Open-access Bioinput treatments enhance germination and vigor of Mimosa bimucronata seeds1

Tratamentos com bioinsumos melhoram a germinação e o vigor de sementes de Mimosa bimucronata

ABSTRACT

Seed treatment with bioinputs can improve the efficiency of direct seeding by enhancing both its establishment and early growth. This study aimed to evaluate the effects of five commercial bioinputs (Acadian®, Asokop®, AURAS®, Trichodermil® and Stimulate®) on the germination and vigor of maricá [Mimosa bimucronata (DC.) Kuntze] seeds. The germination percentage, germination speed index, mean germination time and primary root and shoot lengths were measured. Asokop® and AURAS® promoted a more uniform germination, whereas Asokop®, AURAS® and Acadian® significantly increased the germination speed. AURAS® also promoted the greatest root development.

KEYWORDS:
Plant growth promoters; bioregulators; ecological restoration; direct seeding.

RESUMO

O tratamento de sementes com bioinsumos pode aprimorar a eficiência da semeadura direta, melhorando tanto o seu estabelecimento quanto o crescimento inicial. Objetivou-se analisar os efeitos de cinco bioinsumos comerciais (Acadian®, Asokop®, AURAS®, Trichodermil® e Stimulate®) na germinação e vigor de sementes de maricá [Mimosa bimucronata (DC.) Kuntze]. Avaliaram-se a porcentagem de germinação, índice de velocidade de germinação, tempo médio de germinação e os comprimentos da raiz primária e da parte aérea. Asokop® e AURAS® proporcionaram a germinação mais uniforme, enquanto Asokop®, AURAS® e Acadian® aumentaram significativamente a velocidade de germinação. AURAS® também promoveu o maior desenvolvimento radicular.

PALAVRAS-CHAVE:
Promotores de crescimento de plantas; biorreguladores; restauração ecológica; semeadura direta.

INTRODUCTION

Direct seeding has been recognized as a cost-effective alternative for the large-scale restoration of degraded ecosystems (Raupp et al. 2020). Although it often achieves plant densities higher than seedling transplantation (Freitas et al. 2019), it still suffers from low rates of species establishment in the field due to multiple biotic and abiotic stresses (Souza & Engel 2023).

Adapting seed treatment technologies from agriculture to forestry may offer a short-term strategy for scaling up direct seeding and achieving ecological restoration targets by 2030 (Brasil 2017). However, there is still a critical gap in studies evaluating seed treatments with bioinputs, specifically for native species used in direct seeding for restoration purposes.

Agricultural seed treatment inputs intended for ecological restoration must combine efficacy with minimal environmental impact. Bioinputs - biological products derived from animal, plant or microbial sources - protect seeds and enhance their establishment, growth and eventual yield (Afzal et al. 2020, Souza et al. 2022). In Brazil, over 500 bioinputs are officially registered, covering functional classes such as biological control agents and plant-growth promoters (Oliveira et al. 2023).

Bioinputs may contain bioregulators or other chemical and biological compounds that promote seed and seedling development. For example, Azospirillum sp. and Bacillus sp. strains have shown to enhance germination and growth in several economically important species (Elsayed et al. 2022, Ribeiro et al. 2022), while algal extracts [Ascophyllum nodosum (L.) Le Jolis] improve resilience against abiotic stresses (Shukla et al. 2019). Although these products are widely used in large-scale agriculture (Meyer et al. 2022), their application in forestry remains largely limited to yield-focused plantation trials and mycorrhizal inoculation (Russo & Berlyn 2021, Cordero et al. 2022).

Maricá [Mimosa bimucronata (DC.) Kuntze] was selected as a model species due to its reliable germination performance under laboratory conditions (Santos et al. 2019, Ramos et al. 2020), enabling a clearer assessment of bioinput effects in controlled settings. The hypothesis is that treating its seeds with bioinputs containing bioregulators enhances germination speed and seedling vigor, thereby improving the success of direct seeding for ecological restoration. By reducing the germination time and standardizing emergence, this approach may better explore brief favorable windows, such as those expected under climate change scenarios (Klupczyńska & Pawłowski 2021).

