Accessibility / Report Error

Alternative substrates for the production of clonal Coffea canephora seedlings

Substratos alternativos para produção de mudas clonais de Coffea canephora

Abstract

The objective of this work was to evaluate the physicochemical properties of coffee husk, elephant grass, and sugarcane alone or combined with each other or with commercial compounds, as well as their use as substrate for the production of clonal Coffea canephora seedlings. The experiment was carried out in two stages: one for the physicochemical characterization of the substrates, and the other for evaluations of the growth of coffee seedlings in these substrates. In the first stage, the treatments consisted of coffee husk (CH), elephant grass (EG), sugarcane (SC), commercial substrate (CS), vermiculite (VM), and their combinations. In the second stage, the standard substrate (soil) was also evaluated. CH presented a high electrical conductivity and density and a low aeration space and available water. SC stood out for its lower pH and density and its greater porosity. SC and EG were viable for coffee seedling production, not differing from the commercial and standard substrates. With the exception of CH+EG, CH+CS, and EG+SC, the combined substrates allowed of a greater seedling growth than the isolated ones. CH was only viable as a substrate when combined, especially with VM. Combining CH, SC, and EG to the standard substrate improves the quality of clonal C. canephora seedlings.

Index terms
coffee; organic waste; physicochemical property; tubes; vegetative propagation.

Resumo

O objetivo deste trabalho foi avaliar as propriedades físico-químicas da palha de café, do capim-elefante e da cana-de-açúcar isolados ou combinados entre si ou com compostos comerciais, bem como seu uso como substrato para a produção de mudas clonais de Coffea canephora. O experimento foi conduzido em duas etapas: uma para a caracterização físico-química dos substratos, e a outra para a avaliação do crescimento das mudas de café nesses substratos. Na primeira etapa, os tratamentos consistiram de palha de café (PC), capim-elefante (CE), cana-de-açúcar (CA), substrato comercial (SC), vermiculita (VM) e suas combinações. Na segunda etapa, avaliou-se, também, o substrato padrão (solo). A PC apresentou altas condutividade elétrica e densidade e baixos espaço de aeração e água disponível. A CA se destacou por seus menores pH e densidade e sua maior porosidade. A CA e o CE foram viáveis para a produção de mudas de café, sem diferir dos substratos comercial e padrão. Com exceção de PC+CE, PC+SC e CE+CA, os substratos combinados proporcionaram maior crescimento das mudas que os isolados. A PC foi viável como substrato apenas em combinação, principalmente com VM. A combinação de PC, CA e CE com o substrato padrão melhora a qualidade de mudas clonais de C. canephora.

Termos para indexação
café; resíduo orgânico; propriedades físico-químicas; tubetes; propagação vegetativa.

Introduction

Coffee is the second most consumed beverage worldwide, with Brazil ranking first as the main coffee producer and exporter (ICO, 2023ICO. International Coffee Organization. What’s new. Available at: <https://www.ico.org/>. Accessed on: Oct. 2 2023.
https://www.ico.org/...
). In the country, the species Coffea canephora Pierre ex A.Froehner represents 30% of the total coffee production, occupying a planted area of around 388 thousand hectares (Acompanhamento..., 2023ACOMPANHAMENTO DA SAFRA BRASILEIRA [DE] CAFÉ: safra 2023: terceiro levantamento, v.10, n.3, set. 2023. Available at: <https://www.conab.gov.br/info-agro/safras/cafe>. Accessed on: Oct. 2 2023.
https://www.conab.gov.br/info-agro/safra...
). In this scenario, the development of new coffee crops and the renewal of the coffee park in Brazil, mainly in C. canephora-producing areas, have increased demands for clonal C. canephora seedlings, whose quality is crucial for the successful enterprise of perennial crops, such as coffee (Guisolfi et al., 2020GUISOLFI, L.P.; LO MONACO, P.A.V.; KRAUSE, M.R.; MENEGHELLI, C.M.; ALMEIDA, K.M.; MENEGHELLI, L.A.M.; VIEIRA, G.H.S. Agricultural wastes as alternative substrates in the production of conilon coffee seedlings. Bioscience Journal, v.36, p.792-798, 2020. DOI: https://doi.org/10.14393/BJ-v36n3a2020-47718.
https://doi.org/10.14393/BJ-v36n3a2020-4...
).

A quality coffee seedling must present a vigorous development and a well-formed root system (Marana et al., 2008MARANA, J.P.; MIGLIORANZA, E.; FONSECA, É. de P.; KAINUMA, R.H. Índices de qualidade e crescimento de mudas de café produzidas em tubetes. Ciência Rural, v.38, p.39-45, 2008. DOI: https://doi.org/10.1590/S0103-84782008000100007.
https://doi.org/10.1590/S0103-8478200800...
; Pereira et al., 2013PEREIRA, L.R.; MARCILIO, G.S.; MOTA, F.M.; SANT’ANA, B.T.; DARDENGO, M.C.J.D. Qualidade de mudas do café Conilon vitória produzidas em viveiros do sul capixaba. Enciclopédia Biosfera, v.9, p.2213-2220, 2013.), both of which depend on genetic characteristics and the interaction of the plant material with the environment (Dardengo et al., 2013DARDENGO, M.C.J.D.; SOUSA, E.F. de; REIS, E.F. dos; GRAVINA, G. de A. Crescimento e qualidade de mudas de café Conilon produzidas em diferentes recipientes e níveis de sombreamento. Coffee Science, v.8, p.500-509, 2013.). In the second case, the used substrate and container are factors that will directly influence the quality of the seedlings (Klein, 2015KLEIN, C. Utilização de substratos alternativos para produção de mudas. Revista Brasileira de Energias Renováveis, v.4, p.43-63, 2015. DOI: https://doi.org/10.5380/rber.v4i3.40742.
https://doi.org/10.5380/rber.v4i3.40742...
; Meneghelli et al., 2018MENEGHELLI, L.A.M.; LO MONACO, P.A.V.; KRAUSE, M.R.; GUISOLFI, L.P.; ALMEIDA, K.M.; VALLE, J.M.; VIEIRA, G.H.S. Utilization of agricultural residues as alternative substrates in the production of Conilon coffee seedlings. Journal of Experimental Agriculture International, v.21, p.1-6, 2018. DOI: https://doi.org/10.9734/JEAI/2018/39797.
https://doi.org/10.9734/JEAI/2018/39797...
).

