Acessibilidade / Reportar erro

Circadian activity patterns and temporal overlap among cracids (Aves: Cracidae) within a vegetation mosaic in the Pantanal of Rio Negro, Brazil

Abstract

Vertebrates, overall, present a daily activity pattern when managing their needs, such as foraging, resting or searching for sexual partners. Most of the available information regarding the circadian rhythm in birds comes from controlled laboratory conditions, and little is known about these patterns in the wild. In this study we used camera traps to describe the daily activity patterns of three cracid species in the Pantanal of Rio Negro, Brazil. We had a sampling effort of 9,617 camera trap-days along 231 days (5,544 hours) from September 2013 to May 2014. This resulted in 4,833 independent records of cracids from a total of 7,713 individuals. Crax fasciolata was the species with the most records (nrec = 3,792) and individuals (nind = 5,781), followed by Ortalis canicollis (nrec = 934; nind = 1,758) and Aburria grayi (nrec = 107; nind = 174). None of the species was uniformly distributed throughout the day, thus evidencing a periodization of their activities. The mean vectors of the activity patterns of C. fasciolata, O. canicollis and A. grayi were, respectively, mμ = 10:36 ± 04:26 (SD), mμ = 11:42 ± 03:57 and mμ = 11:44 ± 03:47. We observed a temporal overlap between A. grayi and O. canicollis, whereas C. fasciolata significantly differed from them. Because of their large home ranges, cracids are important indicators of environmental quality, and, as frugivores, they play key roles in the ecological dynamics of forests. In this sense, and given that cracids are notably more susceptible to extinction, the knowledge on their circadian activity patterns may be useful when establishing effective management and conservation strategies.

Keywords.
Conservation; Cracidae; Crax; Ortalis; Aburria

INTRODUCTION

The daily activity period, or circadian cycle, corresponds to the 24-hour span which establishes the biological cycles of nearly all living species. Such patterns have existed throughout the history of life on Earth, and virtually every life form has had its rhythm adapted to it (Beale et al., 2016Beale, A.D.; Whitmore, D. & Moran, D. 2016. Life in a dark biosphere: a review of circadian physiology in “arrhythmic” environments. Journal of Comparative Physiology B, 186(8): 947-968. https://doi.org/10.1007/s00360-016-1000-6.
https://doi.org/10.1007/s00360-016-1000-...
). Activity patterns may be influenced by abiotic factors, such as photoperiod, lunar cycle, temperature, precipitation, tides, and latitude, as well as by biotic factors, like food availability, reproduction, and interactions with predators and humans (Kronfeld-Schor & Dayan, 2003Kronfeld-Schor, N. & Dayan, T. 2003. Partitioning of time as an ecological resource. Annual Review of Ecology, Evolution, and Systematics, 34(1): 153-181. https://doi.org/10.1146/annurev.ecolsys.34.011802.132435.
https://doi.org/10.1146/annurev.ecolsys....
; Pita et al., 2011Pita, R.; Mira, A. & Beja, P. 2011. Circadian activity rhythms in relation to season, sex and interspecific interactions in two Mediterranean voles. Animal Behaviour, 81(5): 1023-1030. https://doi.org/10.1016/j.anbehav.2011.02.007.
https://doi.org/10.1016/j.anbehav.2011.0...
; Ross et al., 2013Ross, J.; Hearn, A.J.; Johnson, P.J. & Macdonald, D.W. 2013. Activity patterns and temporal avoidance by prey in response to Sunda clouded leopard predation risk. Journal of Zoology, 290(2): 96-106. https://doi.org/10.1111/jzo.12018.
https://doi.org/10.1111/jzo.12018...
; Bennie et al., 2014Bennie, J.J.; Duffy, J.P.; Inger, R. & Gaston, K.J. 2014. Biogeography of time partitioning in mammals. Proceedings of the National Academy of Sciences, 111(38): 13727-13732. https://doi.org/10.1073/pnas.1216063110.
https://doi.org/10.1073/pnas.1216063110...
; Sassi et al., 2015Sassi, P.L.; Taraborelli, P.; Albanese, S. & Gutierrez, A. 2015. Effect of temperature on activity patterns in a small andean rodent: behavioral plasticity and intraspecific variation. Ethology, 121(9): 840-849. https://doi.org/10.1111/eth.12398.
https://doi.org/10.1111/eth.12398...
; Díaz-Ruiz et al., 2016Díaz-Ruiz, F.; Caro, J.; Delibes-Mateos, M.; Arroyo, B. & Ferreras, P. 2016. Drivers of red fox (Vulpes vulpes) daily activity: prey availability, human disturbance or habitat structure? Journal of Zoology, 298(2): 128-138. https://doi.org/10.1111/jzo.12294.
https://doi.org/10.1111/jzo.12294...
; Gaynor et al., 2018Gaynor, K.M.; Hojnowski, C.E.; Carter, N.H. & Brashares, J.S. 2018. The influence of human disturbance on wildlife nocturnality. Science, 360(6394): 1232-1235. https://doi.org/10.1126/science.aar7121.
https://doi.org/10.1126/science.aar7121...
). Knowing how species explore their habitats and spotting the basic resources and conditions for their occupation, survival and reproduction is essential for stakeholders when determining potential threats and planning efficient management programs (Willems & Hill, 2009Willems, E.P. & Hill, R.A. 2009. Predator-specific landscapes of fear and resource distribution: effects on spatial range use. Ecology, 90(2): 546-555. https://doi.org/10.1890/08-0765.1.
https://doi.org/10.1890/08-0765.1...
; Morrison et al., 2006Morrison, M.L.; Marcot, B.G. & Mannan, R.W. 2006. Wildlife-habitat relationships: concepts and applications, third edition. Washington, Island Press.).

Animals perform a number of activities within their circadian cycle (e.g., foraging, resting or searching for reproductive partners) that may concentrate in specific times of the day or night. The activity pattern refers to the continuous period in which an individual concentrates its daily actions (Maffei et al., 2002Maffei, L.; Cuéllar, E. & Noss, J. 2002. Uso de trampas cámara para la evaluación de mamíferos en el ecotono Chaco-Chiquitanía. Revista Boliviana de Ecología y Conservación Ambiental, 11: 55-65.; Monroy-Vilchis et al., 2011Monroy-Vilchis, O.; Zarco-González, M.M.; Rodríguez-Soto, C.; Soria-Díaz, L. & Urios V. 2011. Fototrampeo de mamíferos en la Sierra Nanchititla, México: abundancia relativa y patrón de actividad. Revista de Biología Tropical, 59(1): 373-383. https://doi.org/10.15517/rbt.v59i1.3206.
https://doi.org/10.15517/rbt.v59i1.3206...
). The circadian cycle is involved in the regulation of several daily functions, including the patterns of greater activity (Pittendrigh, 1981Pittendrigh, C.S. 1981. Circadian systems: entrainment. In: Aschoff, J. Handbook of behavioral neurobiology, biological rhythms. New York, Plenum Press. p. 95-124.; Laposky et al., 2008Laposky, A.D.; Bass, J.; Kohsaka, A. & Turek, F.W. 2008. Sleep and circadian rhythms: key components in the regulation of energy metabolism. FEBS Letters, 582(1): 142-151. https://doi.org/10.1016/j.febslet.2007.06.079.
https://doi.org/10.1016/j.febslet.2007.0...
; Cassone, 2014Cassone, V.M. 2014. Avian circadian organization: a chorus of clocks. Frontiers in Neuroendocrinology, 35(1): 76-88. https://doi.org/10.1016/j.yfrne.2013.10.002.
https://doi.org/10.1016/j.yfrne.2013.10....
). Therefore, as ecosystems grow in complexity, organisms go on to explore not only their physical dimensions but also their temporal niches (Hut et al., 2012Hut, R.A.; Kronfeld-Schor, N.; van der Vinne, V. & De la Iglesia, H. 2012. In search of a temporal niche: environmental factors. Progress in Brain Research, 199: 281-304. https://doi.org/10.1016/B978-0-444-59427-3.00017-4.
https://doi.org/10.1016/B978-0-444-59427...
). As a consequence, all life forms share physiological and behavioral processes for specific times of the day (West & Bechtold, 2015West, A.C. & Bechtold, D.A. 2015. The cost of circadian desynchrony: evidence, insights and open questions. BioEssays, 37(7): 777-788. https://doi.org/10.1002/bies.201400173.
https://doi.org/10.1002/bies.201400173...
). Behavioral plasticity, although limited in some species, becomes evident in others from observations of intraspecific variation in foraging patterns (Ashby, 1972Ashby, K.R. 1972. Patterns of daily activity in mammals. Mammal Review, 1(7-8): 171-185. https://doi.org/10.1111/j.1365-2907.1972.tb00088.x.
https://doi.org/10.1111/j.1365-2907.1972...
; Hertel et al., 2016Hertel, A.G.; Zedrosser, A.; Mysterud, A.; Støen, O.G.; Steyaert, S.M. & Swenson, J.E. 2016. Temporal effects of hunting on foraging behavior of an apex predator: do bears forego foraging when risk is high? Oecologia, 182(4): 1019-1029. https://doi.org/10.1007/s00442-016-3729-8.
https://doi.org/10.1007/s00442-016-3729-...
) that may lead to changes in the temporal niche (Fenn & MacDonald, 1995Fenn, M.G. & MacDonald, D.W. 1995. Use of middens by red foxes: risk reverses rhythms of rats. Journal of Mammalogy, 76(1): 130-136. https://doi.org/10.2307/1382321.
https://doi.org/10.2307/1382321...
; Ensing et al., 2014Ensing, E.P.; Ciuti, S.; De Wijs, F.A.; Lentferink, D.H.; Ten Hoedt, A.; Boyce, M.S. & Hut, R.A. 2014. GPS based daily activity patterns in European Red Deer and North American Elk (Cervus elaphus): indication for a weak circadian clock in ungulates. Plos One, 9(9): e106997. https://doi.org/10.1371/journal.pone.0106997.
https://doi.org/10.1371/journal.pone.010...
).