Therefore, this study aimed to evaluate the potential of bioinputs containing bioregulators to improve germination, vigor and seedling development of Maricá, thus contributing to a more successful direct seeding in ecological restoration projects.

MATERIAL AND METHODS

The experiments were conducted at the Universidade Federal de São Carlos, in Sorocaba, São Paulo state, Brazil, from September to October 2021.

Five bioinputs were selected based on their documented application in crop species and their bioregulatory properties (Chagas et al. 2017, Ghosh et al. 2018, Guerra et al. 2023, Kumari et al. 2023, Solanha et al. 2023), all supplied in liquid formulation. The products included: Azokop® - Azospirillum brasilense (strains AbV5 and AbV6), with a minimum concentration of 2 × 108 CFU mL-1 (Koppert, Brazil); AURAS® - Bacillus aryabhattai (strain CMAA 1363), at 1 × 108 CFU mL-1 (Embrapa, Brazil); Acadian® - seaweed extract (Ascophyllum nodosum) containing 5.3 % of water-soluble potassium (K₂O; 61.46 g L-1), 6.0 % of total organic carbon (69.60 g L-1), pH of 8.0, density at 20 ºC of 1.16 g mL-1 and salt index of 18 % (Koppert, Brazil); Trichodermil® - Trichoderma harzianum (strain ESALQ 1306), with 2.0 × 109 viable conidia mL-1 (Koppert, Brazil); Stimulate® - biostimulant containing kinetin (0.09 g L-1), gibberellic acid (0.05 g L-1) and 4-indole-3-butyric acid (0.05 g L-1) (Stoller, Brazil).

Maricá (Mimosa bimucronata, Fabaceae) seeds were used as a model due to their high germination rate (> 60 %) (Santos et al. 2019, Ramos et al. 2020, Dutra et al. 2023) and widespread application in ecological restoration through direct seeding (Barbosa et al. 2017, Balestrin et al. 2023, Piotrowski et al. 2023). The seed lot was assembled from nine mother trees distributed across the northwestern region of the São Paulo state, near the Tietê River reservoirs (e.g., Promissão and Ibitinga). Seed quality tests indicated 99.8 % of purity, 1,000-seed weight of 8.6001 g and moisture content of 10.1 % (Brasil 2024).

Six treatments were defined with the following concentrations: control (no bioinput); Azokop® at 10 mL L-1; AURAS® at 10 mL L-1; Acadian® at 8.5 mL L-1; Trichodermil® at 8 mL L-1; and Stimulate® at 10 mL L-1. These concentrations were selected based on the manufacturers’ recommendations and supported by the literature (Hungria 2011, Oliveira et al. 2020, Smiderle & Souza 2022). Each solution was applied directly to the seeds by placing them in 7 × 10 cm transparent plastic zipper bags, shaking manually for 30 seconds, and then allowing them to remain in contact with the solution for 30 minutes before removal for germination testing.

Prior to bioinput application, seed dormancy was broken by immersing the seeds in water heated to 80 ºC, then removing the heat source and keeping them in the same water for 24 hours, following one of the methods recommended by Brasil (2024). The treated seeds were placed in Petri dishes lined with filter paper moistened with distilled water and incubated in a biochemical oxygen demand (B.O.D.) chamber at constant 30 ºC, under a 12-hour photoperiod. The substrate was re-moistened twice weekly by adding 1 mL of distilled water.

The experiment followed a completely randomized design with ten replicates of 30 seeds per treatment, totaling 1,800 seeds. The first count was performed at two days after setup and subsequently at the same interval up to 14 days (Brasil 2024). Germination was defined by the emergence of the primary root to at least 2 mm in length (Castellani et al. 2009), from which the germination percentage was calculated.

At the end of the test, 20 seedlings per treatment were selected by stratified random sampling across all replicates to ensure representation of within-treatment variation. Primary root and shoot lengths were measured using a millimeter ruler. The germination percentage was used to assess the germination potential, germination speed index (Ranal et al. 2009) and seedling growth parameters, to estimate vigor. The mean germination time (Labouriau 1983) was used to evaluate both the germination vigor and uniformity. All treatments were applied simultaneously at the start of the experiment, to ensure uniform environmental conditions and temporal consistency. The substrate moisture was maintained at optimal levels through periodic watering based on visual inspection and weight monitoring to prevent desiccation or waterlogging.