In Brazil, currently, the main production systems for coffee seedlings are plastic bags (conventional) and polyethylene tubes (Guisolfi et al., 2020GUISOLFI, L.P.; LO MONACO, P.A.V.; KRAUSE, M.R.; MENEGHELLI, C.M.; ALMEIDA, K.M.; MENEGHELLI, L.A.M.; VIEIRA, G.H.S. Agricultural wastes as alternative substrates in the production of conilon coffee seedlings. Bioscience Journal, v.36, p.792-798, 2020. DOI: https://doi.org/10.14393/BJ-v36n3a2020-47718.
https://doi.org/10.14393/BJ-v36n3a2020-4...
). In the conventional system, the standard substrate recommended is a mixture of 70 to 80% subsurface soil and 20 to 30% organic fertilizer (Espindula et al., 2015ESPINDULA, M.C.; MAURI, A.L.; RAMALHO, A.R.; DIAS, J.R.M.; FERREIRA, M. das G.R.; SANTOS, M.R.A. dos; MARCOLAN, A.L. Produção de mudas. In: MARCOLAN, A.L.; ESPINDULA, M.C. (Ed.). Café na Amazônia. Brasília: Embrapa, 2015. p.127-157.). However, high substrate volumes are required to fill the containers and an inappropriate use of these substrates can compromise the sustainability of coffee production and pose biological risks due to contamination by pathogens, especially nematodes (Montagne et al., 2016MONTAGNE, V.; CAPIAUX, H.; CANNAVO, B.; CHARPENTIER, S.; RENAUD, S.; LIATARD, E.; GROSBELLET, C.; LEBEAU, T. Protective effect of organic substrates against soil-borne pathogens in soilless cucumber crops. Scientia Horticulturae, v.206, p.62-70, 2016. DOI: https://doi.org/10.1016/j.scienta.2016.04.035.
https://doi.org/10.1016/j.scienta.2016.0...
).

In the production system in tubes, commercial substrates are generally used in smaller amounts, reducing the risk of contamination, problems with root curling, and the space required in the nursery and for transport (Espindula et al., 2015ESPINDULA, M.C.; MAURI, A.L.; RAMALHO, A.R.; DIAS, J.R.M.; FERREIRA, M. das G.R.; SANTOS, M.R.A. dos; MARCOLAN, A.L. Produção de mudas. In: MARCOLAN, A.L.; ESPINDULA, M.C. (Ed.). Café na Amazônia. Brasília: Embrapa, 2015. p.127-157.; Guisolfi et al., 2020GUISOLFI, L.P.; LO MONACO, P.A.V.; KRAUSE, M.R.; MENEGHELLI, C.M.; ALMEIDA, K.M.; MENEGHELLI, L.A.M.; VIEIRA, G.H.S. Agricultural wastes as alternative substrates in the production of conilon coffee seedlings. Bioscience Journal, v.36, p.792-798, 2020. DOI: https://doi.org/10.14393/BJ-v36n3a2020-47718.
https://doi.org/10.14393/BJ-v36n3a2020-4...
). However, although commercial substrates are efficient for seedling growth, their high costs may be unviable for family farmers. An alternative is using organic waste in the formulation of the substrate to reduce production costs in this system, decreasing the amount of or even replacing the used commercial substrate (Kratz et al., 2013KRATZ, D.; WENDLING, I.; NOGUEIRA, A.C.; SOUZA, P.V. de. Propriedades físicas e químicas de substratos renováveis. Revista Árvore, v.37, p.1103-1113, 2013. DOI: https://doi.org/10.1590/S0100-67622013000600012.
https://doi.org/10.1590/S0100-6762201300...
; Siqueira et al., 2020SIQUEIRA, R.H. da S.; MONTEIRO NETO, J.L.L.; CHAGAS, E.A.; MARTINS, S.A.; OLIVEIRA, A.H.C. de; SILVA, E.S. da. Seleção de substratos para a produção de mudas de maracujazeiro-amarelo em Roraima. Revista de Ciências Agrárias, v.63, p.1-9, 2020.).

Several materials have been used as alternative substrates for C. canephora seedling production, such as processed wood residue (Aquino et al., 2017AQUINO, L.P. de; SCHMIDT, R.; DUBBERSTEIN, D.; DIAS, J.R.M. Cortes basais e substratos na formação de mudas clonais de cafeeiro canéfora. Coffee Science, v.12, p.9-16, 2017. DOI: https://doi.org/10.25186/cs.v12i1.1182.
https://doi.org/10.25186/cs.v12i1.1182...
), residues of pepper powder, coconut fiber, pine bark (Guisolfi et al., 2020GUISOLFI, L.P.; LO MONACO, P.A.V.; KRAUSE, M.R.; MENEGHELLI, C.M.; ALMEIDA, K.M.; MENEGHELLI, L.A.M.; VIEIRA, G.H.S. Agricultural wastes as alternative substrates in the production of conilon coffee seedlings. Bioscience Journal, v.36, p.792-798, 2020. DOI: https://doi.org/10.14393/BJ-v36n3a2020-47718.
https://doi.org/10.14393/BJ-v36n3a2020-4...
), coffee husk, (Meneghelli et al., 2018MENEGHELLI, L.A.M.; LO MONACO, P.A.V.; KRAUSE, M.R.; GUISOLFI, L.P.; ALMEIDA, K.M.; VALLE, J.M.; VIEIRA, G.H.S. Utilization of agricultural residues as alternative substrates in the production of Conilon coffee seedlings. Journal of Experimental Agriculture International, v.21, p.1-6, 2018. DOI: https://doi.org/10.9734/JEAI/2018/39797.
https://doi.org/10.9734/JEAI/2018/39797...
), cattle manure (Silva et al., 2013SILVA, A.P. da; COSTA, E.; ESPÍRITO SANTO, T.L. do; SILVA, L.E. da; MARTINS, R.F. Coffee seedlings in different substrates and protected environments. Engenharia Agrícola, v.33, p.589-600, 2013. DOI: https://doi.org/10.1590/S0100-69162013000400001.
https://doi.org/10.1590/S0100-6916201300...
), and tannery sludge (Berilli et al., 2014BERILLI, S. da S.; QUIUQUI, J.P.C.; REMBINSKI, J.; SALLA, P.H.H.; BERILLI, A.P.C.G.; LOUZADA, J.M. Utilização de lodo de curtume como substrato alternativo para produção de mudas de café Conilon. Coffee Science, v.9, p.472-479, 2014.). However, some of these substrates may not be accessible in all coffee-producing regions, being abundant only in certain areas. For example, the coffee husk residue, rich in potassium and nitrogen, is a byproduct of coffee grain processing that can be easily obtained in the state of Rondônia, Brazil, where coffee farming is practiced, generating a 1:1 grain-to-husk ratio (Silva et al., 2020SILVA, O.M. das C.; HERNÁNDEZ, M.M.; ARAÚJO, G. do C.R.; CUNHA, F.L.; EVANGELISTA, D.V. da P.; LELES, P.S. dos S.; MELO, L.A. de. Potencial uso da casca de café como constituinte de substrato para produção de mudas de espécies florestais. Ciência Florestal, v.30, p.1161-1175, 2020. DOI: https://doi.org/10.5902/1980509842500.
https://doi.org/10.5902/1980509842500...
). Another material found in the region is elephant grass (Pennisetum purpureum Schumach.), an important forage species widely used for cutting due to its high dry matter production capacity and good adaptation to most tropical ecosystems (Leal et al., 2013LEAL, M.A. de A.; GUERRA, J.G.M.; ESPINDOLA, J.A.A.; ARAÚJO, E. da S. Compostagem de misturas de capim-elefante e torta de mamona com diferentes relações C:N. Revista Brasileira de Engenharia Agrícola e Ambiental, v.17, p.1195-1200, 2013. DOI: https://doi.org/10.1590/S1415-43662013001100010.
https://doi.org/10.1590/S1415-4366201300...
). In addition, sugarcane (Saccharum spp.) appears to be a promising material for formulating substrates because it is a widely available residue and has a high biomass productivity (Klein, 2015KLEIN, C. Utilização de substratos alternativos para produção de mudas. Revista Brasileira de Energias Renováveis, v.4, p.43-63, 2015. DOI: https://doi.org/10.5380/rber.v4i3.40742.
https://doi.org/10.5380/rber.v4i3.40742...
).