The circadian rhythm also allows animals to expect and prepare for predictable alterations in their environments (Stelzer et al., 2010Stelzer, R.J.; Stanewsky, R. & Chittka, L. 2010. Circadian foraging rhythms of Bumblebees monitored by radio-frequency identification. Journal of Biological Rhythms, 25(4): 257-267. https://doi.org/10.1177/0748730410371750.
https://doi.org/10.1177/0748730410371750...
; Kumar et al., 2010Kumar, V.; Wingfield, J.C.; Dawson, A.; Ramenofsky, M.; Rani, S. & Bartell, P. 2010. Biological Clocks and Regulation of Seasonal Reproduction and Migration in Birds. Physiological and Biochemical Zoology, 83(5): 827-835. https://doi.org/10.1086/652243.
https://doi.org/10.1086/652243...
; Bloch et al., 2013Bloch, G.; Barnes, B.M.; Gerkema, M.P. & Helm, B. 2013. Animal activity around the clock with no overt circadian rhythms: patterns, mechanisms and adaptive value. Proceedings of the Royal Society Biological Science, Series B, 280(1765): 1-9. https://doi.org/10.1098/rspb.2013.0019.
https://doi.org/10.1098/rspb.2013.0019...
). Daily variations in animal physiology or behavior also present a strong endogenous (circadian) component (Reebs, 2002Reebs, S.G. 2002. Plasticity of diel and circadian activity rhythms in fishes. Reviews in Fish Biology and Fisheries, 12(4): 349-371. https://doi.org/10.1023/A:1025371804611.
https://doi.org/10.1023/A:1025371804611...
; Kronfeld-Schor & Dayan, 2003Kronfeld-Schor, N. & Dayan, T. 2003. Partitioning of time as an ecological resource. Annual Review of Ecology, Evolution, and Systematics, 34(1): 153-181. https://doi.org/10.1146/annurev.ecolsys.34.011802.132435.
https://doi.org/10.1146/annurev.ecolsys....
; Lazzari & Insausti, 2008Lazzari, C.R. & Insausti, T.C. 2008. Circadian rhythms in insects. In: Fanjul, M.L.; Moles & Roblero, R.A. Comparative aspects of circadian rhythms. Transworld Research Network, 37/661 (2), Trivandrum-695 023, Kerala, India.). Facing this, information about animal movement, domestic environment, territoriality, and activity patterns greatly contribute to wildlife conservation and management (Rodríguez-Flores & Arizmendi, 2020Rodríguez-Flores, C.I. & Arizmendi, M.D.C. 2020. West Mexican Chachalaca (Ortalis poliocephala), version 1.0. In: Schulenberg, T.S. Birds of the World. Ithaca, Cornell Lab of Ornithology. https://doi.org/10.2173/bow.wemcha1.01. Access: 15/09/2020.
https://doi.org/10.2173/bow.wemcha1.01...
).

Monitoring rare cryptic species is not a feasible task for researchers. Camera traps have been used to overcome this and successfully record, monitor and estimate the density of enigmatic taxa (Heilbrun et al., 2006Heilbrun, R.D.; Silvy, N.J.; Peterson, M.J. & Tewes, M.E. 2006. Estimating bobcat abundance using automatically triggered cameras. Wildlife Society Bulletin, 34(1): 69-73. https://doi.org/10.2193/0091-7648(2006)34[69:EBAUAT]2.0.CO;2.
https://doi.org/10.2193/0091-7648(2006)3...
; Kelly & Holub, 2008Kelly, M.J. & Holub, E.L. 2008. Camera trapping of carnivores: trap success among camera types and across species, and habitat selection by species, on Salt Pond Mountain, Giles County, Virginia. Northeastern Naturalist, 15(2): 249-262.). This tool is highly flexible and has been used for fauna inventories (e.g.,Jiménez et al., 2010Jiménez, C.F.; Quintana, H.; Pacheco, V.; Melton, D.; Torrealva, J. & Tello, G. 2010. Camera trap survey of medium and large mammals in a montane rainforest of northern Perú. Revista Peruana de Biología, 17(2): 191-196. https://doi.org/10.15381/rpb.v17i2.27.
https://doi.org/10.15381/rpb.v17i2.27...
), relative abundance indexes (Monroy-Vilchis et al., 2011Monroy-Vilchis, O.; Zarco-González, M.M.; Rodríguez-Soto, C.; Soria-Díaz, L. & Urios V. 2011. Fototrampeo de mamíferos en la Sierra Nanchititla, México: abundancia relativa y patrón de actividad. Revista de Biología Tropical, 59(1): 373-383. https://doi.org/10.15517/rbt.v59i1.3206.
https://doi.org/10.15517/rbt.v59i1.3206...
), and to describe activity patterns (Hernández-SaintMartín et al., 2013Hernández-Saint Martín, A.D.; Rosas-Rosas, O.C.; Palacio-Núñez, J; Tarango-Arámbula, L.A.; Clemente-Sánchez, F. & Hoogesteijn, A.L. 2013. Activity patterns of jaguar, puma and their potential prey in San Luis Potosí, Mexico. Acta Zoológica Mexicana, 29(3): 520-533.; Lafleur et al., 2014Lafleur, L.; Pardo, L.; Spínola, R.M.; Saénz, J. & Cove, M.V. 2014. Notes on plumage patterns and activity of the Great Curassow (Crax rubra) in northeastern Costa Rica. Bulletin of the Cracid Group, 36: 17-19.) and land and habitat use (Michalski et al., 2015Michalski, L.J.; Norris, D.; Oliveira, T.G. & Michalski, F. 2015. Ecological relationships of meso-scale distribution in 25 neotropical vertebrate species. Plos One, 10(5): e0126114. https://doi.org/10.1371/journal.pone.0126114.
https://doi.org/10.1371/journal.pone.012...
; Blake et al., 2017Blake, J.G.; Mosquera, D.; Loiselle, B.A.; Swing, K. & Romo, D. 2017. Long-term variation in abundance of terrestrial mammals and birds in eastern Ecuador as measured by photographic rates and occupancy estimates. Journal of Mammalogy, 98(4): 1168-1178. https://doi.org/10.1093/jmammal/gyx046.
https://doi.org/10.1093/jmammal/gyx046...
; Pardo et al., 2017Pardo, L.E.; Lafleur, L.; Spínola, R.M.; Saenz, J. & Cove, M.V. 2017. Camera traps provide valuable data to assess the occurrence of the Great Curassow Crax rubra in northeastern Costa Rica. Neotropical Biodiversity, 3(1): 182-188. https://doi.org/10.1080/23766808.2017.1346548.
https://doi.org/10.1080/23766808.2017.13...
; Pérez-Irineo & Santos-Moreno, 2018Pérez-Irineo, G. & Santos-Moreno, A. 2018. Occupancy, relative abundance, and activity patterns of Great Curassow (Crax rubra) in southeastern Mexico. Ornitologia Neotropical, 28: 313-320.). In birds, most of the available information regarding the circadian rhythm comes from controlled laboratory conditions, while data from the wild remains poorly reported. Studies from the last decade have shown the efficacy of camera traps for studying large birds in the wild in Brazil, especially in the Atlantic Forest (Srbek-Araújo et al., 2009Srbek-Araújo, A.C.; Albergaria, V.D.G. & Chiarello, A.G. 2009. A review on distribution and natural history of White-necked Hawk (Leucopternis lacernulatus), including a record of prey on tegu lizard (Tupinambis meriane) at Reserva Natural Vale, southeastern Brazil. Revista Brasileira de Ornitologia, 17(1): 53-58., 2012Srbek-Araújo, A.C.; Silveira, L.F. & Chiarello, A.G. 2012. The Red-billed Curassow (Crax blumenbachii): social organization, and daily activity patterns. The Wilson Journal of Ornithology, 124(2): 321-327. https://doi.org/10.1676/11-054.1.
https://doi.org/10.1676/11-054.1...
; Kuhnen et al., 2013Kuhnen, V.V.; Lima, R.E.M.; Santos, J.F. & Machado-Filho, L.C.P. 2013. Habitat use and circadian pattern of Solitary Tinamou Tinamus solitarius in a southern Brazilian Atlantic rainforest. Bird Conservation International, 23(1): 78-82. https://doi.org/10.1017/S0959270912000147.
https://doi.org/10.1017/S095927091200014...
), and in other countries (Negret et al., 2015Negret, P.J.; Garzón, O.; Stevenson, P.R. & Laverde, O. 2015. New ecological information for the Black Tinamou (Tinamus osgoodi hershkovitzi). The Auk, 132(3): 533-539. https://doi.org/10.1642/AUK-14-116.1.
https://doi.org/10.1642/AUK-14-116.1...
).

The Cracidae is one of the most threatened families of large birds (curassows, guans and chachalacas) inhabiting the Neotropical woodlands (Brooks, 2006Brooks, D.M. 2006. Conserving Cracids: the most threatened family of birds in the Americas. Houston, Houston Museum of Natural Science.). Out of the 54 known cracid species (Winkler et al., 2020Winkler, D.W.; Billerman, S.M. & Lovette, I.J. 2020. Guans, Chachalacas, and Curassows (Cracidae), version 1.0. In: Billerman, S.M.; Keeney, B.K.; Rodewald, P.G. & Schulenberg, T.S. Birds of the World. Ithaca, Cornell Lab of Ornithology. Available: Available: https://doi.org/10.2173/bow.cracid2.01 . Access: 26/09/2020.
https://doi.org/10.2173/bow.cracid2.01...
), 26 are under some global degree of threat while one is extinct in nature, the Alagoas Curassow Pauxi mitu (ICMBio, 2018Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio). 2018. Livro Vermelho da Fauna Brasileira Ameaçada de Extinção: Volume III - Aves. Brasília, ICMBio/MMA.). The elevated risk of extinction faced by cracids - 50% of the species classified as threatened - derives basically from hunting and habitat modification (Brooks & Fuller, 2006Brooks, D.M. & Fuller, R.A. 2006. Biology and conservation of cracids. In: Brooks, D.M.; Cancino, L. & Pereira, S.L. (Eds.). Conserving Cracids: the most threatened family of birds in the Americas. Houston, Houston Museum of Natural Science. p. 14-26.; Benítez-López et al., 2017Benítez-López, A.; Alkemade, R.; Schipper, A.M.; Ingram, D.J.; Verweij, P.A.; Eikelboom, J.A.J. & Huijbregts, M.A.J. 2017. The impact of hunting on tropical mammal and bird populations. Science, 356(6334): 180-183. https://doi.org/10.1126/science.aaj1891.
https://doi.org/10.1126/science.aaj1891...
). The Pantanal wetlands are home to six species of cracids: Chaco chachalaca (Ortalis canicollis), bare-faced curassow (Crax fasciolata), both broadly distributed in the Upper Paraguay Basin, rusty-margined guan (Penelope superciliaris), chestnut-bellied guan (Penelope ochrogaster), more abundant in the northern region, white-throated piping-guan (Aburria grayi), endemic to the Mato-Grosso do Sul state, and the red-throated piping-guan (Aburria cujubi), commonly found in northern Brazil and reaching northern Pantanal (del Hoyo & Kirwan, 2020del Hoyo, J. & Kirwan, G.M. 2020. Red-throated Piping-guan (Pipile cujubi). In: del Hoyo, J.; Elliott, A.; Sargatal, J.; Christie, D.A. & de Juana, E. Handbook of the birds of the world alive. Barcelona, Lynx Edicions. Available: Available: https://www.hbw.com/node/53297 . Access: 29/04/2020.
https://www.hbw.com/node/53297...
).