Data normality was assessed using the Shapiro-Wilk test and inspection of residual plots. Homogeneity of variance was evaluated with the Levene’s test prior to the analysis of variance (Anova). The experimental data were then subjected to the Anova, followed by the Scott-Knott multiple comparison test, to prevent overlapping groupings (Jelihovschi et al. 2014). Exploratory analyses included boxplots for germination percentage, germination speed index, mean germination time, primary root and shoot length. All statistical analyses were performed in the R software (version 4.0.5) (R Core Team 2024).

RESULTS AND DISCUSSION

No significant differences were observed for final germination among the treatments (F = 2.063; p = 0.0844; Table 1); however, Azokop® and AURAS® showed the lowest variability in root emergence, indicating a greater uniformity in the germination percentage, when compared to the other treatments (Figure 1A).

Table 1
Mean and standard deviation (±) of the germination percentage (%G), germination speed index (GSI), mean germination time (MGT) and length (cm) of primary root and shoot.

Figure 1
Box plot of germination percentage (%G; A), germination speed index (GSI; B), mean germination time (MGT in days; C), primary root (D; cm) and shoot (E; cm) length of Maricá.

Azokop®, AURAS® and Acadian® yielded the highest germination speed indices (Table 2), significantly differing from the control and the remaining treatments (F = 2.8; p = 0.0255). Azokop® exhibited the lowest variability (Figure 1B). This bioinput contains the Azospirillum brasilense bacterium, known to promote the production of growth regulators and phytohormones, as well as minerals that enhance primary root development and water uptake (Fibach-Paldi et al. 2012). In other Fabaceae species, A. brasilense at 1 g cm-3 did not enhance seed germination in the absence of dormancy breaking nor seedling growth of Cassia leptophylla Vogel and Mimosa flocculosa Burkart (Felix et al. 2021). Conversely, the A. brasilense inoculation promoted seedling growth in Peltophorum dubium (Spreng.) Taub. and Leucaena leucocephala (Lam.) de Wit (Rampim et al. 2014), whereas no effects were observed on the development, diameter or survival rate of Enterolobium contortisiliquum (Vell.) Morong and Mimosa caesalpiniifolia Benth. (Silva et al. 2021). These variable responses may be attributed to factors such as the absence of dormancy breaking and differences in bioinput concentration, reinforcing the need to avoid generalizing results across species or phylogenetic groups. Nevertheless, the studies highlight the potential of such inputs.

Acadian® also positively influenced seedling vigor (Table 1). It contains extracts of the Ascophyllum nodosum algae, which are rich in bioregulators that play critical roles in germination and early seedling development (Saeger et al. 2020). This may explain the increase in germination speed, although variability was higher than with Azokop® and AURAS® (Figure 1B).

Among the tested bioinputs, Trichodermil® resulted in the lowest seed vigor. This product contains the Trichoderma harzianum fungus, known to stimulate plant growth through mechanisms such as mineral solubilization, root colonization, symbiosis, nutrient uptake, phytohormone production and the secretion of siderophores and enzymes (Benítez et al. 2004, Li et al. 2015). Previous studies have reported improvements in seed vigor and quality in wheat (Anjum et al. 2020) and increases in length and biomass of Handroanthus serratifolius (Vahl) S. Grose seedlings (Santos et al. 2020). However, at concentrations above 10 mL L-1, this bioinput can inhibit the emergence of Hymenaea courbaril L. seeds (Smiderle & Souza 2022).