An ideal substrate should be able to support plant cuttings and provide sufficient amounts of water and nutrients, as well as be easily accessible, economically viable, and free of pests, phytopathogens, and foreign seeds, also showing a low density, good porosity, and water retention capacity under low humidity tensions, in addition to nutritional balance (De Boodt & Verdonck, 1972DE BOODT, M.; VERDONCK, O. The physical properties of the substrates in horticulture. Acta Horticulturae, v.26, p.37-44, 1972. DOI: https://doi.org/10.17660/ActaHortic.1972.26.5.
https://doi.org/10.17660/ActaHortic.1972...
; Kratz et al., 2013KRATZ, D.; WENDLING, I.; NOGUEIRA, A.C.; SOUZA, P.V. de. Propriedades físicas e químicas de substratos renováveis. Revista Árvore, v.37, p.1103-1113, 2013. DOI: https://doi.org/10.1590/S0100-67622013000600012.
https://doi.org/10.1590/S0100-6762201300...
; Zorzeto et al., 2014ZORZETO, T.Q.; DECHEN, S.C.F.; ABREU, M.F. de; FERNANDES JÚNIOR, F. Caracterização física de substratos para plantas. Bragantia, v.73, p.300-311, 2014. DOI: https://doi.org/10.1590/1678-4499.0086.
https://doi.org/10.1590/1678-4499.0086...
; Klein, 2015KLEIN, C. Utilização de substratos alternativos para produção de mudas. Revista Brasileira de Energias Renováveis, v.4, p.43-63, 2015. DOI: https://doi.org/10.5380/rber.v4i3.40742.
https://doi.org/10.5380/rber.v4i3.40742...
).

Therefore, the characterization and understanding of a substrate’s physical and chemical properties are essential to ensure quality products. Physical characteristics, in particular, are especially important, as substrate air-water ratios should not be altered during cultivation (Schafer et al., 2015SCHAFER, G.; SOUZA, P.V.D. de; FIOR, C.S. Um panorama das propriedades físicas e químicas de substratos utilizados em horticultura no sul do Brasil. Ornamental Horticulture, v.21, p.299-306, 2015. DOI: https://doi.org/10.14295/oh.v21i3.735.
https://doi.org/10.14295/oh.v21i3.735...
). Klein (2015)KLEIN, C. Utilização de substratos alternativos para produção de mudas. Revista Brasileira de Energias Renováveis, v.4, p.43-63, 2015. DOI: https://doi.org/10.5380/rber.v4i3.40742.
https://doi.org/10.5380/rber.v4i3.40742...
and Schafer et al. (2015)SCHAFER, G.; SOUZA, P.V.D. de; FIOR, C.S. Um panorama das propriedades físicas e químicas de substratos utilizados em horticultura no sul do Brasil. Ornamental Horticulture, v.21, p.299-306, 2015. DOI: https://doi.org/10.14295/oh.v21i3.735.
https://doi.org/10.14295/oh.v21i3.735...
highlighted that the characteristics of the substrate vary according to its composition, origin, and form of raw material production, which can lead to different seedling-development results.

The objective of this work was to evaluate the physicochemical properties of coffee husk, elephant grass, and sugarcane alone or combined with each other or with commercial compounds, as well as their use as substrate for the production of clonal C. canephora seedlings.

Materials and Methods

The research was carried out at the experimental field of Embrapa Rondônia, located in the municipality of Ouro Preto do Oeste, in the state of Rondônia, Brazil (62o15'10"W, 10o45'43"S, at 300 m above sea level). The predominant climate in the region is Am, tropical rainy, according to Köppen’s classification, with an average annual temperature of 25°C and average rainfall rates from 1,900 to 2,200 mm per year (Alvares et al., 2013ALVARES, C.A.; STAPE, J.L.; SENTELHAS, P.C.; GONÇALVES, J.L. de M.; SPAROVEK, G. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, v.22, p.711-728, 2013. DOI: https://doi.org/10.1127/0941-2948/2013/0507.
https://doi.org/10.1127/0941-2948/2013/0...
).

The experiment was carried out in two stages: in the first, the physicochemical characterization of the substrates was performed; and, in the second, the potential of the substrates to produce seedlings was evaluated. The used substrates were: coffee husks of C. canephora fruits; biomass from the Cameroon elephant grass cultivar; biomass from the CB47-355 (Mulata Pelada) sugarcane variety; the Agrofloc expanded vermiculite (Brasil Minérios, Goiânia, GO, Brazil); and the Tropstrato HT commercial substrate, composed of peat, expanded vermiculite, and pine bark (Vida Verde, Mirim Mogi, SP, Brazil) (Table 1).

Table 1
Chemical characteristics of the raw materials and commercial substrates used for the production of clonal Coffea canephora seedlings(1).

The coffee husks were obtained at the coffee processing unit of the experimental field of Embrapa Rondônia, located in the municipality of Ouro Preto do Oeste, in the state of Rondônia, Brazil. The biomasses of elephant grass and sugarcane were obtained at the experimental field of Embrapa Rondônia, located in the municipality of Presidente Médici, also in the state of Rondônia. Both elephant grass and sugarcane were harvested manually (entire aerial part of the plants), keeping two nodes above the ground for elephant grass plants, which had been regrowing for four months after the last cut, and a height of 20 cm for sugarcane, enabling the regrowth of the ratoons and the recompositing of the plants.

In the first stage of the experiment, the experimental design was a randomized complete block, with the following 20 treatments for the analysis of the substrates alone or combined (T1-T20), with three replicates: T1, composted coffee husk (CH); T2, composted elephant grass (EG); T3, composted sugarcane (SC); T4, commercial substrate (CS); T5, expanded vermiculite (VM); T6, CH+EG at a 1:1 ratio; T7, CH+SC at a 1:1 ratio; T8, CH+CS at a 1:1 ratio; T9, CH+VM at a 1:1 ratio; T10, EG+SC at a 1:1 ratio; T11, EG+CS at a 1:1 ratio; T12, EG+VM at a 1:1 ratio; T13, SC+CS at a 1:1 ratio; T14, SC+VM at a 1:1 ratio; T15, CH+SC+EG at a 1:1:1 ratio; T16, CH+SC+EG+CS at a 1:1:1:1 ratio; T17, CH+SC+EG+CS+VM at a 1:1:1:1:1 ratio; T18, CH+SC+VM at a 1:1:1 ratio; T19, CH+EG+VM at a 1:1:1; and T20, CH+EG+SC+VM at a 1:1:1:1.