In this study we deployed camera traps in the Pantanal of Rio Negro to describe the daily activity patterns of three cracid species (A. grayi, O. canicollis and C. fasciolata) and to check whether or not they overlap in time.

MATERIAL AND METHODS

Study area

The study was performed in a 26,500 ha area in the Pantanal wetlands of Rio Negro, in Aquidauana, Mato Grosso do Sul state, Brazil (Silva & Abdon, 1998Silva, J.D. & Abdon, M.D. 1998. Delimitação do Pantanal brasileiro e sub-regiões. Pesquisa Agropecuária Brasileira, 33 (N. Esp.): 1703-1711.). Most of the surveyed area (22,300 ha) was within the Barranco Alto ranch (19°33′35″S, 56°09′22″W, 100-120 m a.s.l.). The remaining sampling sites were located in a contiguous section of the Diacuí and Vera Lúcia ranches. The landscape is characterized by several bays and salt lakes, intertwined with open savannas, dense shrublands, fields and gallery forests. Non-flooded forests compose the most elevated areas. Secondary savannas and planted pastures occur in areas of greater anthropic influence (Silva et al., 2011Silva, J.S.V.; Pott, A.; Abdon, M.M.; Pott, V.J. & Santos, K.R. 2011. Projeto GeoMS: cobertura vegetal e uso da terra do estado do Mato Grosso do Sul. Campinas, Embrapa Informática Agropecuária.). The climate in the region is classified as tropical wet (Aw) in the Köppen-Geiger’s system (Kottek et al., 2006Kottek, M.; Grieser, J.; Beck, C.; Rudolf B. & Rubel F. 2006. World Map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15(3): 259-263. https://doi.org/10.1127/0941-2948/2006/0130.
https://doi.org/10.1127/0941-2948/2006/0...
), with rainy summers (June to September) and dry winters (December to March). The mean minimum and maximum annual temperatures range from 21° to 33℃, respectively (Soriano & Alves, 2005Soriano, B.M.A. & Alves, M.J.M. 2005. Boletim agrometeorológico ano 2002 para a sub-região da Nhecolândia, Pantanal, Mato Grosso do Sul, Brasil. Documentos Embrapa Pantanal, 76: 1-29.), while the mean annual precipitation is approximately 1,350 mm (Bergier et al., 2018Bergier, I.; Aassine, L.M.; Mcglue, M.M.; Alho, C.J.R.; Silva, A.; Renato, L.; Guerreiro, R.L. & Carvalho, J.C. 2018. Amazon rainforest modulation of water security in the Pantanal wetland. Science of the Total Environment, 619-620: 1116-1125. https://doi.org/10.1016/j.scitotenv.2017.11.163.
https://doi.org/10.1016/j.scitotenv.2017...
).

Sampling design and data collection

The birds were recorded by camera traps (Bushnell Trophy Cam HD E3). This method is recognized for its versatility and efficacy in obtaining ecological data, mainly when detecting rare species and determining their activity periods, as it provides a big volumes of information simultaneously (Hernández-SaintMartín et al., 2013Hernández-Saint Martín, A.D.; Rosas-Rosas, O.C.; Palacio-Núñez, J; Tarango-Arámbula, L.A.; Clemente-Sánchez, F. & Hoogesteijn, A.L. 2013. Activity patterns of jaguar, puma and their potential prey in San Luis Potosí, Mexico. Acta Zoológica Mexicana, 29(3): 520-533.; Lafleur et al., 2014Lafleur, L.; Pardo, L.; Spínola, R.M.; Saénz, J. & Cove, M.V. 2014. Notes on plumage patterns and activity of the Great Curassow (Crax rubra) in northeastern Costa Rica. Bulletin of the Cracid Group, 36: 17-19.; Pardo et al., 2017Pardo, L.E.; Lafleur, L.; Spínola, R.M.; Saenz, J. & Cove, M.V. 2017. Camera traps provide valuable data to assess the occurrence of the Great Curassow Crax rubra in northeastern Costa Rica. Neotropical Biodiversity, 3(1): 182-188. https://doi.org/10.1080/23766808.2017.1346548.
https://doi.org/10.1080/23766808.2017.13...
). Data was collected over nine months, from September 2013 to May 2014. The traps were spread over a grid of 90 sampling stations (Fig. 1). All sites were at least 500 m apart from each other to avoid sampling gaps. The cameras possess infra-red sensors activated by heat and movement and were placed approximately 40 cm above the ground so that the targeted animal could be recorded 2-3 m away (Tobler et al., 2008Tobler, M.W.; Carrillo-Percastegui, S.E.; Pitman, R.L.; Mares, R. & Powell, G. 2008. An evaluation of camera traps for inventorying large- and medium-sized terrestrial rainforest mammals. Animal Conservation, 11(3): 169-178. https://doi.org/10.1111/j.1469-1795.2008.00169.x.
https://doi.org/10.1111/j.1469-1795.2008...
). The traps were set to work 24 h/day and make 60-second videos for every record, with 30-second intervals between successive records. The sites were checked every 30 days for battery and memory card replacement.

Figure 1
Study area and location of the 90 camera trap stations in the Pantanal of Rio Negro, Aquidauana, Mato Grosso do Sul, Brazil.

Data analyses

All registered animals were identified to species level. When the species could not be determined, the records were classified at the smallest scale within the following: 1) genus; 2) family; 3) order; 4) class; 5) not identified. Every video made for the sampled species was considered a record. They were subdivided in: 1) total, which are all records obtained, and; 2) independent, excluding repeated records of the same species at the same sampling site in intervals ≤ 20 min (Tobler et al., 2008Tobler, M.W.; Carrillo-Percastegui, S.E.; Pitman, R.L.; Mares, R. & Powell, G. 2008. An evaluation of camera traps for inventorying large- and medium-sized terrestrial rainforest mammals. Animal Conservation, 11(3): 169-178. https://doi.org/10.1111/j.1469-1795.2008.00169.x.
https://doi.org/10.1111/j.1469-1795.2008...
). Every record informed the recorded species, the number of individuals, date, and time of day. Videos depicting more than one species were considered independent records for each of them.

The sampling effort was calculated by multiplying the number of stations by the number of sampled days (1 day = 24 hours), and the catch rate by dividing the number of records by the sampling effort (Srbek-Araújo & Chiarello, 2005Srbek-Araújo, A.C. & Chiarello, A. 2005. Is camera-trapping an efficient method for surveying mammals in Neotropical forests? A case study in south-eastern Brazil. Journal of Tropical Ecology, 21(1): 121-125. https://doi.org/10.1017/S0266467404001956.
https://doi.org/10.1017/S026646740400195...
). The area covered by the camera traps was measured by the minimum convex polygon method (MCP) using all of the sampling stations. We performed a Shapiro-Wilk test for inspecting the normality of abundance distributions throughout the day.

We used circular statistics through the Rayleigh uniformity test (Z-test) to determine the circadian preferences of each species (Jammalamadaka & SenGupta, 2001Jammalamadaka, S.R. & Sen Gupta, A. 2001. Topics in circular statistics. Singapore, World Scientific.). This test is employed to observe whether the records are uniformly distributed along a day. Our null hypothesis was a uniform circular distribution of the data, while our alternative hypothesis was a non-uniform distribution, with peaks of activity along the day. For this, the 24 hours of the day were distributed along 360°, with 1 h = 15° or 1 min = 0.25°. The mean vector (mμ), generated in degrees, was then converted into hours and corresponded to the mean hour of greater activity. We performed a nonparametric Mardia’s two-sample test (Watson’s U²) to check for overlap between the mean active hours of the species (Mardia, 1967Mardia, K. 1967. A non-parametric test for the bivariate two-sample location problem. Journal of the Royal Statistical Society. Series B, Methodological, 29(2): 320-342.; Batschelet, 1981Batschelet, E. 1981. Circular statistics in biology. London, Academic Press Inc.; Zar, 2010Zar, J.H. 2010. Biostatistical analysis, 5. ed. New Jersey, Prentice Hall/Pearson.). The null hypothesis acknowledges that all samples come from a single population, whereas the alternative hypothesis considers that populations differ in their mean active hours and present time partitioning. All these analyses were performed on R 3.5.1 (R Development Core Team, 2011R Development Core Team. 2011. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.) with the packages vegan 2.5-5 (Oksanen et al., 2020Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P. & McGlinn, D.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; Stevens, M.H.H.; Szoecs, E. & Wagner, H. 2020. Vegan: Community Ecology Package. R Package Version 2.5-6.), circular 0.4-93 (Agostinelli & Lund, 2017Agostinelli, C. & Lund, U. 2017. R package ‘circular’: Circular Statistics, version 0.4-93. Available: Available: http://r-forge.r-project.org/projects/circular . Access: 15/07/2020.
http://r-forge.r-project.org/projects/ci...
) and plotly 4.9.2.1 (Sievert, 2020Sievert, C. 2020. Interactive web-based data visualization with R, plotly, and shiny. Florida, Chapman & Hall/CRC.). We adopted significance at p < 0.05.

RESULTS

We had a sampling effort of 9,617 camera trap-days along 231 days (5,544 hours). The cameras covered an area of 23,391 ha in a 60.3 km perimeter, according to the MCP. We found a total of 26,559 records of vertebrates, 4,833 (18.2%) of which were independent records of the three studied cracids, C. fasciolata, O. canicollis and A. grayi, with 7,713 individuals detected. Crax fasciolata was the most registered (Nrec = 3,792) and abundant species (Nind = 5,781), followed by O. canicollis (Nrec = 934; Nind = 1,758) and A. grayi (Nrec = 107; Nind = 174). The variation in their abundances throughout the day had a non‐normal distribution (Shapiro-Wilk normality test for all species, p‐values < 0.05).