Although the mean germination time did not differ significantly among the treatments (F = 1.924; p = 0.105), Stimulate® promoted the greatest uniformity in the mean germination time values (Figure 1C). This product contains three key bioregulators involved in germination processes: kinetin, gibberellic acid and indole-3-butyric acid (Moterle et al. 2008). Kinetin helps to mitigate inhibitory effects on germination (Kamran et al. 2021), gibberellic acid can enhance seed quality and vigor (Cornea-Cipcigan et al. 2020) and indole-3-butyric acid promotes root development (Shekhawat & Manokari 2016). Stimulate® has also shown positive results for shoot development in Lens culinaris Medik. (Bruno et al. 2021), as well as improved germination and early growth in Capsicum annuum L. (Guerra et al. 2023). For native tree species, however, it reduced the germination percentage and germination speed index in Cedrela fissilis Vell., despite increasing the seedling length and dry mass (Dourado et al. 2020). When used in conjunction with dormancy-breaking treatments, it improved the emergence of Hymenaea courbaril, when compared to other bioinputs (Smiderle & Souza 2022).

Regarding seedling development, the root length was significantly affected only in the AURAS® treatment (F = 2.421; p = 0.0398; Table 1). This product contains the Bacillus aryabhattai bacterium, which produces secondary metabolites associated with plant growth and can function as a biofertilizer (Radhakrishnan et al. 2017). It also promotes nutrient retention and chlorophyll content (Mun et al. 2024), and contributes to the synthesis of phytohormones (Park et al. 2017) and butanoic acid (Mun et al. 2024), which stimulate the indole-3-butyric acid production - a hormone essential for root development (Shekhawat & Manokari 2016). In addition, B. aryabhattai is associated with the transcription of plant growth-related genes (Xu et al. 2022), what may explain the enhanced primary root growth observed for Maricá (Mimosa bimucronata).

Among the treatments, only Acadian® promoted uniformity for primary root length (Figure 1D). The shoot development did not differ significantly across the treatments (F = 1.585; p = 0.17; Table 1) and exhibited considerable variability in the AURAS® and Stimulate® treatments (Figure 1E).

In summary, the bioinputs that enhanced seed vigor (Azokop®, AURAS® and Acadian®) demonstrate potential as seed treatments for direct seeding. This is particularly relevant because the emergence window typically spans from 30 to 180 days after sowing, critically influencing the species assembly that shapes the community structure in subsequent years (Piotrowski et al. 2023).

CONCLUSIONS

  • 1. The application of the bioinputs Azokop®, AURAS® and Acadian® positively influences the vigor of Maricá (Mimosa bimucronata) seeds by promoting a more uniform and faster germination, which may enhance seedling establishment in direct seeding practices for ecological restoration;

  • 2. Among the tested products, AURAS® notably improves the primary root growth in Maricá seedlings, indicating its potential to support early seedling development and resource acquisition in the field.

ACKNOWLEDGMENTS

This study was partially financed by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (Capes) - Finance Code 001.