Substrate composting (biostabilization) was conducted in a greenhouse from April to June 2015. The compost pile was built with layers approximately 10 cm thick. Between the layers, 2.2 kg triple superphosphate were evenly distributed for each cubic square of material, following the recommendations of Souza & Resende (2006)SOUZA, J.L. de; RESENDE, P. Manual de horticultura orgânica. 2.ed. atual. e ampl. Viçosa: Aprenda Fácil, 2006., with the application of 8.16, 6.60, and 8.66 g kg-1 urea on the biomasses of coffee straw, elephant grass, and sugarcane, respectively. Urea was applied according to Gomes et al. (2001)GOMES, T.C. de A.; SILVA, J.A.M. e; SILVA, M.S.L. da. Preparo de composto orgânico na pequena propriedade rural. Petrolina: Embrapa Semi-Árido, 2001. (Embrapa Semi-Árido. Instruções técnicas, 53)., considering the following percentages of carbon and nitrogen contained in each raw material: 51 and 0.62% in coffee husk (Souza & Resende, 2006SOUZA, J.L. de; RESENDE, P. Manual de horticultura orgânica. 2.ed. atual. e ampl. Viçosa: Aprenda Fácil, 2006.), 40 and 0.46% in sugarcane (Trivelin et al., 1997TRIVELIN, P.C.O.; BENDASSOLLI, J.A.; OLIVEIRA, M.W. Potencialidade da mistura de aquamônia com vinhaça na fertilização de canaviais colhidos sem despalha a fogo. Parte I: estabilidade química da mistura. STAB - Açúcar, Álcool e Subprodutos, v.16, p.26-29, 1997.), and 53 and 0.62% in elephant grass (Leal et al., 2013LEAL, M.A. de A.; GUERRA, J.G.M.; ESPINDOLA, J.A.A.; ARAÚJO, E. da S. Compostagem de misturas de capim-elefante e torta de mamona com diferentes relações C:N. Revista Brasileira de Engenharia Agrícola e Ambiental, v.17, p.1195-1200, 2013. DOI: https://doi.org/10.1590/S1415-43662013001100010.
https://doi.org/10.1590/S1415-4366201300...
). Temperature variations in the piles were monitored daily with a digital infrared thermometer. The compounds were considered ready for use when their internal temperature became stable, at a close-to-room temperature of 30±2oC, at about 100 days after the beginning of the biostabilization process.

For their physicochemical characterization, samples of the substrates were sent to the Laboratory of Plant Substrates of the Department of Horticulture and Forestry of Faculdade de Agronomia of Universidade Federal do Rio Grande do Sul. Electrical conductivity and hydrogen potential (pH) were evaluated at a 1:5 dilution (v:v) in accordance with Instrução Normativa SDA no. 17, de 21 de maio de 2007 (Brasil, 2007BRASIL. Ministério da Agricultura, Pecuária e Abastecimento. Secretaria de Defesa Agropecuária. Instrução Normativa SDA nº 17, de 21 de maio de 2007. [Aprova os Métodos Analíticos Oficiais para Análise de Substratos e Condicionadores de Solos]. Diário Oficial da União, 24 maio 2007. Seção1, p.8-9. Available at: <https://pesquisa.in.gov.br/imprensa/jsp/visualiza/index.jsp?data=24/05/2007&jornal=1&pagina=8&totalArquivos=72>. Accessed on: Jan. 10 2023.
https://pesquisa.in.gov.br/imprensa/jsp/...
), detailing aspects of the law on the standards for plant substrate analysis. Dry density was determined using the self-compaction method (Hofmann, 1970HOFMANN, G. Verbindliche methoden zur untersuchung von TKS und gartnerischen erden. Mitteilungen der VSLUFA, v.6, p.129-153, 1970.). Water retention curves at 0, 10, 50, and 100 hP, obtained according to De Boodt & Verdonck (1972)DE BOODT, M.; VERDONCK, O. The physical properties of the substrates in horticulture. Acta Horticulturae, v.26, p.37-44, 1972. DOI: https://doi.org/10.17660/ActaHortic.1972.26.5.
https://doi.org/10.17660/ActaHortic.1972...
, were prepared to determine total porosity at 0 hPa, aeration space at 10 hPa, available water at 10 to 100 hPa, readily available water (RAW) at 10 to 50 hPa, buffering water at 50 to 100 hPa, and remaining water at 100 hPa.

In the second stage, the performance of the substrates in the formation of C. canephora clonal seedlings was evaluated in a greenhouse from September to December 2015. The treatments consisted of the 20 substrates previously described, but placed in 280 cm-3 tubes, plus a standard substrate (T21), i.e., subsurface soil, packaged in 700 cm-3 polyethylene bags. The experimental design was randomized complete blocks with four replicates and one cutting per replicate.

In T21, the used soil was an eutrophic Ferralsol, with the following chemical attributes at the 0-20 cm depth: pH (in water) 6.1, 19.5 g kg-1 organic matter, 5.0 mg dm-3 P, 0.21 cmolc dm-3 K, 5.08 cmolc dm-3 Ca, 0.91 cmolc dm-3 Mg, 2.6 cmolc dm-3 H+Al, 0.0 cmolc dm-3 Al, cation exchange capacity of 8.84 cmolc dm-3, and base saturation of 70%. A total of 2.0 kg dolomitic limestone, 5.0 kg simple superphosphate, and 0.5 kg potassium chloride were added to each cubic meter of soil (Espindula et al., 2015ESPINDULA, M.C.; MAURI, A.L.; RAMALHO, A.R.; DIAS, J.R.M.; FERREIRA, M. das G.R.; SANTOS, M.R.A. dos; MARCOLAN, A.L. Produção de mudas. In: MARCOLAN, A.L.; ESPINDULA, M.C. (Ed.). Café na Amazônia. Brasília: Embrapa, 2015. p.127-157.). To the other substrates, 6.0 g dm-3 of the Basacot Plus 9M slow-release mineral fertilizer (Compo Expert Brasil Fertilizantes Ltda., Sumaré, SP, Brazil) were also added, containing 16% N, 8.0% P, 12% K, 2.0% Mg, 5.0% S, 0.4% Fe, 0.02% B, 0.02% Zn, 0.05% Cu, 0.06% Mn, and 0.015% Mo.

To obtain clonal seedlings of C. canephora, 5.0 cm long cuttings (orthotropic branch segments) of the BRS Ouro Preto cultivar were planted in the tubes with the substrates, which were continuously irrigated by automated nebulization at a 90-100% relative humidity. At 35 and 70 days after staking (DAS), micronutrients were supplemented via fertigation by applying 0.125 g per plant of the Supra Mix Plus fertilizer (Supra Fertilizantes, Foz do Iguaçu, PR, Brazil), containing 5.0% Ca, 5.0% Zn, 4.0% Mn, 0.1% B, and 0.02% Mo, followed by the supplementation of 0.0125 g N per plant at 90 DAS.