The distribution of the active time of the three species was non-uniform along the 24 hours, which evidences a periodization of their activities (Table 1). The mean vectors of the activity patterns of C. fasciolata, O. canicollis and A. grayi were, respectively, mμ = 10:36 ± 04:26 (SD), mμ = 11:42 ± 03:57 and mμ = 11:44 ± 03:47.

Aburria grayi presented two peaks of activity, one in the morning, between 07:30-09:30, and another in the afternoon, between 01:30-02:30. Crax fasciolata was active the most between 06:30-09:30 a.m. The peak of O. canicollis was between 07:30-09:30 a.m., although it was more evenly distributed along the day if compared to the other species (Fig. 2).

Figure 2
Circadian activity patterns of three cracid species in the Pantanal of Rio Negro, Aquidauana, Mato Grosso do Sul. The red line represents the mean circular vector (mμ) with CI95% of the distributions.

Table 1
Preferred activity period of three cracid species in the Rio Negro Pantanal, Aquidauana, Mato Grosso do Sul. N = number of records; mμ = mean vector; SD = standard deviation; r = length of the mean vector.

Watson’s U² test showed a temporal overlap between A. grayi and O. canicollis, while their peak of activity differed significantly from C. fasciolata (Table 2).

Table 2
Pairwise Watson’s U² test of temporal overlap between cracid species in the Pantanal of Rio Negro, Aquidauana, Mato Grosso do Sul.

DISCUSSION

Our results reveal that the three studied species (C. fasciolata, A. grayi and O. canicollis) share the activity patterns of other cracids. For instance, the red-billed curassow (Crax blumenbachii) has a peak of activity in the early morning that gradually decreases until midday, restarts in the afternoon and peaks again before dusk (Srbek-Araújo et al., 2012Srbek-Araújo, A.C.; Silveira, L.F. & Chiarello, A.G. 2012. The Red-billed Curassow (Crax blumenbachii): social organization, and daily activity patterns. The Wilson Journal of Ornithology, 124(2): 321-327. https://doi.org/10.1676/11-054.1.
https://doi.org/10.1676/11-054.1...
; Hernández-SaintMartín et al., 2013Hernández-Saint Martín, A.D.; Rosas-Rosas, O.C.; Palacio-Núñez, J; Tarango-Arámbula, L.A.; Clemente-Sánchez, F. & Hoogesteijn, A.L. 2013. Activity patterns of jaguar, puma and their potential prey in San Luis Potosí, Mexico. Acta Zoológica Mexicana, 29(3): 520-533.; Fernández-Duque et al., 2013Fernández-Duque, F.; Huck, M.; Dávalos, V. & Fernández-Duque, E. 2013. Estudio preliminar sobre la ecología, el comportamiento y la demografía del Muitú (Crax fasciolata) en la selva en galería del riacho Pilagá, Formosa, Argentina. El Hornero, 28(1): 65-74.; Schaaf et al., 2014Schaaf, A.A.; Luczywo, A.; Díaz, A.; Peralta, G. & Peluc, S. 2014. Descripción de nido, huevos, comportamiento de incubación y pichones de la charata (Ortalis canicollis) en el Bosque Chaqueño Serrano de Córdoba, Argentina. Bulletin of the Cracid Group, 36: 8-16.; Pérez-Irineo & Santos-Moreno, 2018Pérez-Irineo, G. & Santos-Moreno, A. 2018. Occupancy, relative abundance, and activity patterns of Great Curassow (Crax rubra) in southeastern Mexico. Ornitologia Neotropical, 28: 313-320.). Some other species, however, show distinct temporal patterns. The Sira Curassow (Pauxi koepckeae), in the Peruvian Andes, stays active between 10:00 a.m. and 06:00 p.m. (Beirne et al., 2017Beirne, C.; Pillco-Huarcaya, R.; Serrano-Rojas, S.J. & Whitworth, A. 2017. Terrestrial camera traps: essential tool for the detection and future monitoring of the critically endangered sira curassow Pauxi koepckeae. Endangered Species Research, 32(1): 145-152. https://doi.org/10.3354/esr00802.
https://doi.org/10.3354/esr00802...
). The razor-billed curassow (Pauxi tuberosa) is active mostly in the morning, whereas the Spix’s guan (Penelope jacquacu), in the Xeruã river, Amazonas, peaks at midday (Sæbø, 2016Sæbø, J.S. 2016. Spatial and temporal distributions and interactions in a neotropical ground-dwelling animal community. Masters Dissertation. Norwegian University of Life Sciences, Akershus, Noruega.). The incompatibility with the bimodal activity pattern in such species may be a result of the environments they inhabit, i.e., mountain and tropical forests, with scarce solar radiation on the ground vegetation that allows animals to forage longer along the day (Sæbø, 2016Sæbø, J.S. 2016. Spatial and temporal distributions and interactions in a neotropical ground-dwelling animal community. Masters Dissertation. Norwegian University of Life Sciences, Akershus, Noruega.; Beirne et al., 2017Beirne, C.; Pillco-Huarcaya, R.; Serrano-Rojas, S.J. & Whitworth, A. 2017. Terrestrial camera traps: essential tool for the detection and future monitoring of the critically endangered sira curassow Pauxi koepckeae. Endangered Species Research, 32(1): 145-152. https://doi.org/10.3354/esr00802.
https://doi.org/10.3354/esr00802...
).

Even though the activity periods of some cracids have been previously documented (e.g., Crax and Penelope), studies focused on A. grayi are deficient. The semi-arboreous habits of this bird may be responsible for the low number of records in our study. This species feeds primarily on leaves, seeds and fruits, which are collected in the canopy, and eventually forages on the ground (Schubart et al., 1965Schubart, O.; Aguirre, A.C. & Sick, H. 1965. Contribuição ao conhecimento da alimentação das aves brasileiras. Arquivos de Zoologia, 12: 95-249.; Sick, 1997Sick, H. 1997. Ornitologia Brasileira. Rio de Janeiro, Nova Fronteira. 862p.). In Trinidad and Tobago, the congeneric Trinidad piping-guan A. pipile occupies canopies above 5 m (Hayes et al., 2009Hayes, F.E.; Shameerudeen, C.L.; Sanasie, B.; Hayes, B.D.; Ramjohn, C.L. & Lucas, F.B. 2009. Ecology and behaviour of the critically endangered Trinidad piping-guan Aburria pipile. Endangered Species Research, 6(3): 223-229. https://doi.org/10.3354/esr00153.
https://doi.org/10.3354/esr00153...
). In that same study, A. pipile was registered more frequently in the morning and late afternoon, similarly to A. grayi in the Pantanal.

Contrary to Aburria, species in the Crax genus primarily inhabit the forest floor (Delacour & Amadon, 1973Delacour, J. & Amadon, D. 1973. Curassows and related birds. New York, American Museum of Natural History.) in areas that either are or are not prone to seasonal floodings (Michalski et al., 2015Michalski, L.J.; Norris, D.; Oliveira, T.G. & Michalski, F. 2015. Ecological relationships of meso-scale distribution in 25 neotropical vertebrate species. Plos One, 10(5): e0126114. https://doi.org/10.1371/journal.pone.0126114.
https://doi.org/10.1371/journal.pone.012...
; Costa et al., 2018Costa, H.C.M.; Peres, C.A. & Abrahams, M.I. 2018. Seasonal dynamics of terrestrial vertebrate abundance between Amazonian flooded and unflooded forests. PeerJ, 6: e5058. https://doi.org/10.7717/peerj.5058.
https://doi.org/10.7717/peerj.5058...
). Seasonally floodable areas like the Pantanal present remarking differences in the density and richness of animal species between distinct seasons, which is driven by the effects of the flooding cycles on fruit production and habitat use by the animals (Haugaasen & Peres, 2007Haugaasen, T. & Peres, C.A. 2007. Vertebrate responses to fruit production in Amazonian flooded and unflooded forests. Biodiversity and Conservation, 16(14): 4165-4190. https://doi.org/10.1007/s10531-007-9217-z.
https://doi.org/10.1007/s10531-007-9217-...
, 2008Haugaasen, T. & Peres, C.A. 2008. Population abundance and biomass of large-bodied birds in Amazonian flooded and unflooded forests. Bird Conservation International, 18(2): 87-101. https://doi.org/10.1017/S0959270908000130.
https://doi.org/10.1017/S095927090800013...
; Alvarenga et al., 2018Alvarenga, G.C.; Ramalho, E.E.; Baccaro, F.B.; Rocha, D.G.; Ferreira-Ferreira, J. & Bobrowiec, P.E.D. 2018. Spatial patterns of medium and large size mammal assemblages in várzea and terra firme forests, Central Amazonia, Brazil. Plos One, 13: e0198120. https://doi.org/10.1371/journal.pone.0198120.
https://doi.org/10.1371/journal.pone.019...
). Behavioral adaptations arise under environmental pressure, while changes in temporal distribution may also occur according to the heterogeneity of the site (Presley et al., 2009Presley, S.J.; Willig, M.R.; Castro-Arellano, I. & Weaver, S.C. 2009. Effects of habitat conversion on temporal activity patterns of Phyllostomid bats in lowland Amazonian rain forest. Journal of Mammalogy, 90(1): 210-221. https://doi.org/10.1644/08-MAMM-A-089.1.
https://doi.org/10.1644/08-MAMM-A-089.1...
; Reyes-Arriagada et al., 2014Reyes-Arriagada, R.; Jiménez, J.E. & Rozzi, R. 2014. Daily patterns of activity of passerine birds in a Magellanic sub-Antarctic forest at Omora Park (55°S), Cape Horn Biosphere Reserve, Chile. Polar Biology, 38(3): 401-411. https://doi.org/10.1007/s00300-014-1596-5.
https://doi.org/10.1007/s00300-014-1596-...
). In our study, C. fasciolata was more active in the morning, with a gradual decrease in activity along the day. This pattern had already been observed for an Argentinean population in another camera-trap study (Fernández-Duque et al., 2013Fernández-Duque, F.; Huck, M.; Dávalos, V. & Fernández-Duque, E. 2013. Estudio preliminar sobre la ecología, el comportamiento y la demografía del Muitú (Crax fasciolata) en la selva en galería del riacho Pilagá, Formosa, Argentina. El Hornero, 28(1): 65-74.). In the Vale Natural Reserve in the Espírito Santo state, Brazil, activities of C. blumenbachii peaked between 06:00-07:00 a.m. (Srbek-Araújo et al., 2012Srbek-Araújo, A.C.; Silveira, L.F. & Chiarello, A.G. 2012. The Red-billed Curassow (Crax blumenbachii): social organization, and daily activity patterns. The Wilson Journal of Ornithology, 124(2): 321-327. https://doi.org/10.1676/11-054.1.
https://doi.org/10.1676/11-054.1...
), a similar pattern to what we observed for C. fasciolata in the Pantanal. Camera-trap assessments in Central America and other parts of South America revealed bimodal diurnal activity patterns for plain chachalaca O. vetula, great curassow C. rubra, and C. fasciolata, with activities beginning between 06:00-07:00 a.m., reaching a first peak still in the morning and another less evident one in the afternoon (Hernández-SaintMartín et al., 2013Hernández-Saint Martín, A.D.; Rosas-Rosas, O.C.; Palacio-Núñez, J; Tarango-Arámbula, L.A.; Clemente-Sánchez, F. & Hoogesteijn, A.L. 2013. Activity patterns of jaguar, puma and their potential prey in San Luis Potosí, Mexico. Acta Zoológica Mexicana, 29(3): 520-533.; Fernández-Duque et al., 2013Fernández-Duque, F.; Huck, M.; Dávalos, V. & Fernández-Duque, E. 2013. Estudio preliminar sobre la ecología, el comportamiento y la demografía del Muitú (Crax fasciolata) en la selva en galería del riacho Pilagá, Formosa, Argentina. El Hornero, 28(1): 65-74.). The peak in activity for O. canicollis also happened in the morning, between 07:30-09:30. Nevertheless, this species presented a more homogeneous pattern throughout the day compared to the two other cracids.