REFERENCES

  • AFZAL, I.; JAVED, T.; AMIRKHANI, M.; TAYLOR, A. G. Modern seed technology: seed coating delivery systems for enhancing seed and crop performance. Agriculture, v. 10, n. 11, e526, 2020.
  • ANJUM, M. Z.; HAYAT, S.; GHAZANFAR, M. U.; AHMAD, S.; ADNAN, M.; HUSSAIN, I. Does seed priming with Trichoderma isolates have any impact on germination and seedling vigor of wheat? International Journal of Botany Studies, v. 5, n. 2, p. 65-68, 2020.
  • BALESTRIN, D.; SOUZA, J. de; COSTA, G. F. da; MARTINS, S. V. Direct seeding for restoration in tabuleiro forests: evaluation 16 years after implementation. Floresta, v. 53, n. 1, p. 19-27, 2023.
  • BARBOSA, L. M.; SHIRASUNA, R. T.; LIMA, F. C.; ORTIZ, P. R. T. Lista de espécies indicadas para restauração ecológica para diversas regiões do estado de São Paulo São Paulo: Instituto de Botânica, 2017.
  • BENÍTEZ, T.; RINCÓN, A. M.; LIMÓN, M. C.; CODÓN, A. C. Biocontrol mechanisms of Trichoderma strains. International Microbiology, v. 7, n. 4, p. 249-260, 2004.
  • BRASIL. Decreto nº 8.972, de 23 de janeiro de 2017. Institui a Política Nacional de Recuperação da Vegetação Nativa. Diário Oficial da União, Brasília, DF, n. 17, 23 jan. 2017. Seção 1, p. 7.
  • BRASIL. Ministério da Agricultura e Pecuária. Regras para análise de sementes (RAS) 2024. Available at: https://wikisda.agricultura.gov.br/pt-br/Laborat%C3%B3rios/Metodologia/Sementes/RAS_2024 Access on: Mar. 03, 2025.
    » https://wikisda.agricultura.gov.br/pt-br/Laborat%C3%B3rios/Metodologia/Sementes/RAS_2024
  • BRUNO, M. H. F.; FREZATO NETO, P.; SORACE, M. A. F.; OSIPI, E. A. F.; COSSA, C. A. Germination and development of seedlings of Lens culinaris Medik in the substrates different and biostimulant. Ciência Agrícola, v. 19, n. 1, p. 1-8, 2021.
  • CASTELLANI, E. D.; AGUIAR, I. B.; PAULA, R. C. Bases para a padronização do teste de germinação em três espécies de Solanum L. Journal of Seed Science, v. 31, n. 2, p. 77-85, 2009.
  • CHAGAS, L. F. B.; CHAGAS JUNIOR, A. F.; SOARES, L. P.; FIDELIS, R. R. Trichoderma na promoção do crescimento vegetal. Revista de Agricultura Neotropical, v. 4, n. 3, p. 97-102, 2017.
  • CORDERO, A. P.; VERGARA, D. E. M.; MENDOZA, Y. A. Production of bioinput from arbuscular mycorrhiza for agricultural sustainability. Jounal of Namibian Studies, v. 31, n. 1, p. 179-190, 2022.
  • CORNEA-CIPCIGAN, M.; PAMFIL, D.; SISEA, C. R.; MĂRGĂOAN, R. Gibberellic acid can improve seed germination and ornamental quality of selected Cyclamen species grown under short and long days. Agronomy, v. 10, n. 4, e516, 2020.
  • DOURADO, D.; LIMA, S. F.; LIMA, A. P. L.; SORATTO, D. N.; BERNARDO, V. F.; BARBOSA, H. M. Effect of biostimulant in cedro-rosa seeds. Brazilian Journal of Development, v. 6, n. 5, p. 30306-30319, 2020.
  • DUTRA, F. B.; ALMEIDA, L. S.; DONA, D. B. J; PIOTROWSKI, I.; SILVA, J. M. S.; SABONARO, D. Z.; SANTOS, V.; CHAUD, M. V.; SILVA, A. M.; PIÑA-RODRIGUES, F. C. M. Assessing the performance of tropical forest seeds encapsulated with gels form Vitis vinifera and sodium alginate for direct seeding. Journal of Tropical Forest Science, v. 5, n. 1, p. 37-50, 2023.