At 120 DAS, the following parameters were evaluated: stem length, determined by bud insertion up to the apical meristem; stem diameter, obtained at the base of the branch, 2.0 cm above the insertion point of the shoot on the cuttings; root volume, considered the difference in displaced volume in a graduated beaker; stem dry mass (SDM), leaf dry mass (LDM), and root dry mass (RDM), determined on an analytical balance after drying in an oven with forced-air circulation, at 65°C; and total leaf area, using the free software to determine leaf area, Determinador Digital de Áreas (Ferreira et al., 2008FERREIRA, O.G.L.; ROSSI, F.D.; ANDRIGHETTO, C. DDA: determinador digital de áreas: software para determinação de área foliar, índice de área foliar e área de olho de lombo - versão 1.2. Santo Augusto: [s.n.], 2008.). The following variables were, then, obtained: dry shoot mass (DSM = SDM + LDM), total dry mass (TDM = DSM + RDM), stem length/diameter ratio (SLD = stem length/stem diameter), shoot/root ratio (SRR = DSM/RDM), and Dickson’s quality index [DQI = TDM/(SLD + SRR)] (Dickson et al., 1960DICKSON, A.; LEAF, A.L.; HOSNER, J.F. Quality appraisal of white spruce and white pine seedling stock in nurseries. Forest Chronicle, v.36, p.10-13, 1960. DOI: https://doi.org/10.5558/tfc36010-1.
https://doi.org/10.5558/tfc36010-1...
).

The Shapiro-Wilk test (p≤0.05) was used to evaluate data normality, followed by the analysis of variance. The means were grouped using the Scott-Knott test (p≤0.05), and, when significant differences were detected, the F-test (p≤0.05) was applied.

Results and Discussion

The physicochemical properties of the investigated substrates varied according to their composition, with greater differences being observed when each substrate was evaluated separately, i.e., from T1 to T5 (Table 2). The substrate formed only by coffee husk showed the highest values for electrical conductivity, dry density, buffering water, and remaining water, but the lowest for aeration space, available water, and RAW. Although presenting a lower pH, the sugarcane substrate stood out for its lower density and higher total porosity, available water, and RAW. The commercial substrate showed a high density and water holding capacity (WHC) according to the values obtained for available water, RAW, and buffering water. Vermiculite presented the lowest electrical conductivity, a low density, and the highest pH associated with a high buffering water. Most of the combinations formed by these substrates showed similar values for the studied physicochemical variables. The SC+VM combination, for example, resulted in a lower total porosity, with a low aeration space and remaining water.

Table 2
Electrical conductivity (EC), hydrogen potential (pH), dry density (DS), total porosity (TP), aeration space (AS), available water (AW), readily available water (RAW), buffering water (BW), and remaining water (RW) for each evaluated substrate used in the production of clonal Coffea canephora seedlings(1).

Although the evaluated physicochemical properties have been previously analyzed and their standards and ranges defined to characterize ideal substrate conditions for seedling production in containers (De Boodt & Verdonck, 1972DE BOODT, M.; VERDONCK, O. The physical properties of the substrates in horticulture. Acta Horticulturae, v.26, p.37-44, 1972. DOI: https://doi.org/10.17660/ActaHortic.1972.26.5.
https://doi.org/10.17660/ActaHortic.1972...
; Kratz et al., 2013KRATZ, D.; WENDLING, I.; NOGUEIRA, A.C.; SOUZA, P.V. de. Propriedades físicas e químicas de substratos renováveis. Revista Árvore, v.37, p.1103-1113, 2013. DOI: https://doi.org/10.1590/S0100-67622013000600012.
https://doi.org/10.1590/S0100-6762201300...
; Zorzeto et al., 2014ZORZETO, T.Q.; DECHEN, S.C.F.; ABREU, M.F. de; FERNANDES JÚNIOR, F. Caracterização física de substratos para plantas. Bragantia, v.73, p.300-311, 2014. DOI: https://doi.org/10.1590/1678-4499.0086.
https://doi.org/10.1590/1678-4499.0086...
; Schafer et al., 2015SCHAFER, G.; SOUZA, P.V.D. de; FIOR, C.S. Um panorama das propriedades físicas e químicas de substratos utilizados em horticultura no sul do Brasil. Ornamental Horticulture, v.21, p.299-306, 2015. DOI: https://doi.org/10.14295/oh.v21i3.735.
https://doi.org/10.14295/oh.v21i3.735...
), studies are not yet conclusive concerning C. canephora.

In the case of total porosity, which is divided into aeration space (represented by macropores) and available water (divided into RAW and buffering water), the standard values are between 20 and 30% of the substrate volume for aeration space and 25 or 35% for available water, comprising 20 or 30% of RAW and 5.0% of buffering water (De Boodt & Verdonck, 1972DE BOODT, M.; VERDONCK, O. The physical properties of the substrates in horticulture. Acta Horticulturae, v.26, p.37-44, 1972. DOI: https://doi.org/10.17660/ActaHortic.1972.26.5.
https://doi.org/10.17660/ActaHortic.1972...
). In the present work, wide variations in total porosity were observed in the treatments due to the different particle arrangements resulting from the mixed materials. Sugarcane was important for the porosity of the substrate, increasing total porosity in some combinations up to values close to the 85% recommended for a substrate volume containing 15% solids (De Boodt & Verdonck, 1972DE BOODT, M.; VERDONCK, O. The physical properties of the substrates in horticulture. Acta Horticulturae, v.26, p.37-44, 1972. DOI: https://doi.org/10.17660/ActaHortic.1972.26.5.
https://doi.org/10.17660/ActaHortic.1972...
).

Density and WHC are inversely proportional, as noted for the sugarcane substrate. Comparatively, very dense substrates present a lower total porosity and, therefore, retain little water, which impairs root development, whereas very low-density substrates do not promote an adequate plant fixation and balance in containers (Zorzeto et al., 2014ZORZETO, T.Q.; DECHEN, S.C.F.; ABREU, M.F. de; FERNANDES JÚNIOR, F. Caracterização física de substratos para plantas. Bragantia, v.73, p.300-311, 2014. DOI: https://doi.org/10.1590/1678-4499.0086.
https://doi.org/10.1590/1678-4499.0086...
). Kratz et al. (2013)KRATZ, D.; WENDLING, I.; NOGUEIRA, A.C.; SOUZA, P.V. de. Propriedades físicas e químicas de substratos renováveis. Revista Árvore, v.37, p.1103-1113, 2013. DOI: https://doi.org/10.1590/S0100-67622013000600012.
https://doi.org/10.1590/S0100-6762201300...
pointed out that substrate density must be defined according to the height of the container, with recommended values ranging from 200 to 400 kg m-3 for containers up to 15 cm high, as in the case of the tubes used in the present study.

For the pH of the substrate, the ideal values are from 5.0 to 6.5 according to Schafer et al. (2015)SCHAFER, G.; SOUZA, P.V.D. de; FIOR, C.S. Um panorama das propriedades físicas e químicas de substratos utilizados em horticultura no sul do Brasil. Ornamental Horticulture, v.21, p.299-306, 2015. DOI: https://doi.org/10.14295/oh.v21i3.735.
https://doi.org/10.14295/oh.v21i3.735...
. A pH value above the ideal was obtained for coffee husk and vermiculite, as well as for their combinations; however, the addition of these materials to the commercial substrate, sugarcane, or elephant grass may be a strategy to adapt substrate pH.

Although the analyzed substrates influenced coffee seedling growth, they did not differ significantly from each other. The substrates composed of just one material (T1, T2, T3, T4, and T5) did not promote seedling growth (Table 3). Moreover, the commercial substrate (T4) and the standard (T21) showed similar values for most of the evaluated parameters, except for stem length, which was lower in the latter.