Camera-trap samplings have shown that temporal segregation is an important strategy for the coexistence of ecologically similar species (e.g.,Di Bitetti et al., 2010Di Bitetti, M.S.; De Angelo, C.D.; Di Blanco, Y.E. & Paviolo, A. 2010. Niche partitioning and species coexistence in a Neotropical felid assemblage. Acta Oecologica, 36(4): 403-412. https://doi.org/10.1016/j.actao.2010.04.001.
https://doi.org/10.1016/j.actao.2010.04....
; Monterroso et al., 2014Monterroso, P.; Alves, P.C. & Ferreras, P. 2014. Plasticity in circadian activity patterns of mesocarnivores in Southwestern Europe: implications for species coexistence. Behavioral Ecology and Sociobiology, 68(9): 1403-1417. https://doi.org/10.1007/s00265-014-1748-1.
https://doi.org/10.1007/s00265-014-1748-...
; Sunarto et al., 2015Sunarto, S.; Kelly, M.J.; Parakkasi, K. & Hutajulu, M.B. 2015. Cat coexistence in central Sumatra: ecological characteristics, spatial and temporal overlap, and implications for management. Journal of Zoology, 296(2): 104-115. https://doi.org/10.1111/jzo.12218.
https://doi.org/10.1111/jzo.12218...
). In the present study, the overlap in activity was prominent between A. grayi and O. canicollis but differed significantly for C. fasciolata. When resources are abundant, species tend to vastly overlap their use (Pianka, 1981Pianka, E.R. 1981. Competition and niche theory. In: May, R.M. Theoretical ecology. Oxford, Blackwell. p. 167-196.). Estevo et al. (2017Estevo, C.A.; Nagy-Reis, M.B. & Nichols, J.D. 2017. When habitat matters: habitat preferences can modulate co-occurrence patterns of similar sympatric species. Plos One, 12(7): e0179489. https://doi.org/10.1371/journal.pone.0179489.
https://doi.org/10.1371/journal.pone.017...
) observed a great overlap in time of activity between two sympatric land birds, brown tinamou Crypturellus obsoletus and tataupa tinamou C. tataupa. A study on the coast of the Argentinean Patagonia showed a high isotopic niche overlap among 14 seabird species during mating season that was maintained by a superabundance of food (Forero et al., 2004Forero, M.G.; Bortolotti, G.R.; Hobson, K.A.; Donázar, J.A.; Bertelloti, M. & Blanco, G. 2004. High trophic overlap within the seabird community of Argentinean Patagonia: a multi-scale approach. Journal of Animal Ecology, 73(4): 789-801. https://doi.org/10.1111/j.0021-8790.2004.00852.x.
https://doi.org/10.1111/j.0021-8790.2004...
). Moreover, similar patterns of co-occurrence between species sharing the same food resources at the same times of the day have also been widely observed for mammalian carnivores (Davis et al., 2018Davis, C.L; Rich, L.N.; Farris, Z.J.; Kelly, M.J.; di Bitetti, M.S; Blanco, Y.D.; Albanesi, S.; Farhadinia, M.S.; Gholikhani, N.; Hamel, S.; Harmsen, B.J.; Wultsch, C.; Kane, M.D.; Martins, Q.; Murphy, A.J.; Steenweg, R.; Sunarto, S.; Taktehrani, A.; Thapa, K.; Tucker, J.M.; Whittington, J.; Widodo, F.A.; Yoccoz, N.G. & Miller, D.A.W. 2018. Ecological correlates of the spatial co-occurrence of sympatric mammalian carnivores worldwide. Ecology Letters, 21: 1401-1412. https://doi.org/10.1111/ele.13124.
https://doi.org/10.1111/ele.13124...
). Therefore, resource availability could be acting as a limiting agent to the co-occurrence of cracids in the Pantanal.

Cracids are important indicators of environmental quality, as they occupy large territories. They are frugivorous animals with a fundamental role in forest dynamics (Sedaghatkish, 1996Sedaghatkish, G. 1996. The importance of seed dispersers in the conservation of useful wild plant species: a case study of the avian family Cracidae. Masters Dissertation. University of Maryland, College Park, Maryland, USA.; Jordano et al., 2006Jordano, P.; Galetti, M.; Pizo, M.A. & Silva, W.R. 2006. Ligando frugivoria e dispersão de sementes à biologia da conservação. In: Rocha, C.F.D.; Bergallo, H.G.; Sluys, M.V. & Alves, M.A.S. Biologia da conservação: essências. São Carlos, Editora Rima. p. 411-436.; Muñoz & Kattan, 2007Muñoz, M. & G. Kattan. 2007. Diets of cracids: How much do we know? Ornitologia Neotropical, 18(1): 21-36.; Bueno et al., 2013Bueno, R.S.; Guevara, R.; Ribeiro, M.C.; Culot, L.; Bufalo, F.S. & Galetti, M. 2013. Functional redundancy and complementarities of seed dispersal by the last neotropical megafrugivores. Plos One, 8(2): e56252. https://doi.org/10.1371/journal.pone.0056252.
https://doi.org/10.1371/journal.pone.005...
; Galetti et al., 2013Galetti, M.; Guevara, R.; Côrtes, M.C.; Fadini, R.; Von Matter, S.; Leite, A.B.; Labecca, F.; Ribeiro, T.; Carvalho, C.S.; Collevatti, R.G.; Pires, M.M.; Guimarães-Jr., P.R.; Brancalion, P.H.; Ribeiro, M.C. & Jordano, P. 2013. Functional extinction of birds drives rapid evolutionary changes in seed size. Science, 340(6136): 1086-1090. https://doi.org/10.1126/science.1233774.
https://doi.org/10.1126/science.1233774...
, 2016Galetti, M.; Pires, A.S.; Brancalion, P.H.S. & Fernandez, F.A.S. 2016. Reversing defaunation by trophic rewilding in empty forests. Biotropica, 49(1): 5-8. https://doi.org/10.1111/btp.12407.
https://doi.org/10.1111/btp.12407...
). Studies on activity patterns and interspecific co-occurrence present a straightforward application in the conservation strategies for protected areas, as they incorporate a zonal approach aiming at habitat protection for the cracids and also for other codependent species (Leite et al., 2018Leite, G.A.; Farias, I.P.; Goçalves, A.L.S.; Hawes, J.E. & Peres, C.A. 2018. Coarse- and fine-scale patterns of distribution and habitat selection places an Amazonian floodplain curassow in double jeopardy. PeerJ, 6: e4617. https://doi.org/10.7717/peerj.4617.
https://doi.org/10.7717/peerj.4617...
). Continuous multiannual camera-trap studies would allow a better comprehension of how local alterations and anthropic disturbance affect the distribution and activity of species in this taxon.

This study presents the first data on the activity patterns of cracid birds in the Pantanal of Rio Negro obtained through camera-trapping, a reliable tool for the evaluation of activity rhythm in vertebrates (Ridout & Linkie, 2009Ridout, M.S. & Linkie, M. 2009. Estimating overlap of daily activity patterns from camera trap data. Journal of Agricultural Biological and Environmental Statistics, 14(3): 322-337. https://doi.org/10.1198/jabes.2009.08038.
https://doi.org/10.1198/jabes.2009.08038...
; Monterroso et al., 2013Monterroso, P.; Alves, P.C. & Ferreras, P. 2013. Catch me if you can: diel activity patterns of Mammalian prey and predators. Ethology, 119(12): 1044-1056. https://doi.org/10.1111/eth.12156.
https://doi.org/10.1111/eth.12156...
; Torretta et al., 2017Torretta, E.; Mosini, A.; Piana, M.; Tirozzi, P.; Serafini, M.; Puopolo, F.; Saino, N. & Balestrieri, A. 2017. Time partitioning in mesocarnivore communities from different habitats of NW Italy: insights into martens’ competitive abilities. Behaviour, 154(2): 241-266. https://doi.org/10.1163/1568539X-00003420.
https://doi.org/10.1163/1568539X-0000342...
; Mori et al., 2020Mori, E.; Sangiovanni, G. & Corlatti, L. 2020. Gimme shelter: the effects of rock and moonlight on occupancy and activity pattern of anendangered rodent, the garden dormouse Eliomys quercinus. Behavioural Processes, 170: 103999. https://doi.org/10.1016/j.beproc.2019.103999.
https://doi.org/10.1016/j.beproc.2019.10...
). The presented data contribute substantially to fill the information gaps concerning our target species and their activity patterns, particularly in the Pantanal of Rio Negro.