  • ELSAYED, A.; ABDELSATTAR, A. M.; HEIKAL, Y. M.; EL-ESAWI, M. A. Synergistic effects of Azospirillum brasilense and Bacillus cereus on plant growth, biochemical attributes and molecular genetic regulation of steviol glycosides biosynthetic genes in Stevia rebaudiana. Plant Physiology and Biochemistry, v. 189, n. 15, p. 24-34, 2022.
  • FELIX, F. C.; MATOS, D. C. P.; LATOH, L. P.; MAGGIONI, R. A.; NOGUEIRA, A. C. Azospirillum brasilense inoculation on seed germination and initial growth of seedlings of native forest species. Floresta, v. 51, n. 4, p. 855-863, 2021.
  • FIBACH-PALDI, S.; BURDMAN, S.; OKON, Y. Key physiological properties contributing to rhizosphere adaptation and plant growth promotion abilities of Azospirillum brasilense. Microbiology Letters, v. 326, n. 2, p. 99-108, 2012.
  • FREITAS, M. G.; RODRIGUES, S. B.; CAMPOS-FILHO, E. M.; CARMO, G. H. P.; VEIGA, J. M.; JUNQUEIRA, R. G. P.; VIEIRA, D. L. M. Evaluating the success of direct seeding for tropical forest restoration over ten years. Forest Ecology and Management, v. 438, n. 15, p. 224-232, 2019.
  • GHOSH, P. K.; MAITI, T. K.; PRAMANIK, K.; GHOSH, S. K.; MITRA, S.; DE, T. K. The role of arsenic resistant Bacillus aryabhattai MCC3374 in promotion of rice seedlings growth and alleviation of arsenic phytotoxicity. Chemosphere, v. 211, n. 6, p. 407-419, 2018.
  • GUERRA, A. M. N. M.; CRUZ, P. S.; CRUZ, L. S.; JESUS, A. C. D.; SANTOS, P. A.; AQUINO, C. F. Uso de bioestimulante Stimulate® na produção de mudas de pimentão (Capsicum annum L.). Recital, v. 5, n. 1, p. 45-57, 2023.
  • HUNGRIA, M. Inoculação com Azospirillum brasiliense: inovação em rendimento a baixo custo. Londrina: Embrapa Soja, 2011.
  • JELIHOVSCHI, E. G.; FARIA, J. C.; ALLAMAN, I. B. Scott-Knott: a package for performing the Scott-Knott clustering algorithm in R. Tema, v. 15, n. 1, p. 3-17, 2014.
  • KAMRAN, M.; WANG, D.; XIE, K.; LU, Y.; SHI, C.; SABAGH, A.; GU, W.; XU, P. Pre-sowing seed treatment with kinetin and calcium mitigates salt induced inhibition of seed germination and seedling growth of choysum (Brassica rapa var. parachinensis). Ecotoxicology and Environmental Safety, v. 227, e112921, 2021.
  • KLUPCZYŃSKA, E. A.; PAWŁOWSKI, T. A. Regulation of seed dormancy and germination mechanisms in a changing environment. International Journal of Molecular Science, v. 22, n. 3, e1357, 2021.
  • KUMARI, S.; SEHRAWAT, K. D.; PHOGAT, D.; SEHRAWAT, A. R.; CHAUDHARY, R.; SUSHKOVA, S. N.; VOLOSHINA, M. S.; RAJPUT, V. D.; SHMARAEVA, A. N.; MARC, R. A.; SHENDE, S. S. Ascophyllum nodosum (L.) Le Jolis, a pivotal biostimulant toward sustainable agriculture: a comprehensive review. Agriculture, v. 13, n. 6, e1179, 2023.
  • LABOURIAU, L. G. Capacidade e velocidade de germinação. In: LABOURIAU, L. G. A germinação das sementes. Washington, DC: OEA, 1983. p. 45-62.
  • LI, R.-X.; CAI, F.; PANG, G.; SHEN, Q.-R.; LI, R.; CHEN, W. Solubilization of phosphate and micronutrients by Trichoderma harzianum and its relationship with the promotion of tomato plant growth. Plos One, v. 10, e0130081, 2015.
  • MEYER, M. C.; BUENO, A. F.; MAZARO, S. M.; SILVA, J. C. (ed.). Bioinsumos na cultura da soja Brasília, DF: Embrapa, 2022.
  • MOTERLE, L. M.; SANTOS, R. F.; BRACCINI, A. L.; SCAPIM, C. A.; BARBOSA, M. C. Efeito da aplicação de biorregulador no desempenho agronômico e produtividade da soja. Acta Scientiarum Agronomy, v. 30, supl., p. 701-709, 2008.