Table 3
Stem length (SL), stem diameter (SD), root volume (RV), leaf area (LA), and stem length/diameter ratio (SLD) of Coffea canephora seedlings produced in different substrates(1).

The physicochemical characteristics of the coffee husk substrate affected seedling growth, resulting in the lowest stem length, leaf area, and SLD, all with values lower than those obtained for the standard (Table 3). Therefore, coffee husk is viable for use as a substrate only when mixed with other materials, especially vermiculite and except elephant grass. Furthermore, the high values found for electrical conductivity, density, and remaining water and the low ones for aeration space, available water, and RAW make that residue unfavorable for coffee seedling growth.

Regarding remaining water, the value obtained for the coffee husk substrate differed from that of the other materials (Table 2). This variable, equivalent to the water remaining in a substrate after the application of a 100 kPa tension, is considered ideal between 20 and 30% of the substrate volume (De Boodt & Verdonck, 1972DE BOODT, M.; VERDONCK, O. The physical properties of the substrates in horticulture. Acta Horticulturae, v.26, p.37-44, 1972. DOI: https://doi.org/10.17660/ActaHortic.1972.26.5.
https://doi.org/10.17660/ActaHortic.1972...
; Zorzeto et al., 2014ZORZETO, T.Q.; DECHEN, S.C.F.; ABREU, M.F. de; FERNANDES JÚNIOR, F. Caracterização física de substratos para plantas. Bragantia, v.73, p.300-311, 2014. DOI: https://doi.org/10.1590/1678-4499.0086.
https://doi.org/10.1590/1678-4499.0086...
). According to Kratz et al. (2013)KRATZ, D.; WENDLING, I.; NOGUEIRA, A.C.; SOUZA, P.V. de. Propriedades físicas e químicas de substratos renováveis. Revista Árvore, v.37, p.1103-1113, 2013. DOI: https://doi.org/10.1590/S0100-67622013000600012.
https://doi.org/10.1590/S0100-6762201300...
, values above 30% lead to a poor water drainage, which can damage root growth. The coffee husk material also presented a high electrical conductivity, which may be associated with its high salt content, especially of nitrogen and potassium (Table 1). The combination of the high values of remaining water and of electrical conductivity may have hindered salt percolation, culminating in an excessive salinity in the solution (Schafer et al., 2015SCHAFER, G.; SOUZA, P.V.D. de; FIOR, C.S. Um panorama das propriedades físicas e químicas de substratos utilizados em horticultura no sul do Brasil. Ornamental Horticulture, v.21, p.299-306, 2015. DOI: https://doi.org/10.14295/oh.v21i3.735.
https://doi.org/10.14295/oh.v21i3.735...
). Temoteo et al. (2015)TEMOTEO, A. da S.; SOUSA, A. de P.; SANTOS, C.M. dos; TERAMOTO, E.T. Crescimento de cultivares de cafeeiro conilon submetidas ao estresse salino-hídrico. Revista Caatinga, v.28, p.46-56, 2015. concluded that the initial growth of C. canephora seedlings is impaired from 2.0 dS m-1 water salinity. When coffee husk was mixed with the other substrates, the electrical conductivity values were also high, but not enough to significantly limit the growth of the seedlings, suggesting their tolerance to salinity levels of up to 2.3 dS m-1. The mixture of coffee husk with vermiculite, however, reduced the conductivity values of the resulting substrate.

The dry masses (SDM, RDM, LDM, DSM, and TDM) were higher for the combined substrates, except in treatments T6, T10, T15, T16, and T19, when compared with the substrates evaluated separately (T1-T5) and the standard (T21) (Table 4). Regarding the SRR, the highest average was observed for the coffee husk substrate and the lowest, for the commercial substrate, vermiculite, and all substrate combinations except CH+EG and EG+SC. For this variable, the elephant grass and sugarcane treatments did not differ from the standard.

Table 4
Stem dry mass (SDM), root dry mass (RDM), leaf dry mass (LDM), shoot dry mass (DSM), total dry mass (TDM), shoot/root ratio (SRR), and Dickson’s quality index (DQI) obtained for Coffea canephora seedlings produced in different substrates(1).

As to the studied ratios and index, Marana et al. (2008)MARANA, J.P.; MIGLIORANZA, E.; FONSECA, É. de P.; KAINUMA, R.H. Índices de qualidade e crescimento de mudas de café produzidas em tubetes. Ciência Rural, v.38, p.39-45, 2008. DOI: https://doi.org/10.1590/S0103-84782008000100007.
https://doi.org/10.1590/S0103-8478200800...
reported values from 3.5 to 4.0 for the SLD, 4.0 to 7.0 for the SRR, and higher than 0.2 for the DQI when evaluating seminiferous Coffea arabica L. seedlings grown in 120 cm-3 tubes. These values have been previously used for comparisons with those of C. canephora indices (Dardengo et al., 2013DARDENGO, M.C.J.D.; SOUSA, E.F. de; REIS, E.F. dos; GRAVINA, G. de A. Crescimento e qualidade de mudas de café Conilon produzidas em diferentes recipientes e níveis de sombreamento. Coffee Science, v.8, p.500-509, 2013.; Pereira et al., 2013PEREIRA, L.R.; MARCILIO, G.S.; MOTA, F.M.; SANT’ANA, B.T.; DARDENGO, M.C.J.D. Qualidade de mudas do café Conilon vitória produzidas em viveiros do sul capixaba. Enciclopédia Biosfera, v.9, p.2213-2220, 2013.), as there are no known specific standards in the literature for seedlings of this species originated from cuttings and produced in 280 cm-3 plastic tubes. In the present work, the SLD values, except for coffee husk, were higher than those found by Marana et al. (2008)MARANA, J.P.; MIGLIORANZA, E.; FONSECA, É. de P.; KAINUMA, R.H. Índices de qualidade e crescimento de mudas de café produzidas em tubetes. Ciência Rural, v.38, p.39-45, 2008. DOI: https://doi.org/10.1590/S0103-84782008000100007.
https://doi.org/10.1590/S0103-8478200800...
, which may suggest the possibility of seedling etiolation. However, SDM and LDM values higher than or similar to those of the control indicate a satisfactory and proportional stem development in relation to the other aerial plant organs. Therefore, it is suggested that the SLD reference values for C. canephora clonal seedlings produced in 280 cm-3 tubes may range from 4.5 to 5.2.

In the coffee husk substrate, the SLD was the lowest, even in comparison with that of the standard, due to the shorter stem length observed in that treatment. Therefore, when there is an adequate relationship between stem length and diameter, the plants are taller, but not because of seedling etiolation, and tend to present thicker stems. In addition, the higher values for the SRR in this substrate indicate an incipient root system development in relation to the shoot, resulting from the undesirable characteristics of coffee husk discussed previously.