The activity patterns described here suggest a clear niche partitioning within their circadian cycles. Furthermore, these patterns are similar to results previously found for other cracids. Given the environmental heterogeneity of the Pantanal, differences in behavior along the day may as well be guided by the capacities of each species, as the high habitat and resource availability allows these animals to occupy a wide variety of niches. Therefore, investigating how organisms occupy a landscape along time may provide support for researchers to better understand the patterns in community structure and interspecific coexistence.

From a conservationist viewpoint, cracids are particularly relevant as they have highly specific ecological requirements and significantly different daily activity patterns allowing species to coexist. Because they are seed predators and dispersers and perform essential services for the dynamics of vegetal communities, understanding their life history is of great conservation interest.

ACKNOWLEDGMENTS

We thank the team of the Ornithology Lab in CESC/UEMA, especially Surama Pereira, Hilda Raianne and Anderson Teixeira, for the help to survey and identify the collected material. We are grateful to Natália M. Tôrres, Ananda Barban and all collaborators of the Jaguar Conservation Institute (JCF). Ana Luiza Catalano kindly revised the English version of the manuscript. We thank Fábio Maffei and Lucas Lima for reviewing the preliminary version of this text.

REFERENCES

  • Agostinelli, C. & Lund, U. 2017. R package ‘circular’: Circular Statistics, version 0.4-93. Available: Available: http://r-forge.r-project.org/projects/circular Access: 15/07/2020.
    » http://r-forge.r-project.org/projects/circular
  • Alvarenga, G.C.; Ramalho, E.E.; Baccaro, F.B.; Rocha, D.G.; Ferreira-Ferreira, J. & Bobrowiec, P.E.D. 2018. Spatial patterns of medium and large size mammal assemblages in várzea and terra firme forests, Central Amazonia, Brazil. Plos One, 13: e0198120. https://doi.org/10.1371/journal.pone.0198120
    » https://doi.org/10.1371/journal.pone.0198120
  • Ashby, K.R. 1972. Patterns of daily activity in mammals. Mammal Review, 1(7-8): 171-185. https://doi.org/10.1111/j.1365-2907.1972.tb00088.x
    » https://doi.org/10.1111/j.1365-2907.1972.tb00088.x
  • Batschelet, E. 1981. Circular statistics in biology. London, Academic Press Inc.
  • Beale, A.D.; Whitmore, D. & Moran, D. 2016. Life in a dark biosphere: a review of circadian physiology in “arrhythmic” environments. Journal of Comparative Physiology B, 186(8): 947-968. https://doi.org/10.1007/s00360-016-1000-6
    » https://doi.org/10.1007/s00360-016-1000-6
  • Beirne, C.; Pillco-Huarcaya, R.; Serrano-Rojas, S.J. & Whitworth, A. 2017. Terrestrial camera traps: essential tool for the detection and future monitoring of the critically endangered sira curassow Pauxi koepckeae. Endangered Species Research, 32(1): 145-152. https://doi.org/10.3354/esr00802
    » https://doi.org/10.3354/esr00802
  • Benítez-López, A.; Alkemade, R.; Schipper, A.M.; Ingram, D.J.; Verweij, P.A.; Eikelboom, J.A.J. & Huijbregts, M.A.J. 2017. The impact of hunting on tropical mammal and bird populations. Science, 356(6334): 180-183. https://doi.org/10.1126/science.aaj1891
    » https://doi.org/10.1126/science.aaj1891
  • Bennie, J.J.; Duffy, J.P.; Inger, R. & Gaston, K.J. 2014. Biogeography of time partitioning in mammals. Proceedings of the National Academy of Sciences, 111(38): 13727-13732. https://doi.org/10.1073/pnas.1216063110
    » https://doi.org/10.1073/pnas.1216063110
  • Bergier, I.; Aassine, L.M.; Mcglue, M.M.; Alho, C.J.R.; Silva, A.; Renato, L.; Guerreiro, R.L. & Carvalho, J.C. 2018. Amazon rainforest modulation of water security in the Pantanal wetland. Science of the Total Environment, 619-620: 1116-1125. https://doi.org/10.1016/j.scitotenv.2017.11.163
    » https://doi.org/10.1016/j.scitotenv.2017.11.163
  • Blake, J.G.; Mosquera, D.; Loiselle, B.A.; Swing, K. & Romo, D. 2017. Long-term variation in abundance of terrestrial mammals and birds in eastern Ecuador as measured by photographic rates and occupancy estimates. Journal of Mammalogy, 98(4): 1168-1178. https://doi.org/10.1093/jmammal/gyx046
    » https://doi.org/10.1093/jmammal/gyx046
  • Bloch, G.; Barnes, B.M.; Gerkema, M.P. & Helm, B. 2013. Animal activity around the clock with no overt circadian rhythms: patterns, mechanisms and adaptive value. Proceedings of the Royal Society Biological Science, Series B, 280(1765): 1-9. https://doi.org/10.1098/rspb.2013.0019
    » https://doi.org/10.1098/rspb.2013.0019
  • Brooks, D.M. 2006. Conserving Cracids: the most threatened family of birds in the Americas. Houston, Houston Museum of Natural Science.
  • Brooks, D.M. & Fuller, R.A. 2006. Biology and conservation of cracids. In: Brooks, D.M.; Cancino, L. & Pereira, S.L. (Eds.). Conserving Cracids: the most threatened family of birds in the Americas. Houston, Houston Museum of Natural Science. p. 14-26.
  • Bueno, R.S.; Guevara, R.; Ribeiro, M.C.; Culot, L.; Bufalo, F.S. & Galetti, M. 2013. Functional redundancy and complementarities of seed dispersal by the last neotropical megafrugivores. Plos One, 8(2): e56252. https://doi.org/10.1371/journal.pone.0056252
    » https://doi.org/10.1371/journal.pone.0056252
  • Cassone, V.M. 2014. Avian circadian organization: a chorus of clocks. Frontiers in Neuroendocrinology, 35(1): 76-88. https://doi.org/10.1016/j.yfrne.2013.10.002
    » https://doi.org/10.1016/j.yfrne.2013.10.002
  • Costa, H.C.M.; Peres, C.A. & Abrahams, M.I. 2018. Seasonal dynamics of terrestrial vertebrate abundance between Amazonian flooded and unflooded forests. PeerJ, 6: e5058. https://doi.org/10.7717/peerj.5058
    » https://doi.org/10.7717/peerj.5058
  • Davis, C.L; Rich, L.N.; Farris, Z.J.; Kelly, M.J.; di Bitetti, M.S; Blanco, Y.D.; Albanesi, S.; Farhadinia, M.S.; Gholikhani, N.; Hamel, S.; Harmsen, B.J.; Wultsch, C.; Kane, M.D.; Martins, Q.; Murphy, A.J.; Steenweg, R.; Sunarto, S.; Taktehrani, A.; Thapa, K.; Tucker, J.M.; Whittington, J.; Widodo, F.A.; Yoccoz, N.G. & Miller, D.A.W. 2018. Ecological correlates of the spatial co-occurrence of sympatric mammalian carnivores worldwide. Ecology Letters, 21: 1401-1412. https://doi.org/10.1111/ele.13124
    » https://doi.org/10.1111/ele.13124
  • del Hoyo, J. & Kirwan, G.M. 2020. Red-throated Piping-guan (Pipile cujubi). In: del Hoyo, J.; Elliott, A.; Sargatal, J.; Christie, D.A. & de Juana, E. Handbook of the birds of the world alive. Barcelona, Lynx Edicions. Available: Available: https://www.hbw.com/node/53297 Access: 29/04/2020.
    » https://www.hbw.com/node/53297
  • Delacour, J. & Amadon, D. 1973. Curassows and related birds. New York, American Museum of Natural History.
  • Di Bitetti, M.S.; De Angelo, C.D.; Di Blanco, Y.E. & Paviolo, A. 2010. Niche partitioning and species coexistence in a Neotropical felid assemblage. Acta Oecologica, 36(4): 403-412. https://doi.org/10.1016/j.actao.2010.04.001
    » https://doi.org/10.1016/j.actao.2010.04.001
  • Díaz-Ruiz, F.; Caro, J.; Delibes-Mateos, M.; Arroyo, B. & Ferreras, P. 2016. Drivers of red fox (Vulpes vulpes) daily activity: prey availability, human disturbance or habitat structure? Journal of Zoology, 298(2): 128-138. https://doi.org/10.1111/jzo.12294
    » https://doi.org/10.1111/jzo.12294
  • Ensing, E.P.; Ciuti, S.; De Wijs, F.A.; Lentferink, D.H.; Ten Hoedt, A.; Boyce, M.S. & Hut, R.A. 2014. GPS based daily activity patterns in European Red Deer and North American Elk (Cervus elaphus): indication for a weak circadian clock in ungulates. Plos One, 9(9): e106997. https://doi.org/10.1371/journal.pone.0106997
    » https://doi.org/10.1371/journal.pone.0106997
  • Estevo, C.A.; Nagy-Reis, M.B. & Nichols, J.D. 2017. When habitat matters: habitat preferences can modulate co-occurrence patterns of similar sympatric species. Plos One, 12(7): e0179489. https://doi.org/10.1371/journal.pone.0179489
    » https://doi.org/10.1371/journal.pone.0179489
  • Fenn, M.G. & MacDonald, D.W. 1995. Use of middens by red foxes: risk reverses rhythms of rats. Journal of Mammalogy, 76(1): 130-136. https://doi.org/10.2307/1382321
    » https://doi.org/10.2307/1382321
  • Fernández-Duque, F.; Huck, M.; Dávalos, V. & Fernández-Duque, E. 2013. Estudio preliminar sobre la ecología, el comportamiento y la demografía del Muitú (Crax fasciolata) en la selva en galería del riacho Pilagá, Formosa, Argentina. El Hornero, 28(1): 65-74.
  • Forero, M.G.; Bortolotti, G.R.; Hobson, K.A.; Donázar, J.A.; Bertelloti, M. & Blanco, G. 2004. High trophic overlap within the seabird community of Argentinean Patagonia: a multi-scale approach. Journal of Animal Ecology, 73(4): 789-801. https://doi.org/10.1111/j.0021-8790.2004.00852.x