  • MUN, B.-G.; HUSSAIN, A.; PARK, Y.-G.; KANG, S.-M.; LEE, I.-J.; YUN, B.-W. The PGPR Bacillus aryabhattai promotes soybean growth via nutrient and chlorophyll maintenance and the production of butanoic acid. Frontiers in Plant Science, v. 15, e1341993, 2024.
  • OLIVEIRA, S. L.; FERREIRA, J. S.; BRANDÃO, M. H.; MOREIRA, A. C. S.; CUNHA, W. V. Efeito da aplicação de Bacillus aryabhattai no crescimento inicial do feijoeiro sob diferentes capacidades de campo. Revista do COMEIA, v. 2, n. 1, p. 10-19, 2020.
  • OLIVEIRA, V. C.; MELO, L. D. F. A.; MELO JÚNIOR, J. L. A.; MASSAHUD, R. T. L. R.; GRUGIKI, M. A. Bioinputs and organic production in Brazil: a study based on the Embrapa’s Bioinsumos application. Pesquisa Agropecuária Tropical, v. 53, e76326, 2023.
  • PARK, Y.-G.; MUN, B.-G.; KANG, S.-M.; HUSSAIN, A.; SHAHZAD, R.; SEO, C.-W.; KIM, A.-Y.; LEE, S.-U.; OH, K. Y.; LEE, D. Y.; LEE, I.-J.; YUN, B.-W. Bacillus aryabhattai SRB02 tolerates oxidative and nitrosative stress and promotes the growth of soybean by modulating the production of phytohormones. Plos One, v. 12, n. 3, e0173203, 2017.
  • PIOTROWSKI, I.; PALADINES, H. M.; ALMEIDA, L. S.; LÓPEZ, A. M. T.; DUTRA, F. B.; FRANCISCO, B. S.; SILVA, J. M. S.; PIÑA-RODRIGUES, F. C. M. Seeds’ early traits as predictors of performance in direct seeding restoration. Forests, v. 14, n. 3, e547, 2023.
  • R CORE TEAM. R: the R project for statistical computing. Vienna: R Foundation for Statistical Computing. 2024. Available at: https://www.R-project.org/ Access on: Mar. 03, 2025.
    » https://www.R-project.org/
  • RADHAKRISHNAN, R.; HASHEM, A.; ABDALLAH, E. F. Bacillus: a biological tool for crop improvement through bio-molecular changes in adverse environments. Fronties in Physiology, v. 8, e667, 2017.
  • RAMOS, M. G. D. C.; BERTO, T. S.; SILVA, L. G.; CRISÓSTOMO, N. M. S.; MELO, L. D. F. A.; MELO JUNIOR, J. L. A.; FARIAS, J. A. C.; FERREIRA, V. M. Efeito da luz e da temperatura na germinação de sementes de Mimosa bimucronata (DC) O. Kuntze. Revista Craibeiras Agroecologia, v. 5, e9399, 2020.
  • RAMPIM, L.; KLEIN, J.; TSUTSUMI, C. Y.; MARCHIOTTI, B. G.; GUIMARÃES, V. F. Initial development of plants of Peltophorum dubium and Leucaena leucocephala inoculated with diazotrophic bacteria. Floresta, v. 44, n. 4, p. 597-606, 2014.
  • RANAL, M. A.; SANTANA, D. G. D.; FERREIRA, W. R.; MENDES-RODRIGUES, C. Calculating germination measurements and organizing spreadsheets. Revista Brasileira de Botânica, v. 32, n. 4, p. 849-855, 2009.
  • RAUPP, P. P.; FERREIRA, M. C.; ALVES, M.; CAMPOS-FILHO, E. M.; SARTORELLI, P. A. R.; CONSOLARO, H. N.; VIEIRA, D. L. M. Direct seeding reduces the costs of tree planting for forest and Savanna restoration. Ecological Engineering, v. 148, e105788, 2020.
  • RIBEIRO, V. P.; GOMES, E. A.; SOUSA, S. M.; LANA, U. G. P.; COELHO, A. M.; MARRIEL, I. E.; OLIVEIRA-PAIVA, C. A. Co-inoculation with tropical strains of Azospirillum and Bacillus is more efficient than single inoculation for improving plant growth and nutrient uptake in maize. Archives of Microbiology, v. 204, e143, 2022.
  • RUSSO, R. O.; BERLYN, G. P. Agricultural and forestry extension in biostimulants and bioinputs in Costa Rica: a short review. Brazilian Journal of Animal Environmental Research, v. 4, n. 4, p. 5290-5296, 2021.