The SRR values obtained in all treatments, except in T1, are below those reported by Marana et al. (2008)MARANA, J.P.; MIGLIORANZA, E.; FONSECA, É. de P.; KAINUMA, R.H. Índices de qualidade e crescimento de mudas de café produzidas em tubetes. Ciência Rural, v.38, p.39-45, 2008. DOI: https://doi.org/10.1590/S0103-84782008000100007.
https://doi.org/10.1590/S0103-8478200800...
for fertilized coffee plants, which would indicate a deficient aerial seedling formation in relation to the roots. However, based on the adequate stem length and DSM values observed in most treatments, it can be inferred that the SRR values are due to the larger tube volume, providing a better root system development and implying in a greater similarity between DSM and RDM values. Silva et al. (2013)SILVA, A.P. da; COSTA, E.; ESPÍRITO SANTO, T.L. do; SILVA, L.E. da; MARTINS, R.F. Coffee seedlings in different substrates and protected environments. Engenharia Agrícola, v.33, p.589-600, 2013. DOI: https://doi.org/10.1590/S0100-69162013000400001.
https://doi.org/10.1590/S0100-6916201300...
highlighted that a greater substrate space and volume provide an adequate root system development by allowing of a better root access to moisture and nutrients, minimizing stress due to the lack of water and enabling the maintenance of the aerial plant part.

The DQI was significantly higher in the substrate combinations, except in treatments T6, T8, T10, T15, and T16 (Table 4). In T1, the unfavorable physicochemical characteristics of the coffee husk substrate led to a lower seedling DQI. The DQI, as well as the SRR, are good seedling quality indicators as phytomass distribution balance (SLD and SRR) and robustness (TDM) are considered for both respective calculations (Dardengo et al., 2013DARDENGO, M.C.J.D.; SOUSA, E.F. de; REIS, E.F. dos; GRAVINA, G. de A. Crescimento e qualidade de mudas de café Conilon produzidas em diferentes recipientes e níveis de sombreamento. Coffee Science, v.8, p.500-509, 2013.). Therefore, the DQI values above 0.2 in all treatments, except in the one with coffee husk, reinforce that the evaluated substrates promote an adequate C. canephora seedling development.

Seedling growth in the substrate composed only of soil did not differ from that in the commercial substrate. In addition, the values obtained in all treatments, except in T1, were superior to those found by Berilli et al. (2014)BERILLI, S. da S.; QUIUQUI, J.P.C.; REMBINSKI, J.; SALLA, P.H.H.; BERILLI, A.P.C.G.; LOUZADA, J.M. Utilização de lodo de curtume como substrato alternativo para produção de mudas de café Conilon. Coffee Science, v.9, p.472-479, 2014. for seedlings of the same age grown in a substrate mixed with the soil matrix, indicating adequate conditions for seedling development.

The substrates in treatments T7, T9, T11, T12, T13, T14, T17, T18, and T20 overlapped with the others for all tested variables, not differing from each other, being, therefore, indicated for the production of clonal C. canephora seedlings. Although coffee husk presented unsatisfactory results when used alone, it was also promising when combined with vermiculite, meaning it should not be excluded from substrate mixtures for the production of clonal C. canephora seedlings.

Conclusions

  1. Combining coffee husk, sugarcane, and elephant grass with each other and with vermiculite and commercial substrate improves the quality of clonal Coffea canephora seedlings.

  2. Coffee husk, when combined with vermiculite up to a proportion of 50%, is suitable for clonal Coffea canephora seedling production.

  3. Adding coffee husk, sugarcane, and elephant grass to standard substrate (subsurface soil) improves the quality of clonal C. canephora seedlings.

Acknowledgments

To Consórcio Brasileiro de Pesquisa e Desenvolvimento do Café (CBP&D/Café), for financial support (project number 02.13.02.036.00.00) and to Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), for research productivity grant of the corresponding author.

