                                               | 26,5abc                                                | 64,4abc                               | 40,70ab                                               |
| CNA7460       | 12,5abc                                            | 43,3b                                               | 12,8cde                                                | 79,1ab                                | 34,25abc                                              |
| CNA6843-1     | 21,8ab                                             | 48,9b                                               | 21,8abcd                                               | 76,4ab                                | 37,36abc                                              |
| Guarani       | 20,7abc                                            | 40,7b                                               | 37,7a                                                  | 44,3c                                 | 18,03c                                                |
| CNA7127       | 15,2abc                                            | 46,8b                                               | 19,3bcde                                               | 61,6abc                               | 28,83abc                                              |
| CNA6187       | 8,9 abc                                            | 33,4b                                               | 11,2cde                                                | 68,2abc                               | 22,79bc                                               |
| CNA7911       | 10,8abc                                            | 27,5b                                               | 14,2bcde                                               | 60,5abc                               | 16,64c                                                |
| CNA7645       | 24,8a                                              | 53,6b                                               | 30,9ab                                                 | 80,6a b                               | 43,20ab                                               |
| CNA7875       | -                                                  | 40,9b                                               | -                                                      | 57,3bc                                | 23,44bc                                               |
| CNA7680       | 6,6abc                                             | 30,4b                                               | 11,2cde                                                | 54,2bc                                | 16,48c                                                |
| CNA6724-1     | 2,7c                                               | 29,5b                                               | 3,1e                                                   | 59,2bc                                | 17,46c                                                |
| CNA7890       | 4,0c                                               | 28.8b                                               | 7,4de                                                  | 57,7bc                                | 16,62c                                                |

<sup>&</sup>lt;sup>1</sup> Médias seguidas da mesma letra, na mesma coluna, não diferem significativamente entre si pelo teste de Duncan a 5% de probabilidade.

2120 N.K. FAGERIA

média de eficiência de uso de K. Os genótipos pertencentes a este grupo são CNA 6187, CNA 7911 e CNA 7680; 3) O grupo de genótipos não-eficientes e responsivos (NER) são os que produziram abaixo da média de 14 genótipos mas sua eficiência de uso de K foi maior do que a média de uso de K. Neste grupo caíram os genótipos CNA 6843-1 e CNA 7645; 4) O grupo de genótipos que produziram abaixo da média de 14 genótipos e cuja eficiência de uso de K ficou abaixo da média, considerados não-eficientes e não-responsivos (NENR), inclui os genótipos CNA 6975-2, CNA 7690, CNA 7460, CNA 7127, CNA 6724-1 e CNA 7890, que pertencem a este grupo.

## REFERÊNCIAS

- EMBRAPA. Centro Nacional de Pesquisa de Solos (Rio de Janeiro, RJ). **Manual de métodos de análise de solo**. 2.ed. Rio de Janeiro, 1997. 212p.
- FAGERIA, N.K. Soil acidity affects availability of nitrogen, phosphorus and potassium. **Better Crops International**, Norcross, v.10, n.1, p.8-9, 1994.
- FAGERIA, N.K.; BALIGAR, V.C. Screening crop genotypes for mineral stresses. In: WORKSHOP ON ADAPTATION OF PLANTS TO SOIL STRESSES, 1993, Lincoln. **Proceedings**. Lincoln: University of Nebraska, 1993. p.142-159. (Intsormil Publication, 94-2).
- FAGERIA, N.K.; BALIGAR, V.C.; JONES, C.A. Rice. In: FAGERIA, N.K.; BALIGAR, V.C.; JONES, C.A. **Growth and mineral nutrition of field crops**. 2.ed. New York: M. Dekker, 1997. p.283-343.
- FAGERIA, N.K.; SANTANA, E.P.; CASTRO, E. da M. de; MORAES, O.P. Resposta diferencial de genótipos de arroz de sequeiro à fertilidade do solo. **Revista Brasileira de Ciência do Solo**, Campinas, v.19, p.261-287, 1995.
- FAGERIA, N.K.; WRIGHT, R.J.; BALIGAR, V.C.; CARVALHO, J.R.P. Upland rice response to potassium fertilization on an Oxisol. **Fertilizer Research**, Dordrecht, v.21, p.141-147, 1989.