  • SAEGER, J.; VAN PRAET, S.; VEREECKE, D.; PARK, J.; JACQUES, S.; HAN, T.; DEPUYDT, S. Toward the molecular understanding of the action mechanism of Ascophyllum nodosum extracts on plants. Journal of Applied Phycology, v. 32, n. 1, p. 573-597, 2020.
  • SANTOS, J. C. C.; LIMA, A. N. S.; SILVA, D. M. R.; COSTA, R. N.; AMORIM, D. J.; SILVA, J. V.; SANTOS NETO, A. L. Análise biométrica multidimensional com tratamentos pré-germinativos em sementes e caracterização morfológica de plântulas de Mimosa bimucronata (DC.) Kuntze. Revista de Ciências Agrárias, v. 42, n. 2, p. 418-429, 2019.
  • SANTOS, M. F.; SANTOS, L. E.; COSTA, D. L. da; VIEIRA, T. A.; LUSTOSA, D. C. Trichoderma spp. on treatment of Handroanthus serratifolius seeds: effect on seedling germination and development. Heliyon, v. 6, n. 6, e04044, 2020.
  • SHEKHAWAT, M. S.; MANOKARI, M. Impact of auxins on vegetative propagation through stem cuttings of Couroupita guianensis Aub: a conservation approach. Scientifica, v. 2016, e6587571, 2016.
  • SHUKLA, P. S.; MANTIN, E. G.; ADIL, M.; BAJPAI, S.; CRITCHLEY, A. T.; PRITHIVIRAJ, B. Ascophyllum nodosum-based biostimulants: sustainable applications in agriculture for the stimulation of plant growth, stress tolerance, and disease management. Frontiers of Plant Science, v. 10, e655, 2019.
  • SILVA, A. J.; FERNANDES, M. M.; OLIVEIRA, C. M.; OLIVEIRA, D. D. S.; SANTOS, B. C. C.; FERNANDES, M. R. M. Desenvolvimento de Enterolobium contortisiliquum e Mimosa caesalpiniifolia inoculadas com Azospirillum brasilense em área degradada por mineração. Acta Biológica Catarinense, v. 8, n. 4, p. 43-49, 2021.
  • SMIDERLE, O. J.; SOUZA, A. G. Scarification and doses of Acadian®, Stimulate® and Trichoderma spp. promote dormancy overcoming in Hymenaea courbaril L. seeds? Journal of Seed Science, v. 44, e202244009, 2022.
  • SOLANHA, M.; LIMA, C.; SOUZA, E.; CONCARI, L. E.; FARIAS, V. J.; CRUZ, S. P. Coinoculação do trigo com Azospirillum brasilense, Pseudomonas fluorescens, Bacillus spp., como alternativa mais sustentável na agricultura. Revista Latino-Americana de Ambiente e Saúde, v. 5, n. 3, p. 261-267, 2023.
  • SOUZA, F. P. de; CASTILHO, T. P. R.; MACEDO, L. O. B. Um marco institucional para os bioinsumos na agricultura brasileira baseado na economia ecológica. Sustainability in Debate, v. 13, n. 1, p. 266-285, 2022.
  • SOUZA, D. C.; ENGEL, V. L. Advances, challenges, and directions for ecological restoration by direct seeding of trees: lessons from Brazil. Biological Conservation, v. 284, e110172, 2023.
  • XU, H.; GAO, J.; PORTIELES, R.; DU, L.; GAO, X.; BORRAS-HIDALGO, O. Endophytic bacterium Bacillus aryabhattai induces novel transcriptomic changes to stimulate plant growth. Plos One, v. 17, n. 8, e0272500, 2022.
  • Editor:
    Luis Carlos Cunha Junior

Publication Dates

  • Publication in this collection
    06 Oct 2025
  • Date of issue
    2025

History

  • Received
    01 May 2025
  • Accepted
    11 July 2025
  • Published
    01 Aug 2025
location_on
Escola de Agronomia/UFG Caixa Postal 131 - Campus II, 74001-970 Goiânia-GO / Brasil, 55 62 3521-1552 - Goiânia - GO - Brazil
E-mail: revistapat.agro@ufg.br
rss_feed Acompanhe os números deste periódico no seu leitor de RSS
Reportar erro