    » https://doi.org/10.1111/j.0021-8790.2004.00852.x
  • Galetti, M.; Guevara, R.; Côrtes, M.C.; Fadini, R.; Von Matter, S.; Leite, A.B.; Labecca, F.; Ribeiro, T.; Carvalho, C.S.; Collevatti, R.G.; Pires, M.M.; Guimarães-Jr., P.R.; Brancalion, P.H.; Ribeiro, M.C. & Jordano, P. 2013. Functional extinction of birds drives rapid evolutionary changes in seed size. Science, 340(6136): 1086-1090. https://doi.org/10.1126/science.1233774
    » https://doi.org/10.1126/science.1233774
  • Galetti, M.; Pires, A.S.; Brancalion, P.H.S. & Fernandez, F.A.S. 2016. Reversing defaunation by trophic rewilding in empty forests. Biotropica, 49(1): 5-8. https://doi.org/10.1111/btp.12407
    » https://doi.org/10.1111/btp.12407
  • Gaynor, K.M.; Hojnowski, C.E.; Carter, N.H. & Brashares, J.S. 2018. The influence of human disturbance on wildlife nocturnality. Science, 360(6394): 1232-1235. https://doi.org/10.1126/science.aar7121
    » https://doi.org/10.1126/science.aar7121
  • Haugaasen, T. & Peres, C.A. 2007. Vertebrate responses to fruit production in Amazonian flooded and unflooded forests. Biodiversity and Conservation, 16(14): 4165-4190. https://doi.org/10.1007/s10531-007-9217-z
    » https://doi.org/10.1007/s10531-007-9217-z
  • Haugaasen, T. & Peres, C.A. 2008. Population abundance and biomass of large-bodied birds in Amazonian flooded and unflooded forests. Bird Conservation International, 18(2): 87-101. https://doi.org/10.1017/S0959270908000130
    » https://doi.org/10.1017/S0959270908000130
  • Hayes, F.E.; Shameerudeen, C.L.; Sanasie, B.; Hayes, B.D.; Ramjohn, C.L. & Lucas, F.B. 2009. Ecology and behaviour of the critically endangered Trinidad piping-guan Aburria pipile. Endangered Species Research, 6(3): 223-229. https://doi.org/10.3354/esr00153
    » https://doi.org/10.3354/esr00153
  • Heilbrun, R.D.; Silvy, N.J.; Peterson, M.J. & Tewes, M.E. 2006. Estimating bobcat abundance using automatically triggered cameras. Wildlife Society Bulletin, 34(1): 69-73. https://doi.org/10.2193/0091-7648(2006)34[69:EBAUAT]2.0.CO;2
    » https://doi.org/10.2193/0091-7648(2006)34[69:EBAUAT]2.0.CO;2
  • Hernández-Saint Martín, A.D.; Rosas-Rosas, O.C.; Palacio-Núñez, J; Tarango-Arámbula, L.A.; Clemente-Sánchez, F. & Hoogesteijn, A.L. 2013. Activity patterns of jaguar, puma and their potential prey in San Luis Potosí, Mexico. Acta Zoológica Mexicana, 29(3): 520-533.
  • Hertel, A.G.; Zedrosser, A.; Mysterud, A.; Støen, O.G.; Steyaert, S.M. & Swenson, J.E. 2016. Temporal effects of hunting on foraging behavior of an apex predator: do bears forego foraging when risk is high? Oecologia, 182(4): 1019-1029. https://doi.org/10.1007/s00442-016-3729-8
    » https://doi.org/10.1007/s00442-016-3729-8
  • Hut, R.A.; Kronfeld-Schor, N.; van der Vinne, V. & De la Iglesia, H. 2012. In search of a temporal niche: environmental factors. Progress in Brain Research, 199: 281-304. https://doi.org/10.1016/B978-0-444-59427-3.00017-4
    » https://doi.org/10.1016/B978-0-444-59427-3.00017-4
  • Instituto Chico Mendes de Conservação da Biodiversidade (ICMBio). 2018. Livro Vermelho da Fauna Brasileira Ameaçada de Extinção: Volume III - Aves. Brasília, ICMBio/MMA.
  • Jammalamadaka, S.R. & Sen Gupta, A. 2001. Topics in circular statistics. Singapore, World Scientific.
  • Jiménez, C.F.; Quintana, H.; Pacheco, V.; Melton, D.; Torrealva, J. & Tello, G. 2010. Camera trap survey of medium and large mammals in a montane rainforest of northern Perú. Revista Peruana de Biología, 17(2): 191-196. https://doi.org/10.15381/rpb.v17i2.27
    » https://doi.org/10.15381/rpb.v17i2.27
  • Jordano, P.; Galetti, M.; Pizo, M.A. & Silva, W.R. 2006. Ligando frugivoria e dispersão de sementes à biologia da conservação. In: Rocha, C.F.D.; Bergallo, H.G.; Sluys, M.V. & Alves, M.A.S. Biologia da conservação: essências. São Carlos, Editora Rima. p. 411-436.
  • Kelly, M.J. & Holub, E.L. 2008. Camera trapping of carnivores: trap success among camera types and across species, and habitat selection by species, on Salt Pond Mountain, Giles County, Virginia. Northeastern Naturalist, 15(2): 249-262.
  • Kottek, M.; Grieser, J.; Beck, C.; Rudolf B. & Rubel F. 2006. World Map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, 15(3): 259-263. https://doi.org/10.1127/0941-2948/2006/0130
    » https://doi.org/10.1127/0941-2948/2006/0130
  • Kronfeld-Schor, N. & Dayan, T. 2003. Partitioning of time as an ecological resource. Annual Review of Ecology, Evolution, and Systematics, 34(1): 153-181. https://doi.org/10.1146/annurev.ecolsys.34.011802.132435
    » https://doi.org/10.1146/annurev.ecolsys.34.011802.132435
  • Kuhnen, V.V.; Lima, R.E.M.; Santos, J.F. & Machado-Filho, L.C.P. 2013. Habitat use and circadian pattern of Solitary Tinamou Tinamus solitarius in a southern Brazilian Atlantic rainforest. Bird Conservation International, 23(1): 78-82. https://doi.org/10.1017/S0959270912000147
    » https://doi.org/10.1017/S0959270912000147
  • Kumar, V.; Wingfield, J.C.; Dawson, A.; Ramenofsky, M.; Rani, S. & Bartell, P. 2010. Biological Clocks and Regulation of Seasonal Reproduction and Migration in Birds. Physiological and Biochemical Zoology, 83(5): 827-835. https://doi.org/10.1086/652243
    » https://doi.org/10.1086/652243
  • Lafleur, L.; Pardo, L.; Spínola, R.M.; Saénz, J. & Cove, M.V. 2014. Notes on plumage patterns and activity of the Great Curassow (Crax rubra) in northeastern Costa Rica. Bulletin of the Cracid Group, 36: 17-19.
  • Laposky, A.D.; Bass, J.; Kohsaka, A. & Turek, F.W. 2008. Sleep and circadian rhythms: key components in the regulation of energy metabolism. FEBS Letters, 582(1): 142-151. https://doi.org/10.1016/j.febslet.2007.06.079
    » https://doi.org/10.1016/j.febslet.2007.06.079
  • Lazzari, C.R. & Insausti, T.C. 2008. Circadian rhythms in insects. In: Fanjul, M.L.; Moles & Roblero, R.A. Comparative aspects of circadian rhythms. Transworld Research Network, 37/661 (2), Trivandrum-695 023, Kerala, India.
  • Leite, G.A.; Farias, I.P.; Goçalves, A.L.S.; Hawes, J.E. & Peres, C.A. 2018. Coarse- and fine-scale patterns of distribution and habitat selection places an Amazonian floodplain curassow in double jeopardy. PeerJ, 6: e4617. https://doi.org/10.7717/peerj.4617
    » https://doi.org/10.7717/peerj.4617
  • Maffei, L.; Cuéllar, E. & Noss, J. 2002. Uso de trampas cámara para la evaluación de mamíferos en el ecotono Chaco-Chiquitanía. Revista Boliviana de Ecología y Conservación Ambiental, 11: 55-65.
  • Mardia, K. 1967. A non-parametric test for the bivariate two-sample location problem. Journal of the Royal Statistical Society. Series B, Methodological, 29(2): 320-342.
  • Michalski, L.J.; Norris, D.; Oliveira, T.G. & Michalski, F. 2015. Ecological relationships of meso-scale distribution in 25 neotropical vertebrate species. Plos One, 10(5): e0126114. https://doi.org/10.1371/journal.pone.0126114
    » https://doi.org/10.1371/journal.pone.0126114
  • Monroy-Vilchis, O.; Zarco-González, M.M.; Rodríguez-Soto, C.; Soria-Díaz, L. & Urios V. 2011. Fototrampeo de mamíferos en la Sierra Nanchititla, México: abundancia relativa y patrón de actividad. Revista de Biología Tropical, 59(1): 373-383. https://doi.org/10.15517/rbt.v59i1.3206
    » https://doi.org/10.15517/rbt.v59i1.3206
  • Monterroso, P.; Alves, P.C. & Ferreras, P. 2013. Catch me if you can: diel activity patterns of Mammalian prey and predators. Ethology, 119(12): 1044-1056. https://doi.org/10.1111/eth.12156
    » https://doi.org/10.1111/eth.12156
  • Monterroso, P.; Alves, P.C. & Ferreras, P. 2014. Plasticity in circadian activity patterns of mesocarnivores in Southwestern Europe: implications for species coexistence. Behavioral Ecology and Sociobiology, 68(9): 1403-1417. https://doi.org/10.1007/s00265-014-1748-1
    » https://doi.org/10.1007/s00265-014-1748-1
  • Mori, E.; Sangiovanni, G. & Corlatti, L. 2020. Gimme shelter: the effects of rock and moonlight on occupancy and activity pattern of anendangered rodent, the garden dormouse Eliomys quercinus. Behavioural Processes, 170: 103999. https://doi.org/10.1016/j.beproc.2019.103999
    » https://doi.org/10.1016/j.beproc.2019.103999
  • Morrison, M.L.; Marcot, B.G. & Mannan, R.W. 2006. Wildlife-habitat relationships: concepts and applications, third edition. Washington, Island Press.
  • Muñoz, M. & G. Kattan. 2007. Diets of cracids: How much do we know? Ornitologia Neotropical, 18(1): 21-36.
  • Negret, P.J.; Garzón, O.; Stevenson, P.R. & Laverde, O. 2015. New ecological information for the Black Tinamou (Tinamus osgoodi hershkovitzi). The Auk, 132(3): 533-539. https://doi.org/10.1642/AUK-14-116.1
    » https://doi.org/10.1642/AUK-14-116.1
  • Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P. & McGlinn, D.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; Stevens, M.H.H.; Szoecs, E. & Wagner, H. 2020. Vegan: Community Ecology Package. R Package Version 2.5-6.
  • Pardo, L.E.; Lafleur, L.; Spínola, R.M.; Saenz, J. & Cove, M.V. 2017. Camera traps provide valuable data to assess the occurrence of the Great Curassow Crax rubra in northeastern Costa Rica. Neotropical Biodiversity, 3(1): 182-188. https://doi.org/10.1080/23766808.2017.1346548
    » https://doi.org/10.1080/23766808.2017.1346548
  • Pérez-Irineo, G. & Santos-Moreno, A. 2018. Occupancy, relative abundance, and activity patterns of Great Curassow (Crax rubra) in southeastern Mexico. Ornitologia Neotropical, 28: 313-320.
  • Pianka, E.R. 1981. Competition and niche theory. In: May, R.M. Theoretical ecology. Oxford, Blackwell. p. 167-196.
  • Pita, R.; Mira, A. & Beja, P. 2011. Circadian activity rhythms in relation to season, sex and interspecific interactions in two Mediterranean voles. Animal Behaviour, 81(5): 1023-1030. https://doi.org/10.1016/j.anbehav.2011.02.007
    » https://doi.org/10.1016/j.anbehav.2011.02.007
  • Pittendrigh, C.S. 1981. Circadian systems: entrainment. In: Aschoff, J. Handbook of behavioral neurobiology, biological rhythms. New York, Plenum Press. p. 95-124.
  • Presley, S.J.; Willig, M.R.; Castro-Arellano, I. & Weaver, S.C. 2009. Effects of habitat conversion on temporal activity patterns of Phyllostomid bats in lowland Amazonian rain forest. Journal of Mammalogy, 90(1): 210-221. https://doi.org/10.1644/08-MAMM-A-089.1
    » https://doi.org/10.1644/08-MAMM-A-089.1
  • R Development Core Team. 2011. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.
  • Reebs, S.G. 2002. Plasticity of diel and circadian activity rhythms in fishes. Reviews in Fish Biology and Fisheries, 12(4): 349-371. https://doi.org/10.1023/A:1025371804611
    » https://doi.org/10.1023/A:1025371804611
  • Reyes-Arriagada, R.; Jiménez, J.E. & Rozzi, R. 2014. Daily patterns of activity of passerine birds in a Magellanic sub-Antarctic forest at Omora Park (55°S), Cape Horn Biosphere Reserve, Chile. Polar Biology, 38(3): 401-411. https://doi.org/10.1007/s00300-014-1596-5
    » https://doi.org/10.1007/s00300-014-1596-5
  • Ridout, M.S. & Linkie, M. 2009. Estimating overlap of daily activity patterns from camera trap data. Journal of Agricultural Biological and Environmental Statistics, 14(3): 322-337. https://doi.org/10.1198/jabes.2009.08038
    » https://doi.org/10.1198/jabes.2009.08038
  • Rodríguez-Flores, C.I. & Arizmendi, M.D.C. 2020. West Mexican Chachalaca (Ortalis poliocephala), version 1.0. In: Schulenberg, T.S. Birds of the World. Ithaca, Cornell Lab of Ornithology. https://doi.org/10.2173/bow.wemcha1.01 Access: 15/09/2020.
    » https://doi.org/10.2173/bow.wemcha1.01
  • Ross, J.; Hearn, A.J.; Johnson, P.J. & Macdonald, D.W. 2013. Activity patterns and temporal avoidance by prey in response to Sunda clouded leopard predation risk. Journal of Zoology, 290(2): 96-106. https://doi.org/10.1111/jzo.12018
    » https://doi.org/10.1111/jzo.12018
  • Sæbø, J.S. 2016. Spatial and temporal distributions and interactions in a neotropical ground-dwelling animal community. Masters Dissertation. Norwegian University of Life Sciences, Akershus, Noruega.
  • Sassi, P.L.; Taraborelli, P.; Albanese, S. & Gutierrez, A. 2015. Effect of temperature on activity patterns in a small andean rodent: behavioral plasticity and intraspecific variation. Ethology, 121(9): 840-849. https://doi.org/10.1111/eth.12398
    » https://doi.org/10.1111/eth.12398
  • Schaaf, A.A.; Luczywo, A.; Díaz, A.; Peralta, G. & Peluc, S. 2014. Descripción de nido, huevos, comportamiento de incubación y pichones de la charata (Ortalis canicollis) en el Bosque Chaqueño Serrano de Córdoba, Argentina. Bulletin of the Cracid Group, 36: 8-16.
  • Schubart, O.; Aguirre, A.C. & Sick, H. 1965. Contribuição ao conhecimento da alimentação das aves brasileiras. Arquivos de Zoologia, 12: 95-249.
  • Sedaghatkish, G. 1996. The importance of seed dispersers in the conservation of useful wild plant species: a case study of the avian family Cracidae. Masters Dissertation. University of Maryland, College Park, Maryland, USA.
  • Sick, H. 1997. Ornitologia Brasileira. Rio de Janeiro, Nova Fronteira. 862p.
  • Sievert, C. 2020. Interactive web-based data visualization with R, plotly, and shiny. Florida, Chapman & Hall/CRC.
  • Silva, J.D. & Abdon, M.D. 1998. Delimitação do Pantanal brasileiro e sub-regiões. Pesquisa Agropecuária Brasileira, 33 (N. Esp.): 1703-1711.
  • Silva, J.S.V.; Pott, A.; Abdon, M.M.; Pott, V.J. & Santos, K.R. 2011. Projeto GeoMS: cobertura vegetal e uso da terra do estado do Mato Grosso do Sul. Campinas, Embrapa Informática Agropecuária.
  • Soriano, B.M.A. & Alves, M.J.M. 2005. Boletim agrometeorológico ano 2002 para a sub-região da Nhecolândia, Pantanal, Mato Grosso do Sul, Brasil. Documentos Embrapa Pantanal, 76: 1-29.
  • Srbek-Araújo, A.C. & Chiarello, A. 2005. Is camera-trapping an efficient method for surveying mammals in Neotropical forests? A case study in south-eastern Brazil. Journal of Tropical Ecology, 21(1): 121-125. https://doi.org/10.1017/S0266467404001956
    » https://doi.org/10.1017/S0266467404001956
  • Srbek-Araújo, A.C.; Albergaria, V.D.G. & Chiarello, A.G. 2009. A review on distribution and natural history of White-necked Hawk (Leucopternis lacernulatus), including a record of prey on tegu lizard (Tupinambis meriane) at Reserva Natural Vale, southeastern Brazil. Revista Brasileira de Ornitologia, 17(1): 53-58.
  • Srbek-Araújo, A.C.; Silveira, L.F. & Chiarello, A.G. 2012. The Red-billed Curassow (Crax blumenbachii): social organization, and daily activity patterns. The Wilson Journal of Ornithology, 124(2): 321-327. https://doi.org/10.1676/11-054.1
    » https://doi.org/10.1676/11-054.1
  • Stelzer, R.J.; Stanewsky, R. & Chittka, L. 2010. Circadian foraging rhythms of Bumblebees monitored by radio-frequency identification. Journal of Biological Rhythms, 25(4): 257-267. https://doi.org/10.1177/0748730410371750
    » https://doi.org/10.1177/0748730410371750
  • Sunarto, S.; Kelly, M.J.; Parakkasi, K. & Hutajulu, M.B. 2015. Cat coexistence in central Sumatra: ecological characteristics, spatial and temporal overlap, and implications for management. Journal of Zoology, 296(2): 104-115. https://doi.org/10.1111/jzo.12218
    » https://doi.org/10.1111/jzo.12218
  • Tobler, M.W.; Carrillo-Percastegui, S.E.; Pitman, R.L.; Mares, R. & Powell, G. 2008. An evaluation of camera traps for inventorying large- and medium-sized terrestrial rainforest mammals. Animal Conservation, 11(3): 169-178. https://doi.org/10.1111/j.1469-1795.2008.00169.x
    » https://doi.org/10.1111/j.1469-1795.2008.00169.x
  • Torretta, E.; Mosini, A.; Piana, M.; Tirozzi, P.; Serafini, M.; Puopolo, F.; Saino, N. & Balestrieri, A. 2017. Time partitioning in mesocarnivore communities from different habitats of NW Italy: insights into martens’ competitive abilities. Behaviour, 154(2): 241-266. https://doi.org/10.1163/1568539X-00003420
    » https://doi.org/10.1163/1568539X-00003420
  • West, A.C. & Bechtold, D.A. 2015. The cost of circadian desynchrony: evidence, insights and open questions. BioEssays, 37(7): 777-788. https://doi.org/10.1002/bies.201400173
    » https://doi.org/10.1002/bies.201400173
  • Willems, E.P. & Hill, R.A. 2009. Predator-specific landscapes of fear and resource distribution: effects on spatial range use. Ecology, 90(2): 546-555. https://doi.org/10.1890/08-0765.1
    » https://doi.org/10.1890/08-0765.1
  • Winkler, D.W.; Billerman, S.M. & Lovette, I.J. 2020. Guans, Chachalacas, and Curassows (Cracidae), version 1.0. In: Billerman, S.M.; Keeney, B.K.; Rodewald, P.G. & Schulenberg, T.S. Birds of the World. Ithaca, Cornell Lab of Ornithology. Available: Available: https://doi.org/10.2173/bow.cracid2.01 Access: 26/09/2020.
    » https://doi.org/10.2173/bow.cracid2.01
  • Zar, J.H. 2010. Biostatistical analysis, 5. ed. New Jersey, Prentice Hall/Pearson.
  • 4
    FUNDING INFORMATION: We are grateful to Jaguar Conservation Institute (JCF) for support this research project. Field research in Pantanal was also supported by Barranco Alto ranch.
  • Published with the financial support of the "Programa de Apoio às Publicações Científicas Periódicas da USP"

Edited by

EDITED BY: Luís Fábio Silveira.

Publication Dates

  • Publication in this collection
    16 May 2022
  • Date of issue
    2022

History

  • Received
    22 Jan 2021
  • Accepted
    04 Jan 2022
  • Published
    10 Mar 2022
Museu de Zoologia da Universidade de São Paulo Av. Nazaré, 481, Ipiranga, 04263-000 São Paulo SP Brasil, Tel.: (55 11) 2065-8133 - São Paulo - SP - Brazil
E-mail: einicker@usp.br