References

  • ACOMPANHAMENTO DA SAFRA BRASILEIRA [DE] CAFÉ: safra 2023: terceiro levantamento, v.10, n.3, set. 2023. Available at: <https://www.conab.gov.br/info-agro/safras/cafe>. Accessed on: Oct. 2 2023.
    » https://www.conab.gov.br/info-agro/safras/cafe
  • ALVARES, C.A.; STAPE, J.L.; SENTELHAS, P.C.; GONÇALVES, J.L. de M.; SPAROVEK, G. Köppen’s climate classification map for Brazil. Meteorologische Zeitschrift, v.22, p.711-728, 2013. DOI: https://doi.org/10.1127/0941-2948/2013/0507
    » https://doi.org/10.1127/0941-2948/2013/0507
  • AQUINO, L.P. de; SCHMIDT, R.; DUBBERSTEIN, D.; DIAS, J.R.M. Cortes basais e substratos na formação de mudas clonais de cafeeiro canéfora. Coffee Science, v.12, p.9-16, 2017. DOI: https://doi.org/10.25186/cs.v12i1.1182
    » https://doi.org/10.25186/cs.v12i1.1182
  • BERILLI, S. da S.; QUIUQUI, J.P.C.; REMBINSKI, J.; SALLA, P.H.H.; BERILLI, A.P.C.G.; LOUZADA, J.M. Utilização de lodo de curtume como substrato alternativo para produção de mudas de café Conilon. Coffee Science, v.9, p.472-479, 2014.
  • BRASIL. Ministério da Agricultura, Pecuária e Abastecimento. Secretaria de Defesa Agropecuária. Instrução Normativa SDA nº 17, de 21 de maio de 2007. [Aprova os Métodos Analíticos Oficiais para Análise de Substratos e Condicionadores de Solos]. Diário Oficial da União, 24 maio 2007. Seção1, p.8-9. Available at: <https://pesquisa.in.gov.br/imprensa/jsp/visualiza/index.jsp?data=24/05/2007&jornal=1&pagina=8&totalArquivos=72>. Accessed on: Jan. 10 2023.
    » https://pesquisa.in.gov.br/imprensa/jsp/visualiza/index.jsp?data=24/05/2007&jornal=1&pagina=8&totalArquivos=72
  • DARDENGO, M.C.J.D.; SOUSA, E.F. de; REIS, E.F. dos; GRAVINA, G. de A. Crescimento e qualidade de mudas de café Conilon produzidas em diferentes recipientes e níveis de sombreamento. Coffee Science, v.8, p.500-509, 2013.
  • DE BOODT, M.; VERDONCK, O. The physical properties of the substrates in horticulture. Acta Horticulturae, v.26, p.37-44, 1972. DOI: https://doi.org/10.17660/ActaHortic.1972.26.5
    » https://doi.org/10.17660/ActaHortic.1972.26.5
  • DICKSON, A.; LEAF, A.L.; HOSNER, J.F. Quality appraisal of white spruce and white pine seedling stock in nurseries. Forest Chronicle, v.36, p.10-13, 1960. DOI: https://doi.org/10.5558/tfc36010-1
    » https://doi.org/10.5558/tfc36010-1
  • ESPINDULA, M.C.; MAURI, A.L.; RAMALHO, A.R.; DIAS, J.R.M.; FERREIRA, M. das G.R.; SANTOS, M.R.A. dos; MARCOLAN, A.L. Produção de mudas. In: MARCOLAN, A.L.; ESPINDULA, M.C. (Ed.). Café na Amazônia Brasília: Embrapa, 2015. p.127-157.
  • FERREIRA, O.G.L.; ROSSI, F.D.; ANDRIGHETTO, C. DDA: determinador digital de áreas: software para determinação de área foliar, índice de área foliar e área de olho de lombo - versão 1.2. Santo Augusto: [s.n.], 2008.
  • GOMES, T.C. de A.; SILVA, J.A.M. e; SILVA, M.S.L. da. Preparo de composto orgânico na pequena propriedade rural Petrolina: Embrapa Semi-Árido, 2001. (Embrapa Semi-Árido. Instruções técnicas, 53).
  • GUISOLFI, L.P.; LO MONACO, P.A.V.; KRAUSE, M.R.; MENEGHELLI, C.M.; ALMEIDA, K.M.; MENEGHELLI, L.A.M.; VIEIRA, G.H.S. Agricultural wastes as alternative substrates in the production of conilon coffee seedlings. Bioscience Journal, v.36, p.792-798, 2020. DOI: https://doi.org/10.14393/BJ-v36n3a2020-47718
    » https://doi.org/10.14393/BJ-v36n3a2020-47718
  • HOFMANN, G. Verbindliche methoden zur untersuchung von TKS und gartnerischen erden. Mitteilungen der VSLUFA, v.6, p.129-153, 1970.
  • ICO. International Coffee Organization. What’s new Available at: <https://www.ico.org/>. Accessed on: Oct. 2 2023.
    » https://www.ico.org/
  • KLEIN, C. Utilização de substratos alternativos para produção de mudas. Revista Brasileira de Energias Renováveis, v.4, p.43-63, 2015. DOI: https://doi.org/10.5380/rber.v4i3.40742
    » https://doi.org/10.5380/rber.v4i3.40742
  • KRATZ, D.; WENDLING, I.; NOGUEIRA, A.C.; SOUZA, P.V. de. Propriedades físicas e químicas de substratos renováveis. Revista Árvore, v.37, p.1103-1113, 2013. DOI: https://doi.org/10.1590/S0100-67622013000600012
    » https://doi.org/10.1590/S0100-67622013000600012
  • LEAL, M.A. de A.; GUERRA, J.G.M.; ESPINDOLA, J.A.A.; ARAÚJO, E. da S. Compostagem de misturas de capim-elefante e torta de mamona com diferentes relações C:N. Revista Brasileira de Engenharia Agrícola e Ambiental, v.17, p.1195-1200, 2013. DOI: https://doi.org/10.1590/S1415-43662013001100010
    » https://doi.org/10.1590/S1415-43662013001100010
  • MARANA, J.P.; MIGLIORANZA, E.; FONSECA, É. de P.; KAINUMA, R.H. Índices de qualidade e crescimento de mudas de café produzidas em tubetes. Ciência Rural, v.38, p.39-45, 2008. DOI: https://doi.org/10.1590/S0103-84782008000100007
    » https://doi.org/10.1590/S0103-84782008000100007
  • MENEGHELLI, L.A.M.; LO MONACO, P.A.V.; KRAUSE, M.R.; GUISOLFI, L.P.; ALMEIDA, K.M.; VALLE, J.M.; VIEIRA, G.H.S. Utilization of agricultural residues as alternative substrates in the production of Conilon coffee seedlings. Journal of Experimental Agriculture International, v.21, p.1-6, 2018. DOI: https://doi.org/10.9734/JEAI/2018/39797
    » https://doi.org/10.9734/JEAI/2018/39797
  • MONTAGNE, V.; CAPIAUX, H.; CANNAVO, B.; CHARPENTIER, S.; RENAUD, S.; LIATARD, E.; GROSBELLET, C.; LEBEAU, T. Protective effect of organic substrates against soil-borne pathogens in soilless cucumber crops. Scientia Horticulturae, v.206, p.62-70, 2016. DOI: https://doi.org/10.1016/j.scienta.2016.04.035
    » https://doi.org/10.1016/j.scienta.2016.04.035
  • PEREIRA, L.R.; MARCILIO, G.S.; MOTA, F.M.; SANT’ANA, B.T.; DARDENGO, M.C.J.D. Qualidade de mudas do café Conilon vitória produzidas em viveiros do sul capixaba. Enciclopédia Biosfera, v.9, p.2213-2220, 2013.
  • SCHAFER, G.; SOUZA, P.V.D. de; FIOR, C.S. Um panorama das propriedades físicas e químicas de substratos utilizados em horticultura no sul do Brasil. Ornamental Horticulture, v.21, p.299-306, 2015. DOI: https://doi.org/10.14295/oh.v21i3.735
    » https://doi.org/10.14295/oh.v21i3.735
  • SILVA, A.P. da; COSTA, E.; ESPÍRITO SANTO, T.L. do; SILVA, L.E. da; MARTINS, R.F. Coffee seedlings in different substrates and protected environments. Engenharia Agrícola, v.33, p.589-600, 2013. DOI: https://doi.org/10.1590/S0100-69162013000400001
    » https://doi.org/10.1590/S0100-69162013000400001
  • SILVA, O.M. das C.; HERNÁNDEZ, M.M.; ARAÚJO, G. do C.R.; CUNHA, F.L.; EVANGELISTA, D.V. da P.; LELES, P.S. dos S.; MELO, L.A. de. Potencial uso da casca de café como constituinte de substrato para produção de mudas de espécies florestais. Ciência Florestal, v.30, p.1161-1175, 2020. DOI: https://doi.org/10.5902/1980509842500
    » https://doi.org/10.5902/1980509842500
  • SIQUEIRA, R.H. da S.; MONTEIRO NETO, J.L.L.; CHAGAS, E.A.; MARTINS, S.A.; OLIVEIRA, A.H.C. de; SILVA, E.S. da. Seleção de substratos para a produção de mudas de maracujazeiro-amarelo em Roraima. Revista de Ciências Agrárias, v.63, p.1-9, 2020.
  • SOUZA, J.L. de; RESENDE, P. Manual de horticultura orgânica 2.ed. atual. e ampl. Viçosa: Aprenda Fácil, 2006.
  • TEMOTEO, A. da S.; SOUSA, A. de P.; SANTOS, C.M. dos; TERAMOTO, E.T. Crescimento de cultivares de cafeeiro conilon submetidas ao estresse salino-hídrico. Revista Caatinga, v.28, p.46-56, 2015.
  • TRIVELIN, P.C.O.; BENDASSOLLI, J.A.; OLIVEIRA, M.W. Potencialidade da mistura de aquamônia com vinhaça na fertilização de canaviais colhidos sem despalha a fogo. Parte I: estabilidade química da mistura. STAB - Açúcar, Álcool e Subprodutos, v.16, p.26-29, 1997.
  • ZORZETO, T.Q.; DECHEN, S.C.F.; ABREU, M.F. de; FERNANDES JÚNIOR, F. Caracterização física de substratos para plantas. Bragantia, v.73, p.300-311, 2014. DOI: https://doi.org/10.1590/1678-4499.0086
    » https://doi.org/10.1590/1678-4499.0086

Publication Dates

  • Publication in this collection
    19 July 2024
  • Date of issue
    2024

History

  • Received
    03 Oct 2023
  • Accepted
    22 Jan 2024
Embrapa Secretaria de Pesquisa e Desenvolvimento; Pesquisa Agropecuária Brasileira Caixa Postal 040315, 70770-901 Brasília DF Brazil, Tel. +55 61 3448-1813, Fax +55 61 3340-5483 - Brasília - DF - Brazil
E-mail: pab@embrapa.br